

History of R

- Idea of R came from S developed at Bell Labs in 1976.
- S intended to support research and data analysis projects.
- S to S-Plus licensed to Insightful/SolutionMetric ("S-Plus").
- S-plus is not a free software.
- R: Open source platform similar to S developed by Robert Gentleman and Ross Ihaka (U of Auckland, NZ) during the 1990s. Since 1997: international "R-core" developing team
- Updated versions available every two months http://www.r-project.org/

R on MACs 🥯 🖗 🛍 🗅 🚍 🔷 🖺 🗅 🖴 R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin10.8.0 (64-bit) Flattom: sequerappirsummine.s. (General) R is free coffware and comes with ASSULTELY NO MARRANY. You are melcome to redistribute it under certain conditions, Type 'license') or 'licence()' for distribution details. Natural language support but running in an English locale Maintoni language support our numining in an English locare R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help:stort()' for on HML browser interface to help. Type 'd()' to quit R. [R.app GUI 1.60 (6476) x86_64-apple-darwin10.8.0] [Workspace restored from /Users/stephenopiyo/.RData] [History restored from /Users/stephenopiyo/.Ropp.history]

R on Linux

Last login: Sat Jul 16 21:1 KH475B-PP-M02:~ opiyo.1\$ R

version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree" opyright (C) 2015 The R Foundation for Statistical Computing latform: x86_64-apple-darwin13.4.0 (64-bit)

- is free software and comes with ABSOLUTELY NO WARRANTY. ou are welcome to redistribute it under certain conditions. ype 'license()' or 'licence()' for distribution details.
- Natural language support but running in an English locale
- is a collaborative project with many contributors. ype 'contributors()' for more information and citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

What is R for?

- Data handling and storage: numeric, textual
- Handling Matrix algebra
- · Tables and regular expressions
- Graphics
- Data analysis

R is not

- R is not
 - a database
 - a collection of "black boxes"
 - a spreadsheet software package
 - commercially supported

Useful reading materials

- R for Beginners http://cran.r-projectorg/doc/contribParads-rdebuts_en.pdf
- An Introduction to R" by Longhow Lam ntroductionToR_LHL.pdf
- Practical Regression and Anova using R http://cran.r-projectorg/doc/contrib/Faraway-PRA.pdf
- An R companion to 'Experimental Design http://cran.r-projectorg/doc/contribVik neswaran-ED_companion.pdf
- The R Guide <u>pject.org/doc/contrib/Owen-TheRGuide.pdf</u>
- R for Biologists http://<u>oran.r-projectorg/doc/contribMartinez-RforBiologistv1.1.pdf</u>

Useful reading materials

- Multilevel Modeling in R
 <u>http://cran.r-project.org/doc/contrib/Bliese_Multilevel.pdf</u>
- <u>http://cran.r-project.org/doc/contrib/Bliese_Multilevel.pd</u>
 R reference cards
- R reference cards
 <u>http://cran.r-project.org/doc/contrib/refcard.pdf</u>
- <u>http://cran.r-project.org/doc/contrib/Short-refcard.pdf</u>
- <u>http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf</u>
- R reference card data mining
 <u>http://cran.r-project.org/doc/contrib/Short-refcard.pdf</u>
- RStudio Documentation
 <u>http://www.rstudio.com/ide/docs/</u>

Useful books

- Learning Rstudio for R Statistical Computing by Mark Van Der Loo, Edwin De Jonge Paperback, 126 pages Published December 25th 2012 by Packt Publishing ISBN 1782160604 (ISBN 13: 9781782160601)
- Getting Started with RStudio By: John Verzani Publisher: O'Reilly Media, Inc. Pub. Date: September 22, 2011 Print ISBN-13: 978-14493-0903-9

•

- R Graphics Cookbook by Winston Chang (Jan 3, 2013)
- R For Dummies by Meys, Joris, de Vries
- The R Book by Michael J. Crawley

RStudio

RStudio

- RStudio is a free open source integrated development environment for R (http://www.rstudio.com/ide/)
- · Free and commercial versions
- RStudio is available in two editions:
 - RStudio Desktop:Run locally as a regular desktop.
 - RStudio Server runs on remote Linux server.
- We will use RStudio in this workshop

R: Session management

R: session management

- You can enter a command at the command prompt in a console (>).
- To quit R, use >q().
- Simple math:
- > 3 + 9 + 12 7 [1] 17
- The result begins with 1 not >, R is telling you that the first element of the answer is 17

R: session management

- Result is stored in an object using the assignment operator: (<-) or the equal character (=).
 Test <- 2 and Test = 2
- Test is an object with a value of 2
- To print (show) the object just enter the name of the object
- Test

Naming object in R

- Object names cannot contain `strange' symbols like !, +, -, #.
- A dot (.) and an underscore (_) are allowed, also a name starting with a dot (.)
- Object names can contain a number but cannot start with a number.(E.g., Example_1, not 1Example_1)
- R is case sensitive, X and x are two different objects, as well as temp.1 and temP.1

Open RStudio and se working o	t Bec <i>l</i> directo	A_Rstudio as a pry
Files Plots Packages Help Viewer		
New Folder 🛛 😔 Delete 🕞 Rename 🏾 🎯 More +		
🗆 🏠 Home		
▲ Name	Size	Mor
🗆 🥽 .R		
Rhistory	138 B	Aus
C A.csv	214.7 KB	Jul
Anova-Tur.txt	59.2 KB	Jun
Applications		
🗌 🧰 BecA_RStudio		
💿 👻 Bonello C&P.docx	99.6 KB	Ma
🗆 🧰 casperjs		
🗆 🧰 code		
🗆 🧰 Desktop		
Documents		
Downloads		
Final_0.3_Results.csv	150.6 KB	Ma

Ор	en RStudio and se working o	et Bec <i>A</i> directo	A_Rstudio as a pry
Files	Plots Packages Help Viewer		
🙆 Nev	w Folder 🛛 🝳 Delete 👍 Rename 🏾 🍘 More -		
	Home		
0	▲ Name	Size	Mor
	Rhiston	120 P	Au.
	A cou	214 7 KP	and a
	Anous Tur by	E0.2 KR	hun
	Applications	33.2 10	Jun
	Bena RStudio		
	Bonello C&P docx	99.6 KB	Ma
	casperis		
	code		
	Desktop		
0	Documents		
	Downloads		

Installing R package (library) in RStudio

Files	Plots Package	Help	Viewer	
OL In	stall 🕢 Update			(Q,
	Name	Descri	ption	Version
Syste	m Library			
	ade4	Analy Euclid	sis of Ecological Data : Exploratory and lean Methods in Environmental Science	1.7-4
0	adegenet	Explo	ratory Analysis of Genetic and Genomic	Data 2.0.1
0	agricolae	Statis	tical Procedures for Agricultural Resear	ch 1.2-4
0	AlgDesign	Algor	ithmic Experimental Design	1.1-7.
0	ape	Analy	ses of Phylogenetics and Evolution	3.5
0	assertthat	Easy p	ore and post assertions.	0.1
\Box	base64enc	Tools	for base64 encoding	0.1-3
\Box	вн	Boost	C++ Header Files	1.60.0
\Box	bitops	Bitwis	e Operations	1.0-6
	blotter	Tools Devel	for Transaction-Oriented Trading Syst opment	ems 0.9.17
0	boot	Boots S)	trap Functions (Originally by Angelo Ca	nty for 1.3-18
	Boruta	Wrapp	per Algorithm for All-Relevant Feature	5.0.0

Files	Plots	Packages	Help	Viewer				_
Inst	tall) 🕜	Update				Q		
Na	ame		Descri	ption			Version	
System	1 Librar	Y						
ac	de4		Analys Euclid	sis of Eco ean Meth	logical Data : Explorat ods in Environmental	ory and Sciences	1.7-4	6
ac	degenet		Explor	atory An	alysis of Genetic and (Genomic Data	2.0.1	6
ag	gricolae		Statist	ical Proc	edures for Agricultura	Research	1.2-4	6
	lgDesigr	1 I	Algori	thmic Ex	perimental Design		1.1-7.3	(
🗌 ap	эе		Analys	ses of Phy	ylogenetics and Evolut	ion	3.5	6
as	sertthat		Easy p	re and p	ost assertions.		0.1	(
🗌 ba	ase64en	c	Tools	for base6	54 encoding		0.1-3	(
B	н		Boost	C++ Hea	ader Files		1.60.0-2	(
🗆 bi	itops		Bitwis	e Operati	ions		1.0-6	(
🗆 bl	otter		Tools Develo	for Trans opment	saction-Oriented Trad	ng Systems	0.9.1741	(
🗆 bo	oot		Bootst S)	rap Func	tions (Originally by Ar	igelo Canty for	1.3-18	6
Bo	oruta		Wrapp Select	er Algori ion	ithm for All-Relevant F	eature	5.0.0	6

Basic data types

Working with a rectangular dataset

- Samples are in rows of a dataset.
- · Columns correspond to variables in a dataset.
- Two main structure of rectangular dataset are matrices and frames
- The main difference between the matrices and frames is type of data stored within them.

Vectors and Matrices

A vector

- Ordered collection of data of the same type.
- Example: last names of all students in this workshop.
- In R, single number is a vector of length 1.
- A matrix
 - Rectangular table of data of the same type.
 - Example: Mean intensities of all genes measured during a microarray experiment.

Vectors

- Vector: Ordered collection of data of the same data type
 - X <- c(1, 2, 3, 4, 5)

Y <- 1:5 (: represents sequence)

- Q <- seq(1,5, by=1)
- Function "length" shows the numbers of elements in a vector.

length(Y) [1] 5

Operation on vector elements

• Mydata <- c(2, 3.5, -0.2) Vector (c="concatenate")

Mydata [1] 2 3.5 -0.2

- x5 <- Mydata[Mydata>0] Extract the positive elements
- x6 <- Mydata[-c(1,3)] 3.5 . Remove elements 1 and 3

Operation on vector elements

 ≻ Colors <- c("Red", "Green", "Red")</th>
 Character vector

 Colors[2]
 [1] "Green"

 x1 <- 25:30</td>
 : Number sequences

 x1
 : 12526 27 28 29 30

 x2<-x1[3:5]</td>
 Various elements 3 to 5

 x3<<x1[c(2,6)]</td>
 Elements 2 and 6

Matrices
 Matrix: Rectangular table of data of the same type. Create a matrix with a function called "matrix" M<- matrix(1:12) Create matrix using the "matrix function" M [1] [2] [3] [4] [4] [5] [6] [6] [7] [7] [8] [8] [9] [9] [11] [11] [12] [12]
Create a vector of 1 to 12
V<-c(1,2,3,4,5,6,7,8,9,10,11,12) vector

Matrices					
 Matrix: Rectangular table of data of the same type 					
MR <- matrix(1:12, 4) four rows					
MR					
[,1] [,2] [,3]					
[1,] 1 5 9					
[2,] 2 6 10					
[3,] 3 7 11					
[4,] 4 8 12					
Metric hu noun					
$MM \le matrix(1:12, 4, byrow = 1); MM By row creation$					
[,1] [,2] [,3]					
[1,] 1 2 3					
[2,] 4 5 6					
[3,] 7 8 9					
[4,] 10 11 12					

Oper	Operation on matrices				
Matrix M[row, column]					
$\begin{array}{c} tmm{\overset{-}{\overset{-}}t(mm)} \stackrel{t \ s \ transpose}{1,1]} \stackrel{(.2)}{_{\scriptstyle\scriptstyle\scriptstyle(.2)}} \stackrel{(.3)}{_{\scriptstyle\scriptstyle(.4)}} \stackrel{(.4)}{_{\scriptstyle\scriptstyle(.2)}} \stackrel{(.1)}{_{\scriptstyle\scriptstyle(.2)}} \stackrel{(.2)}{_{\scriptstyle\scriptstyle(.2)}} \stackrel{(.2)}{_{\scriptstyle(.2)}} $					
x.matr[,2] [1] 4 5 6	2 nd col				
x.matr[c(1,3),]	1st and 3rd lines				
$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 4 & 7 & 10 \\ 2 & 3 & 6 & 9 & 12 \end{bmatrix}$					
x.mat[-2,]	remove second row(No 2 nd line)				
$\begin{bmatrix} , 1 \end{bmatrix} \begin{bmatrix} , 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 7 \\ 10 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \end{bmatrix} \begin{bmatrix} 9 \\ 12 \end{bmatrix} \begin{bmatrix} 2 \\ 12 \end{bmatrix}$					

Data frame

Data frame:

Rectangular table with rows and columns; data within each column has the same type (e.g. number, text, logical), but different columns may have different types. Example of a data frame with 10 rows and 3 columns

Data frame

Name	Phone	Country
Stephen	25677643240	Uganda
Richard	19545551234	USA
Monica	2547876655	Kenya
Fred	54113876	Argentina
Jessica	448756509	United Kingdom
Milly	3389756585	France
Norbert	5876454534	Venezuela
Jenifer	23480312345	Nigeria
Jimmy	866586968405	Taiwan
Rose	861069445464	China

Creating a data frame

- # create a data frame from scratch using "data.frame" function
- age <- c(25, 30, 56, 49, 12, 16, 60, 34, 45, 22)
- gender <- c("male", "female", "male", "male", "female", "male", "male", "female", "male", "male")
- weight <- c(160, 110, 220, 100, 65, 120, 179, 134, 165, 153)
- mydata <- data.frame(age,gender,weight)

Importing and exporting data frame in R

Importing Data

- The easiest way to enter data in R is to work with a text file, in which the columns are separated by tabs; or comma-separated values (csv) files.
- Example of importing data are provided below (console). mydata <- read.table("D1_Data_1.csv", sep=", ", header=TRUE) mydata <- read.csv("D1_Data_1.csv", header=TRUE) mydatab<- read.table("D1_Data_1.txt", sep=",\t", header=TRUE) mydatab<- read.delim("D1_Data_1.txt", header=TRUE)
- · Importing data in Rstudio using (Import Dataset) on the Workspace

Viewing Data

There are a number of functions for listing the contents of an object or dataset.

list the variables in mydata names(mydata)

list the structure of mydata str(mydata)

dimensions of an object dim(mydata)

Viewing Data

- # class of an object (numeric, matrix, dataframe, etc) class(mydata)
- # print mydata mydata
- # print first 6 rows of mydata head(mydata)
- # print first 2 rows of mydata
 head(mydata, n=2)
- print last 6 rows of mydata tail(mydata)
- # print last 2 rows of mydata
 tail(mydata, n=2)

Operation on Data Frame

Data_Frame[row, column]

Data_Frame[1,]	Data_Frame row 1
Data_Frame[,1]	Data_Frame column 1
Data_Frame[-1,]	Remove row 1 from Data_Frame
Data_Frame[,-1]	Remove column 1 from Data_Frame
Data_Frame[c(1,3),]	Remove rows 1 and 3 from Data_Frame
Data_Frame[,-c(1:3)] Data_Frame	Remove columns 1 to 3 from

Missing Data

In ${\bf R}$ missing values are represented by the symbol ${\bf NA}$ (not available) . Impossible values (e.g., dividing by zero) are represented by the symbol ${\bf NAN}$ (not a number).

 $\begin{array}{l} \textbf{Testing for Missing Values} \\ \text{is.na(x) } \# \text{returns TRUE of x is missing} \\ y <- c(1,2,3,NA) \\ \text{is.na(y) } \# \text{returns a vector (F F F T)} \end{array}$

Excluding missing values from analyses Arithmetic functions on missing values yield missing values. x <- c(1,2,NA,3) mean(x) # returns NA mean(x, na.rm=TRUE) # returns 2

Exporting Data

- To A csv File write.table(mydata, "mydata.csv", sep=", ") write.csv(mydata, "mydata.csv")
- To A Tab Delimited Text File write.table(mydata, "mydata.txt", , sep="\t ")
- Exporting **R** objects into other formats . For SPSS, SAS and Stata. you will need to load the <u>foreign</u> packages.

Hands on exercise