Linear Regression

Linear regression

- Deals with relationship between two variables X \qquad and Y .
- Y is the variables whose "behavior" we wish to study (e.g., fuel efficiency in a car).
- X is the variable we believe would help explain \qquad the behavior of Y (e.g., the size of the car).

Regression model

- The simple linear regression model:
$Y=\beta_{0}+\beta_{1} X+\varepsilon$
$\mathrm{Y}=$ Dependent/response variable
$\mathrm{X}=$ Independent/explanatory variable (X is the predictor variable) \qquad
$\varepsilon=$ Random error term (captures unexplained variation in Y) \qquad
$\beta_{0}=Y$-intercept
$\beta_{1}=$ Slope of line

Components of the models

Non random component $=\beta_{0}+\beta_{1} X$
Random component $=\varepsilon$
Since ε is a random variable, Y is also a random variable since Y , in part, depends on ε

- We wish to find the expected value of Y :
$\mathrm{E}(\mathrm{Y})=\beta_{0}+\beta_{1} \mathrm{X}$
As X increases, Y increases, on average, if $\beta_{1}>0$
As X increases, Y decreases, on average, if $\beta_{1}<0$

Residuals

- After verifying that the linear correlation between two variables is significant, next we determine the equation of the line that can be used to predict the value of y for a given value of x.

Each data point d_{i} represents the difference between the observed y-value and the predicted y-value for a given x-value on the line. These differences are called residuals

Regression Line

- A regression line, also called a line of best fit, is the line for which the sum of the squares of the residuals is a minimum.

```
The Equation of a Regression Line
The equation of a regression line for an independent variable }x\mathrm{ and
dependent variable }y\mathrm{ is
            \hat{y}=mx+b
where \hat{y}\mathrm{ is the predicted }y\mathrm{ -value for a given }x\mathrm{ -value. The slope }m\mathrm{ and}
y-intercept b}\mathrm{ are given by
            m=\frac{n\sumxy}{n\sum\mp@subsup{x}{}{2}}\\sum\frac{(x)(\sumy)}{(\sumx\mp@subsup{)}{}{2}}\mathrm{ and }b=\overline{y}\quadm\overline{x}=\frac{y}{n}\quadm\frac{x}{n}
where \overline{y}}\mathrm{ is the mean of the y-values and }\overline{x}\mathrm{ is the mean of the
x}\mathrm{ -values. The regression line always passes through (价立).
```

Example:
Find the equation of the regression line.

x	y
1	-3
2	-1
3	0
4	1
5	2

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Regression Line
Example: Find the equation of the regression line. $\qquad$$x$ y $x y$ x^{2} y^{2} 1 -3 -3 1 9 2 -1 -2 4 1 3 0 0 9 0 4 1 4 16 1 5 2 10 25 4 $x=15$ $y=1$ $x y=9$ $x^{2}=55$ $y^{2}=15$

Regression Line

Example
Find the equation of the regression line.

x	y	$x y$	x^{2}	y^{2}
1	-3	-3	1	9
2	-1	-2	4	1
3	0	0	9	0
4	1	4	16	1
5	2	10	25	4
$x=15$	$y=1$	$x y=9$	$x^{2}=55$	$y^{2}=15$

$m=\frac{n \sum x y\left(\sum^{x}\right)\left(\sum y\right)}{n \sum x^{2}\left(\sum x\right)^{2}}=\frac{5(9)(15)(1)}{5(55)(15)^{2}}=\frac{60}{50}=1.2$
Continued.

Regression Line

Example continued:

$$
b=\bar{y} \quad m \bar{x}=\frac{1}{5} \quad(1.2) \frac{15}{5}=3.8
$$

The equation of the regression line is
$\hat{y}=1.2 x-3.8$.

Regression Line

 took a test the following Monday.
a.) Find the equation of the regression line
b.) Use the equation to find the expected test score for astudent who watches 9 hours of TV.

Regression Line												
Example: The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.												
a.) Find the equation of the regression line. b.) Use the equation to find the expected test score for a student who watches 9 hours of TV.												
Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50
xy	0	85	164	222	285	340	380	420	348	455	525	500
χ^{2}	0	1	4	9	9	25	25	25	36	49	49	100
y^{2}	9216	7225	6724	5476	9025	4624	5776	7056	3364	4225	5625	2500
$x=54$		$y=908$		$x y=3724$			$x^{2}=332$			$y^{2}=70836$		

\qquad

Regression Line

Example continued:

Regression Line

Example continued:
Using the equation $\hat{y}=-4.07 x+93.97$, we can predict the test score for a student who watches 9 hours of TV.

$$
\begin{aligned}
\hat{y} & =-4.07 x+93.97 \\
& =-4.07(9)+93.97 \\
& =57.34
\end{aligned}
$$

A student who watches 9 hours of TV over the weekend can expect to receive about a 57.34 on Monday' stest.

Coefficient of Determination

The coefficient of determination R^{2} is the ratio of the explained variation to the total variation. That is, \qquad

$$
R^{2}=\frac{\text { Explained variation }}{\text { Total variation }}
$$

\qquad
Example:
The correlation coefficient for the data that represents the number of hours students watched television and the test scores of each student is $r \approx$ \qquad 0.831 . Find the coefficient of determination.

$$
\begin{array}{cl}
R^{2} \approx(-0.831)^{2} & \text { About } 69.1 \% \text { of the variation in the test scores } \\
0.691 & \begin{array}{l}
\text { can be explained by the variation in the hours } \\
\text { of TV watched. About } 30.9 \% \text { of the variation is } \\
\\
\\
\text { unexplained. }
\end{array}
\end{array}
$$

Regression hypothesis

Regression equation: $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}$
$\square H_{0}: \beta_{1}=0$ (no regression relationship exists)
$\square H_{1}: \beta_{1} \neq 0$ (there is a regression relationship)

> F-test \square F-test is a test for the entire regression \square The calculated F statistic is as follows: $$
F_{(k-1, n-k)}=\frac{M S R}{M S E}=\frac{\frac{S S R}{k-1}}{\frac{S S E}{n-k}}
$$ $\mathrm{k}=2\left(\right.$ for b_{0} and $\left.\mathrm{b}_{1}\right)$ and $\mathrm{n}=$ Sample size \square Decision rule: Reject H_{0} if $\mathrm{F}_{\mathrm{CALC}}>\mathrm{F}_{\mathrm{CV}}$

Regression

Test of Significance

 for β_{1}(slope of regression line)

Hypothesis for Slope, β_{1}

\square Regression model: $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}+\varepsilon$
$\square \mathrm{H}_{0}: \beta_{1}=0(\mathrm{X}$ has no impact on Y$)$
$\square H_{1}: \beta_{1} \neq 0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
t-test for β_{1}
$\square \mathrm{t}$-test is a test for only β_{1} (not entire regression)
$t_{n-k}=\frac{b_{1}}{\text { Std error of } b_{1}}$
\qquad
\qquad
\qquad
\qquad
Std.error of $b_{1}: S\left(b_{1}\right)=\frac{\sqrt{M S E}}{\sqrt{\sum(X-\bar{X})^{2}}}$
$\mathrm{DF}=\mathrm{n}-\mathrm{k}$, where $\mathrm{n}=$ sample size and $\mathrm{k}=2$ \qquad
Decision rule: Reject H_{0} if $\mathrm{t}_{\mathrm{CALC}}>\mathrm{t}_{\mathrm{CV}}$

