

Multiple Sequence Alignments and Phylogenetics

Multiple sequence alignment

- Sequence alignment as earlier discussed is the initial point in functional and structural protein characterization.
- Multiple sequence alignment (MSA) is the alignment of more than two sequences.
- MSA helps to reveal ancestral relationships between organisms and conserved residues and motifs of functional importance.
- Some MSA programs include
- T-Coffee
- Muscle
- Mafft
- Clustal
- Promals3D

Phylogenetics

- The study of evolutionary relatedness of organisms. Derived from two Greek words:
- Phle/Phylon: Tribe/Race
- Genetikos: Relative to Birth

Phylogenetics

- Evolution is the change in distribution of allele frequencies from one generation to the next.
- Similarity in sequenced data is taken as an indication of evolutionary relatedness.
Sequence difference is taken as a measure of evolutionary divergence.
- Progression rules: as an organism is more distant from its ancestor their characters are more evolved.

Phylogenetic tree

- This is a branching diagram that infers evolutionary relationship of various species based on their physical or genetic traits.

Rooted vs Un-rooted tree

Un-rooted tree
Does not show direction of evolution

Rooted tree
Direction of evolution indicated as moving away from the root

Rooting a tree

- Two methods are known for tree routing:

1. Outgroup Criteria: include in the analysis a group od sequences known as a priori to be external to the group in study; the root is by necessity the branch joining the outgroup and the other sequences
2. Molecular clock: all lineages are supported to have evolved with the same speed since divergence from their common ancestor. The root is at the equidistant point from all tree leaves.

Rooting a tree with an outgroup

- This is the use of an organism or group of organisms (outgroup) that are more evolutionary distant to the group in study (internal group).
- The common ancestor is therefore placed between the internal group and the outgroup. This effectively roots the tree and evolutionary distances will be relative to this point. (gives a direction of evolution)

Selecting an outgroup

- An outgroup should not be too distantly related to the internal group, this results in very long branch lengths that distort the remaining branches rendering the topology unreliable.
- The outgroup should also not be too closely related to the internal group this may not make a true outgroup.
- Using various outgroup species may better balance the final tree branching.

Introduction to Molecular Phylogeny

- Starting point: a set of homologous, aligned DNA or protein sequences
- Result of the process: a tree describing evolutionary relationships between studied sequences
= a genealogy of sequences
= a phylogenetic tree

```
CLUSTAL W (1.74) multiple sequence alignment
```

Xenopus ATGCATGGGCCAACATGACCAGGAGTTGGTGTCGGTCCAAACAGCGTT---GGCTCTCTA

Gallus
Bos
Homo
Mus
Rattus ATGCATGGGCCAGCATGACCAGCAGGAGGTAGC---CAAAATAACACCAACATGCAAATG ATGCATCCGCCACCATGACCAGCAGGAGGTAGCACCCAAAACAGCACCAACGTGCAAATG ATGCATCCGCCACCATGACCAGCAGGAGGTAGCACTCAAAACAGCACCAACGTGCAAATG ATGCATCCGCCACCATGACCAGCAGGAGGTAGCACTCAAAACAGCACCAACGTGCAAATG ATGCATCCGCCACCATGACCAGCGGGAGGTAGCTCTCAAAACAGCACCAACGTGCAAATG

Alignment and Gaps

- The quality of the alignment is essential : each column of the alignment (site) is supposed to contain homologous residues (nucleotides, amino acids) that derive from a common ancestor.
==> Unreliable parts of the alignment must be omitted from further phylogenetic analysis.
- Most methods take into account only substitutions ; gaps (insertion/deletion events) are not used.
$==>$ gaps-containing sites are ignored.

Xenopus
Gallus
Bos
Homo
Mus
Rattus

ATGCATGGGCCAACATGACCAGGAGTTGGTGTC gg CCAAACAGCGTT---GGCTCTCTA ATGCATGGGCCAGCATGACCAGCAGGAGGTAGC---CAAAATAACACC aacATGCAAATG ATGCATCCGCCACCATGACCAGCAGGAGGTAGC ag CAAAACAGCACC aacGTGCAAATG ATGCATCCGCCACCATGACCAGCAGGAGGTAGC ag CAAAACAGCACC aacGTGCAAATG ATGCATCCGCCACCATGACCAGCAGGAGGTAGC act CAAAACAGCACC a GTGCAAATG ATGCATCCGCCACCATGACCAGCGGGAGGTAGC $\llcorner c t$ CAAAACAGCACC aacGTGCAAATG

Sequences Reflect Relationships

Monophyly

Molecular Phylogenies

- The gene compared must evolve at a rate comparable to the divergence time of the organism; for example:
- 18 S rRNA gene for phylum-level divergences since it evolves very slowly.
- Hemoglobin genes for mammalian orders.
- Mitochondrial DNA for species divergences within a genus.
- Repetitive DNA sequences (e.g. microsatellites) for individuals within species.

Caveat: homoplasy: independen evolution of the same characte

Evolutionary relationship:
Shared ancestral characters
Shared derived characters

Homoplasy (independent evolution of the same character):

Distance methods

- To estimate evolutionary distances between sequences there is need for statistical / evolutionary models.
- Statistical models estimate for evolutionary distance while accounting for residue substitution and homoplasy.
- Juke-Cantors: good for distances <10\%
- Kimura-2: distance 10-30\% and transitions ~= transversions
- Tamura: distances 10-30\% and strong G+C bias
- Jin-Nei $ү$: distance 10-30\% and varying transitiontransvertion rates
- Tajima-Nei: distances 30-100\%
- These evolutionary distances are then converted into a distance matrix used in building the tree

Substitution models

Method of building a tree

1. Distance methods
2. Character based methods
3. Maximum parsimony
4. Maximum likelihood
5. Bayesian inference

Distance methods

- Starts from a multiple sequence alignment
- Makes a matrices of pairwise sequence distances (number of differences)
- Builds a phylogenetic tree

Correspondence between trees and distance matrices

- Any phylogenetic tree induces a matrix of distances between sequence pairs
- "Perfect" distance matrices correspond to a single phylogenetic tree

distance matrix

Building phylogenetic trees by distance methods

General principle :
Sequence alignment
N
(1)

Matrix of evolutionary distances between sequence pairs
\downarrow
(2)
(unrooted) tree

- (1) Measuring evolutionary distances.
- (2) Tree computation from a matrix of distance values.

Multiple sequence alignment

Species A ATGGCTATTCTTATAGTACG
Species B ATCTAGTCTTATATTACA

Aligned sequences
Species A ATGGCTATTCTTATAGTACG
Species B ATC --TAGTCTTATATTACA

Multiple sequence alignment

- Different softwares: ClustalW, ClustalX, Muscle

> Species A ATGGCTATTCTTATAGTACG Species B ATC--TAGTCTTATATTACA

Minimize total score

Gap extension penalty

Principle of distance methods

Taxa	Characters
Species A	ATGGCTATTCTTATAGTACG
Species B	ATCGCTAGTCTTATATTACA
Species C	TTCACTAGACCTGTGGTCCA
Species D	TTGACCAGACCTGTGGTCCG
Species E	TTGACCAGTTCTCTAGTTCG

Transform the sequence data into pairwise distances

A B C D E

Species A	----	0.20	0.50	0.45	0.40
Species B	----	---	0.40	0.55	0.50
Species C	----	----	---	0.15	0.40
Species D	----	----	----	---	0.25
Species E	---	---	---	---	---

Distance methods

- UPGMA (Unweighted Pair Group Method with Arithmetic mean): same rate of evolution on each branch
- The Neighbor Joining method = most popular method
does not assume the same rate of evolution on each branch of a tree

Character based methods

- This analyses any set of discrete character, that is each position in an aligned sequence character.
- All character can be analyzed separately and independently of one another.
- These include:

1. Maximum Parsimony (MP)
2. Maximum Likelihood (ML)
3. Bayesian methods

Building Trees with Parsimony

- Parsimony involves evaluating all possible trees and giving each a score based on the number of evolutionary changes that are needed to explain the observed data.
- The best tree is the one that requires the fewest base changes for all sequences to derive from a common ancestor.

Maximum likelihood and bayesian methods

- Allows for substitution rates to differ on lineages and sites: appropriate for distantly related species
- Estimates the likelihood of a tree=probability of the data given an evolutionary model
- Complex and computationally intensive!

Maximum likelihood

- Maximum Likelihood evaluates the topologies of different trees given a particular evolution model and picks the best one according to the likelihood score. (tree with the highest likelihood)
- It considers all characters and looks for trees that best suit a given evolution model.
- It is possibly more accurate than Maximum parsimony if the appropriate model is chosen.

Bootstrapping

- Bootstrapping is commonly used test of reliability of inferred phylogenetic tree.
- A single tree may not be credible given the dependencies involved: (characters, evolutionary model, parameters).
- Bootstrapping is done by generating 100-1000 replicas of your data (arrange character positions at random, to create a series of bootstrap samples of same size as original data)
- The bootstrap datasets are analyzed looking for consistency. Variation among the datasets is used to estimate error involved in making estimates in the original data

Original data set
with n characters.

Original
analysis, e.g.
MP, ML, NJ.

	1.	2	1	4	5	6	τ	3	7	(0)	11	12	13	1.4	15	16	1.7	13	19	10
त저	c	G	9	C	G	6	T	G	6	T	C	T	$\boldsymbol{\beta}$	T	A	C	\boldsymbol{A}	C	6	\boldsymbol{A}
Exar	c	G	G	C	G	G	T	G	a	T	c	T	A	T	G	c	Ω	c	G	G
C゙x¢	T	0	G	C	0	G	C	G	T	c	T	c	Ω	T	a	C	a	$\boldsymbol{\beta}$	T	Ω
Dzur	1	9	Ω	C	G	9	T	G	\boldsymbol{A}	C	C	c	G	a	c	T	Ω	T	T	G

Draw n characters randomly with replacement Repeat m times.
 replicate data sets.

m pseudo-replicates, each with n characters.

Evaluate the results from the m analyses.

summary

- UPGMA assumes molecular clock, so provides a rooted tree (this assumption may be too strong in some cases)
- Neighbor joining has been proved to create correct trees when evolutionary rates vary.
- Maximum Parsimony is good for closely related sequences
- Maximum likelihood methods is the general of all three.

WWW resources for molecular

 phylogeny (1)-Compilations
\Rightarrow A list of sites and resources: http://www.ucmp.berkeley.edu/subway/phylogen.html
\Rightarrow An extensive list of phylogeny programs http://evolution.genetics.washington.edu/ phylip/software.html

- Databases of rRNA sequences and associated software
\Rightarrow The rRNA WWW Server - Antwerp, Belgium.
http://rrna.uia.ac.be
\Rightarrow The Ribosomal Database Project - Michigan State University http://rdp.cme.msu.edu/html/

WWW resources for molecular phylogeny (2)

- Database similarity searches (Blast) :
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.infobiogen.fr/services/menuserv.html http://bioweb.pasteur.fr/seqanal/blast/intro-fr.html http://pbil.univ-lyon1.fr/BLAST/blast.html

- Multiple sequence alignment

\Rightarrow ClustalX : multiple sequence alignment with a graphical interface (for all types of computers).
http://www.ebi.ac.uk/FTP/index.html and go to 'software'
\Rightarrow Web interface to ClustalW algorithm for proteins: http://pbil.univ-lyon1.fr/ and press "clustal

WWW resources for molecular phylogeny (3)

- Sequence alignment editor
\Rightarrow SEAVIEW : for windows and unix http://pbil.univ-lyonl.fr/software/seaview.html
- Programs for molecular phylogeny
\Rightarrow PHYLIP : an extensive package of programs for all platforms http://evolution.genetics.washington.edu/phylip.html
\Rightarrow CLUSTALX : beyond alignment, it also performs NJ
\Rightarrow PAUP* : a very performing commercial package http://paup.csit.fsu.edu/index.html
\Rightarrow PHYLO_WIN : a graphical interface, for unix only http://pbil.univ-lyon1.fr/software/phylowin.html
\Rightarrow MrBayes : Bayesian phylogenetic analysis http:// morphbank.ebc.uu.se/mrbayes/
\Rightarrow PHYML: fast maximum likelihood tree building http: //www. lirmm.fr/ ~guindon/phyml.html
\Rightarrow WWW-interface at Institut Pasteur, Paris http://bioweb.pasteur.fr/seqanal/phylogeny

END

Thank you!

