Linear Regression

Linear regression

- Deals with relationship between two variables X and Y.
- Y is the variables whose "behavior" we wish to study (e.g., fuel efficiency in a car).
- X is the variable we believe would help explain the behavior of Y (e.g., the size of the car).

Regression model

• The simple linear regression model:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y = Dependent/response variable
- X = Independent/explanatory variable (X is the predictor variable)
- ε = Random error term (captures unexplained variation in Y)
- $\beta_0 =$ Y-intercept
- $\beta_1 = \text{Slope of line}$

Components of the models

Non random component = $\beta_0 + \beta_1 X$

Random component $= \epsilon$

- Since ε is a random variable, Y is also a random variable since Y, in part, depends on ε
- We wish to find the expected value of Y:

 $E(Y) = \beta_0 + \beta_1 X$

- As X increases, Y <u>increases</u>, on average, if $\beta_1 > 0$
- As X increases, Y <u>decreases</u>, on average, if $\beta_1 < 0$

Regression Line

 A regression line, also called a line of best fit, is the line for which the sum of the squares of the residuals is a minimum.

The Equation of a Regression Line The equation of a regression line for an independent variable x and a dependent variable y is

$\hat{y} = mx + b$

where \hat{y} is the predicted y-value for a given x-value. The slope m and y-intercept b are given by

 $m = \frac{n\sum xy}{n\sum x^2} \frac{(\sum x)(\sum y)}{(\sum x)^2} \text{ and } b = \overline{y} \quad m\overline{x} = \frac{y}{n} \quad m - \frac{x}{n}$

where \overline{y} is the mean of the y-values and \overline{x} is the mean of the x-values. The regression line always passes through $(\overline{x}, \overline{y})$.

Regression Line Example: Find the equation of the regression line.											
	X	У	xy	X^2	y^2						
	1	- 3	- 3	1	9						
	2	- 1	- 2	4	1						
	3	0	0	9	0						
	4	1	4	16	1						
	5	2	10	25	4						
	x = 15	y = 1	<i>xy</i> = 9	$x^2 = 55$	$y^2 = 15$						
						Continued.					

Regression Line													
 Example: The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday. a.) Find the equation of the regression line. b.) Use the equation to find the expected test score for a student who watches 9 hours of TV. 													
Hours, x	0	1	2	3	3	5	5	5	6	7	7	10	
Test score, v	96	85	82	74	95	68	76	84	58	65	75	50	
	0	85	164	222	285	340	380	420	348	455	525	500	
$\frac{XY}{X^2}$	0	1	4	9	9	25	25	25	36	49	49	100	
y^2	9216	7225	6724	5476	9025	4624	5776	7056	3364	4225	5625	2500	
<i>x</i> = 54	<i>xy</i> = 3724			$x^2 = 332$			$y^2 = 70836$						

Regression Line

Example continued:

Using the equation $\hat{y} = -4.07x + 93.97$, we can predict the test score for a student who watches 9 hours of TV.

- $\hat{y} = -4.07x + 93.97$ =-4.07(9)+93.97

 - = 57.34

A student who watches 9 hours of TV over the weekend can expect to receive about a 57.34 on Monday's test.

Coefficient of Determination

The coefficient of determination ${\it R}^2$ is the ratio of the explained variation to the total variation. That is, .

 $R^2 = \frac{\text{Explained variation}}{\text{Total variation}}$

Example: • The correlation coefficient for the data that represents the number of hours students watched television and the test scores of each student is $r \approx$ -0.831. Find the coefficient of determination.

 $R^2 \approx (-0.831)^2$ About 69.1% of the variation in the test scores can be explained by the variation in the hours of TV watched. About 30.9% of the variation is 0.691unexplained.

Regression hypothesis

- $\Box \text{ Regression equation: } Y = \beta_0 + \beta_1 X$
- $\label{eq:hamiltonian} \begin{array}{l} \square \ \ H_0; \ \beta_1 \ = \ 0 \ (no \ regression \ relationship \ exists) \\ \ \square \ \ H_1; \ \beta_1 \ \neq \ 0 \ (there \ is \ a \ regression \ relationship) \end{array}$

F-test

- \Box F-test is a test for the entire regression
- $\hfill\square$ The calculated F statistic is as follows:

SCD

$$F_{(k-1,n-k)} = \frac{MSR}{MSE} = \frac{\frac{SSR}{k-1}}{\frac{SSE}{n-k}}$$

Regression

Test of Significance for β_1 (slope of regression line) Hypothesis for Slope, β_1

 $\Box \text{ Regression model: } Y = \beta_0 + \beta_1 X + \epsilon$

 $\Box H_0: \beta_1 = 0 (X \text{ has no impact on } Y)$ $\Box H_1: \beta_1 \neq 0$

 $\frac{\text{t-test for } \beta_1}{\text{t-test is a test for only } \beta_1 \text{ (not entire regression)}}$ $t_{n-k} = \frac{b_1}{Std \ error \ of \ b_1}$

Std. error of
$$b_1$$
: $S(b_1) = \frac{\sqrt{MSE}}{\sqrt{\sum (X - \overline{X})^2}}$

DF = n-k, where n = sample size and k = 2

 \Box Decision rule: Reject H₀ if t_{CALC} > t_{CV}