Intro to Linux

Advanced Genomics & Bioinformatics Workshop

James Oguya Nairobi, Kenya August, 2016

What is 'Linux' ?

- Linux is free & open source operating system originally developed for personal computers but has since been ported to more computer hardware platforms than any other operating system
- Created in October, 1991 by Linus Torvalds
- UNIX was expensive and restrictive
- Linux was born!
- Linux is:
 - o free-to-use
 - open source: it's entire code is publicly available
 - stable: most stable OS you can find

Why use Linux for Bioinformatics

- Scientific datasets are growing at an exponential rate & we need more processing power
 - computers with such power run Linux :)
 - Linux has a bunch of text processing tools
- Several bioinformatics tools & software are written & designed to run in Linux
 - bowtie, blast, clustaw, mira, tassel, e.t.c.

Getting started

Use an SSH client like <u>MobaXterm</u> or <u>Putty</u> to connect to our Linux server from Windows.

Server: hpc.ilri.cgiar.org
Username: user1
Password: user1

Linux shell

- Linux has a Graphical User Interface(GUI) just like Windows
 - GUI is not fun :(
 - real power lies in the Command Line Interface(CLI) or shell
- Using the shell is very easy!
 - \circ $\;$ just type a command and press Enter to run it :)
- Master the prompt!

Shell prompt

• Typically contains username, hostname & current working directory

Our first command(s)

- Let's start with the following commands(one at a time)
 - o whoami
 - o cal
 - o date
- So what did each one of those command do??

Command structure

- Linux commands come in various forms
 - some are simple; can be used by themselves
 - whoami
 - cal
 - date
 - others require extra 'parameters'; they don't make sense to run by themselves
 - mkdir
 - ∎ rm
 - ∎ ср

Command structure

- Consists of a command, an option(flag) & an argument
 - \circ separated by one or more spaces

Pitfalls in Linux commands

- Case sensitivity(ls vs Ls)
- Missing spaces, quotes
- Attention to detail (ls --l vs ls -l)
- Window-ism (\ vs /)

File System hierarchy

- A hierarchical organization of files & folders(a.k.a directory)
 - \circ similar to an upside-down tree where the top of the directory structure is called the 'root'
- File system paths are used to specify the location of a file or folder
 - \circ $\$ absolute path: specify the location of a file from the root directory
 - e.g. /home/user1/data/millet
 - relative path: specify the location a file/folder in relation to the current working directory
 - e.g. data/millet

File System hierarchy

Navigating the File System

- Common commands used to navigate & manipulate the file system's directory structure:
 - pwd print working directory ("where am I?")
 - \circ ls list contents of the current directory
 - cd change directory
 - mkdir make directory

Navigating the File System

- Let's create a few directories & navigate the file system structure
 - o mkdir earth
 - o cd earth
 - o mkdir -p continents/africa
 - o ls
 - o mkdir oceans
 - o cd continents
- So which folder are we in?
 - o pwd
- How do we get to 'oceans' folder?

Navigating the File System

- To move to 'oceans' folder we have to first navigate up the hierarchy to 'earth' folder then navigate down the hierarchy to 'oceans'
 - o cd ..
 - o cd oceans
- Alternatively, you could combine both paths i.e .. + oceans →../oceans
 - o cd ../oceans

Special Directories

- Special characters which represents 'special' directories
 - current working directory i.e. 'here'
 - Is.
 - cd .
 - •• parent directory i.e. on level up the tree
 - Is ..
 - cd ..
 - your home folder e.g. /home/user25

Working with Text Files

- Text editing in the CLI is a bit tricky since there are no menus or buttons to click on
 - cursor movement is done by using directional keys or key combinations; not by a mouse click
- There are several CLI-based text editors in Linux, popular ones being:
 - o nano
 - o vim
 - o emacs
- Navigate to your home directory and use the command nano to create a new file called 'file1'
 - o cd \sim
 - o nano file1

Working with Text Files

- View the contents of the new file you just created:
 - o cat file1
 - o wc -l file1
 - o less file1
 - Press 'q' to quit less
- 'cat' prints the contents of a file to the screen
- 'less' interactively shows the contents of a file one page at a time. Programs like less are called pagers

Questions?