## Descriptive statistics, TTest, and ANOVA

Stephen Opiyo
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Overview

$\qquad$

- Measure of central tendency (summary statistics) $\qquad$
- Measure of variability $\qquad$
- Hypothesis testing $\qquad$
- TTest and ANOVA $\qquad$
$\qquad$
$\qquad$


## Why study statistics

Need to understand and use data to make $\qquad$ decisions.
To do this, we must:

- Decide weather existing data is adequate.
- If necessary collect more data. $\qquad$
- Summarize the available data in a useful information.
- Analyze the available data.
- Draw conclusions, make decisions.
$\qquad$
$\qquad$
$\qquad$


## Two types of statistics

- Descriptive statistics:
- data used for descriptive purposes no predictions.
- use tables and graphs.
- Inferential statistics:
- employ data to draw inferences (conclusions).
- sample data employed to infer populations.
- sample must be random.


## Measures of central tendency

- A single value that attempts to describe a set of data by identifying the central position.
$\qquad$
- The most common measures of central
$\qquad$ tendency are:
- Mean
- Median
- Mode


## What is mean?

The "mean" is the average score or value. $\qquad$ Example the average age of participants in this workshop.

- Inferential mean of a sample: $X=\left(\sum X\right) / n$ $\qquad$
- Mean of a population: $\mu=\left(\sum X\right) / N$
$\qquad$
$\qquad$
$\qquad$


## Problem with mean

- The main problem associated with the mean value of some data is that it is sensitive to outliers.
- Example, the average age of participants might be affected if there was one with the age of 80 .
- Mean is affected when data is skewed (i.e., the frequency distribution of the data is skewed).

| Mean Of Students |  |  |  |
| :--- | :---: | :--- | :---: |
| Student group 1 Age group 1 Student group 2   <br> Age group 2     <br> Schmuggles 28 Schmuggles   <br> Bopsey 31 Bopsey   <br> Pallito 49 Pallito   <br> Homer 42 Homer   <br> Schnickerson 30 Schnickerson   <br> Levin 39 Levin   <br> Honkey-Doorey 32 Honkey-Doorey   <br> Zingers 80 Amy   <br> Boehmer 48 Boehmer   <br> Queenie 40 Queenie   <br>      <br> Mean 41.9    <br>     39 | 32 |  |  |

## The median

- Because the mean (average) can be sensitive to extreme values, the median is sometimes useful and more accurate.
- The median is simply the middle value among some scores of a variable. (no standard formula for its computation)

$\qquad$


## The Mode

- The most frequent response or value for a variable.
- Multiple modes are possible: bimodal or multimodal.

Figuring the Mode
$\qquad$

| Student | Weight |
| :--- | ---: |
|  |  |
| Schmuggles | 165 |
| Bopsey | 213 |
| Pallito | 189 |
| Homer | 187 |
| Schnickerson | 165 |
| Levin | 148 |
| Honkey-Doorey | 251 |
| Zingers | 308 |
| Boehmer | 151 |
| Queenie | 132 |
| Googles-Boop | 195 |
| Calzone | 227 |
|  |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Googles-Boop | 199 |
| :--- | ---: |
| Calzone | 227 | $\qquad$

## Variability

- Measure of central tendency only gives partial information about a data set.
- It is important to describe how much the observations differ from one another.
- Measures of dispersion give us information about how much our variables vary from the mean, because if they don't it makes it difficult to infer anything from the data. Dispersion is also known as the spread or range of variability.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Measure of dispersion

$\qquad$

- Measures of dispersion tell us about variability in the data.
- Basic question: how much do values differ for a variable from the min to max, and distance
$\qquad$
$\qquad$ among scores in between. We use:
- Range
- Standard Deviation
- Variance


## Measure of Variability

$\qquad$

- Most commonly employed measure of variability are the range, standard deviation, and variance. $\qquad$
- The range:

The difference between the highest and the lowest scores in a distribution

- Example: 79, 56, 74, 22, 35, 87, 60, 60, 61, 62, 62, 62,

$$
62,21,74,23
$$

The range is $(87-21=66)$ ) $\qquad$
$\qquad$
$\qquad$

## The standard deviation

- A standardized measure of distance from the mean.
- Very useful and something you do read about when making predictions or other statements about the data.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Standard deviation and variance
$\mathrm{S}=\sqrt{\frac{\left(\begin{array}{ll}X & \bar{X}\end{array}\right)^{2}}{(\mathrm{n}-1)}} \quad \operatorname{Var}_{x}=\frac{\Sigma(x-\bar{x})^{2}}{(n-1)}=\frac{\Sigma(x-\bar{x})(x-\bar{x})}{(n-1)}=\frac{\Sigma x^{2}-n \bar{x}^{2}}{(n-1)}$
$\qquad$
$\qquad$

$$
\begin{aligned}
& \sqrt{ }=\text { square root } \\
& \sum=\text { sum (sigma) } \\
& \mathrm{X}=\text { score for each point in data } \\
& \bar{X}=\text { mean of scores for the } \\
& \text { variable } \\
& n=\text { sample size (number of } \\
& \text { observations or cases }
\end{aligned}
$$

## Measure of Variability

$\qquad$

- Standard deviation: Is a measure of how spread out scores are
- Example: $79,56,74,22,35,87,60,61,62,21,23$ calculate the SD $\qquad$
- Start by calculating mear. $\overline{\mathbf{x}}$



## Measure of Variability

- Standard deviation: Is a measure of how spread out scores are
- Subtract the mean from each score $\mathbf{X}-\overline{\mathbf{X}}$ $\qquad$

$\qquad$
$\qquad$

| $\mathrm{Mmm}=\overline{\mathrm{X}}$ |  |
| :--- | :--- | :--- |
| $=[58811]=52.7$ |  |

## Measure of Variability

$\qquad$

- Standard deviation: Is a measure of how spread out scores are
- Square the difference $\overline{(X-\bar{X})^{2}}$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Measure of Variability

$\qquad$

- Standard deviation: Is a measure of how spread out scores are
- Sum the square of the differences $(x-\bar{x})^{2}$

$\qquad$

| Score X | $\mathbf{X}-\overline{\mathbf{X}}$ | $(\mathrm{X}-\overline{\mathrm{X}})^{2}$ |  |
| :---: | :---: | :---: | :---: |
| ${ }_{2}{ }^{21}$ | ${ }_{21,52.7 \text {-317 }}$ | ${ }_{(3,1.7)^{2}=1004.8}$ | 1004.8 |
| 22 | 22-52.7 -3.37 |  | 94.5 |
| ${ }^{23}$ | 23-52.7-2.27 | ${ }_{(12.77)^{2}-88.1}$ | 882.1 |
| 35 | 35-52.7.177 |  | 313,3 |
| 56 | $56-52.7$-3.3 | (13.3) 210.9 | 10.9 |
| 60 | ${ }^{60-52.7 .77 .3}$ | (1,3) 2.53 .3 | ${ }_{53,3}$ |
| 61 | ${ }_{61-52.788 .3}$ |  | 68.9 |
| 62 | ${ }^{62.52 .7 .79 .3}$ |  | 86.5 |
| ${ }^{74}$ | 74-52.7.2213 | (21.3) -453.7 | 453.7 |
| 79 | 79-52.72.263 | [26.3) 6 691.7 | 69.7 |
| 87 | 87-52.784.3 | ${ }^{(34.3)^{2}=1176.5}$ |  |
|  |  |  | $\left(2(x-\bar{X})^{2}-568\right.$. |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Measure of Variability

$\qquad$

- Standard deviation: Is a measure of how spread out scores are
- Calculate the standard deviatiol $\sqrt{\frac{\Sigma(X-\overline{\overline{1}})^{2}}{(n-1)}}$

$\qquad$

| Score X | $\mathbf{X}-\overline{\mathbf{X}}$ | $(\mathrm{X}-\overline{\mathrm{X}})^{\mathbf{2}}$ |  |
| :---: | :---: | :---: | :---: |
| 21 | ${ }^{21-52.7-317}$ | ${ }^{(-31.7)^{2}=1004.8}$ | 1004.8 |
| 22 | 22-52.7-307 | $1-\left.30.7\right\|^{2}=942.5$ | 942.5 |
| 23 | 23-52.7-297 | $(-29.7)^{2}=882.1$ | 882.1 |
| 35 | 35-52.7-177 | $(-17.7)^{2}=313.3$ | 313.3 |
| 56 | $56-52.7=3.3$ | $(3.3)^{2}=10.9$ | 10.9 |
| 60 | 60-52.7 = 7.3 | (7.3) ${ }^{2}$ 253.3 | 53.3 |
| 61 | 61-52.7 $=8.3$ | (88.31 2688.9 | 68.9 |
| 62 | 62-52.7 9.93 | ${ }^{(9.3)^{2}=86.5}$ | 86.5 |
| 74 | 74-52.7 =213 | (21.3) $=453.7$ | 453.7 |
| 79 | 79-52.7 263 | (26.3) ${ }^{2}$ 6 691.7 | 691.7 |
| 87 | 87-52.7 34.3 | $(34.3)^{2}=1176.5$ | 1176.5 |
| Mme $\overline{\mathbf{X}} \quad=(580111)=52-7$ |  |  | $\Sigma(\mathrm{X}-\overline{\mathrm{X}})^{2}=5689.2$ |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
Standard deviation $=\sqrt{\frac{\sum\left(X-\overline{X_{1}}\right)^{2}}{(\mathrm{n}-1)^{2}}}=\operatorname{sqrt}((5684.2) /(11-1))=23.84$
Variance $=$ standard deviation $X$ standard deviation $=23.84 \times 23.84=568.3$ $\qquad$

## Hypothesis Testing

- A Hypothesis is a claim or statement about the value of single $\qquad$ population characteristics or values of several population characteristics. In addition, a hypothesis is a statement that something is true. $\qquad$
- Null hypothesis: A hypothesis to be tested. We use the symbol $\boldsymbol{H}_{0}$ to $\qquad$ represent the null hypothesis
$\qquad$
Alternative hypothesis: A hypothesis to be considered as an alternative to the null hypothesis. We use the symbol $\boldsymbol{H}_{a}$ or $\boldsymbol{H}_{\mathbf{1}}$ to represent the alternative hypothesis.


## Hypothesis testing

- The form of null hypothesis is:
- $\mathrm{H}_{0}$ : population characteristic $=$ hypothesized value .
- The alternative hypothesis will have on of the following three forms:
- $\mathrm{H}_{\mathrm{a}}$ : population characteristic > hypothesized value.
- $\mathrm{H}_{\mathrm{a}}$ : population characteristic < hypothesized value.
- $\mathrm{H}_{\mathrm{a}}$ : population characteristic $\neq$ hypothesized value.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Hypothesis Testing

$\qquad$
The critical concepts are these

1. The procedure begins with the assumption that the $\boldsymbol{H}_{0}$ istrue
$\qquad$
2. The goal is to determine whether there is enough evidence to $\qquad$ infer that $\boldsymbol{H}_{\mathrm{a}}$ or $\mathbf{H}_{\mathbf{1}}$ is true, or $\boldsymbol{H}_{\mathbf{0}}$ is not likely to be true.
3. There are two possible decisions:

- Conclude that there is enough evidence to support the $\qquad$ alternative hypothesis. Reject the null.
- Conclude that there is not enough evidence to support the alternative hypothesis. Fail to reject the null.


## Interpretation

- $P$-value answer the question: What is the probability of the observed test statistic ... when $H_{0}$ is true?
- Thus, smaller and smaller $P$-values provide $\qquad$ stronger and stronger evidence against $H_{0}$
- Small $P$-value $\Rightarrow$ strong evidence


## Interpretation

$\qquad$

## Conventions

$\qquad$
$P>0.10 \Rightarrow$ non-significant evidence against $\mathrm{H}_{0}$ $0.05<P \leq 0.10 \Rightarrow$ marginally significant evidence $\qquad$ $0.01<P \leq 0.05 \Rightarrow$ significant evidence against $H_{0}$ $\mathrm{P} \leq 0.01 \Rightarrow$ highly significant evidence against $\mathrm{H}_{0}$

## Examples

$P=0.27 \Rightarrow$ non-significant evidence against $H_{0}$
$P=0.01 \Rightarrow$ highly significant evidence against $H_{0}$

Example: summary of One- and Two-Tail Tests

| One-Tail Test <br> (left tail) | Two-Tail Test | One-Tail Test <br> (right tail) |
| :---: | :---: | :---: |
| $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu=\mu_{0}$ |
| $H_{1}: \mu<\mu_{0}$ | $H_{1}: \mu \neq \mu_{0}$ | $H_{1}: \mu>\mu_{0}$ |
|  |  |  |

## Summary: Hypothesis Testing

$\qquad$
The Steps:

1. Define your hypotheses (null, alternative)
2. Specify your null distribution
3. Do an experiment
4. Calculate the $p$-value of what you observed
5. Reject or fail to reject (~accept) the null hypothesis

## Hypothesis testing

- Examples of methods used in hypothesis testing:
- Z-test
- TTest
- Chi-square test
- ANOVA
- Non-parametric statistics

$\qquad$
$\qquad$


## Overview of T-test

$\qquad$

- What is the main use of the $t$-test?
- How is the distribution of $t$ related to the unit normal?
- When would we use a t-test instead of a z-test
-Why might we prefer one to the other?
- What are the chief varieties or forms of the $t$ tests?


## Overview of T-test continued

- Identify the appropriate version of $t$ to use for a given design.
- Compute and interpret $t$-tests appropriately.


## Background

$\qquad$

- The $t$-test is used to test hypotheses about means when the population variance is unknown
$\qquad$ (the usual case). Closely related to $Z$, the unit normal.
- Comes in 3 varieties:
- Single sample
- Independent samples
- Dependent samples


## What kind of $t$ is it?

- Single sample $t$-we have only 1 group; want to $\qquad$ test against a hypothetical mean.
- Independent samples $t$ - we have 2 means, 2 groups; no relation between groups, e.g., people randomly assigned to a single group.
- Dependent $t$ - we have 2 means. Either same people in both groups, or people are related, e.g., husband-wife, left hand-right hand, hospital patient and visitor.


## Assumptions of t -Test

- Dependent variables are interval or ratio.
- The population from which samples are drawn is normally distributed
- Samples are randomly selected.
- The t-statistic is robust (it is reasonably reliable even if assumptions are not fully met.


## Independent $\boldsymbol{t}$ Test

- Compares the difference between two means of two independent groups.
- The comparison distribution is a difference between means to a distribution of differences between means.
- Population of measures for Group 1 and Group 2
- Sample means from Group 1 and Group 2
- Population of differences between sample means of Group 1 and Group 2


## Independent $\boldsymbol{t}$ Test

The $t$ Test compares the averages and standard deviations of two samples to see if there is a significant difference between them.

We start by calculating a number, $t$
$t$ is calculated using the equation:
$\qquad$
$\qquad$

```
t= c \(\bar{x}_{2}\) is the mean of sample 2 2 \(\mathrm{n}_{2}\) is the number of individuals in sample 2
```

$\qquad$
$\qquad$
$\qquad$

Worked Example: Random samples were taken for heights of students in C1 and D8 $\qquad$

Their recorded heights are shown below..

|  | Students in C 1 |  |  |  |  | Students in D8 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student Height (cm) | 145 | 149 | 152 | 153 | 154 | 148 | 153 | 157 | 161 | 162 |
|  | 154 | 158 | 160 | 166 | 166 | 162 | 163 | 167 | 172 | 172 |
|  | 166 | 167 | 175 | 177 | 182 | 175 | 177 | 183 | 185 | 187 |

$\qquad$
$\qquad$

Step 1: Work out the mean height for each sample
$C 1: \overline{x 1}=161.60$
$D 8: \bar{x}_{2}=168.27$

Step 2: Work out the difference in means
$\bar{X} 2-\bar{X} 1=168.27-161.60=6.67$

Step 3: Work out the standard deviation for each sample $\qquad$
C1: $s_{1}=10.86$
$D 8: s_{2}=11.74$

Step 4: Calculate $\mathrm{s}^{2} / \mathrm{n}$ for each sample $\qquad$

C1: $\frac{\left(s_{1}\right)^{2}}{n_{1}}=10.86^{2} \div 15=7.86$ $\qquad$

D8: $\frac{(\mathrm{s} 2)^{2}}{\mathrm{n}_{2}}=11.74^{2} \div 15=9.19$

Step 5: Calculate $\sqrt{\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{\left(s_{2}\right)^{2}}{n_{2}}}$
$\sqrt{\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{(s 2)^{2}}{n_{2}}}=\sqrt{(7.86+9.19)}=4.13$
Step 6: Calculate $t \quad$ (Step 2 divided by Step 5)

$$
t=\frac{\overline{x_{2}}-\overline{\mathrm{X}_{1}}}{\sqrt{\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{\left(s_{2}\right)^{2}}{n_{2}}}}=\frac{6.67}{4.13}=1.62
$$

$\qquad$
$\qquad$
$\qquad$

```
Step 7: Work out the number of degrees of freedom
```

    d.f. \(=n_{1}+n_{2}-2=15+15-2=28\)
    Step 8: Find the critical value of $t$ for the relevant number of degrees of freedom

Use the $95 \%$ ( $p=0.05$ ) confidence limit

Criticalvalue $=$ ?

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Step 7: Work out the number of degrees of freedom $\qquad$
d.f. $=n_{1}+n_{2}-2=15+15-2=28$

Step 8: Find the critical value of $t$ for the relevant number of degrees of freedom

Use the $95 \%$ ( $p=0.05$ ) confidence limit

Critical value $=2.048$

Our calculated value of $\mathrm{t}=1.62$ is below the critical value of 2.048 for 28 df , therefore, there is no significant difference between the height of students in samples from C1 and D

## ANOVA: <br> Analysis of Variance

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Overview

- Completely randomized and randomized complete block design
- What is ANOVA? $\qquad$
- When is it useful?
- How does it work? $\qquad$
- One-way ANOVA
- Post-hoc Tests
- Two-way ANOVA


## Completely randomized design

- Subjects are randomly assigned to treatments
- Relies on randomization to control for the effects of extraneous variables



## Randomized complete block design

- Subjects are divided into subgroups called blocks, such that the variability within blocks is less than the variability between blocks



## Definition

- ANOVA: ANALYSIS OF VARIANCE is the analysis of variation in an experimental outcome, especially of a statistical variance in order to determine the contributions of given factors or variables to the variance.
- Remember: Variance $=$ the square of the standard deviation.


## Data set

- Any data set has variability
- Variability exists within groups
- Variability exists between groups
- Question that ANOVA allows us to answer: Is this variability significant, or merely by chance?


## ANOVA model Assumptions

- Independence (response variables $y_{i}$ are independent).
- Normality (response variables are normally distributed).
- Homoscedasticity (the response variables have the same variance).
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## ANOVA model assumptions

$\qquad$

- Test for normality $\qquad$
- Shapiro-Wilk Test
- Testing variances
- Levene's Test for Equality of Variances $\qquad$
$\qquad$
$\qquad$
$\qquad$


## Test for normality by Shapiro-Wilk

- A Shapiro-Wilk $\qquad$
- You fail reject the null when your observed value is greater than your critical value (that's right, the critical region on this test is in the small tail)
- For example, $P$-value is greater than 0.05 , conclude normality.


## ANOVA Notation

- $k=$ number of groups $\qquad$
- $n=$ number of observations in each group
- $x_{i j}=$ one observation j in group i $\qquad$
- $\bar{x}=$ mean over all groups x
- $\boldsymbol{x}_{\mathrm{i}}=$ mean for group $i$
- SS = Sum of Squares
- MS = Mean of Squares
- $F=$ Between MS/Within MS
$\qquad$


## ANOVA usefulness

- Similar to t-test
- More versatile than t-test
- Compare one parameter (response variable)
$\qquad$ between two or more groups
$\qquad$


## What does ANOVA do?

At its simplest ANOVA tests the following:
$\mathrm{H}_{0}$ : The means of all the groups are equal.
$H_{a}$ : Not all the means are equal

- doesn't say how or which ones differ.
- Can follow up with "multiple comparisons tests"


## What ANOVA does not do

- Tell which groups are different
- Post-hoc test of mean differences required
- Compare multiple parameters for multiple groups (so it cannot be used for multiple response variables)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## ANOVA variations

- One-Way
- Factorial (Two-Way, Three-Way) ANOVA
- Repeated measures ANOVA
- MANOVA (Multiple analysis of variance)
- multiple response variables


## Summary

- ANOVA:
- allows us to know if variability in a data set is between groups or merely within groups. $\qquad$
- is more versatile than $t$-test.
- can compare multiple groups at once.
- cannot process multiple response variables.
- does not indicate which groups are different.


## One-Way ANOVA

- One factor (manipulated variable)
- One response variable
- Two or more groups to compare
$\qquad$

Between and within groups

Group 1 (5 students)


Group 3 (5 students)


Group 4 (5 students)

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ .
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## How ANOVA works

ANOVA measures two sources of variation in the data and $\qquad$ compares their relative sizes

- variation BETWEEN groups
- for each data value look at the difference between its group mean and the overall mean

$$
\left(\bar{x}_{i}-\bar{x}\right)^{2}
$$

- variation WITHIN groups
- for each data value we look at the difference between that value and the mean of its group

$$
\left(x_{i j}-\bar{x}_{i}\right)^{2}
$$

## Between and within groups

Group 1 (5 students)


Group 3 (5 students)


Between groups $\left(\bar{X}_{i}-\bar{X}\right)^{2} \quad$ Within groups $\left(x_{i j}-\bar{x}_{i}\right)^{2}$

## F-statistic

The ANOVA F-statistic is a ratio of the Between Group Variation divided by the Within Group Variation:

$$
F=\frac{\text { Between }}{\text { Within }}=\frac{M S G}{M S E}
$$

A large F is evidence against $\mathrm{H}_{0}$, since it indicates that there is more difference between groups than within groups.

F-Ratio $=\mathrm{MS}_{\text {Bet }} / \mathrm{MS}_{\mathbf{w}}$

- If:
- The ratio of Between-Groups MS: Within-Groups MS is LARGE $\rightarrow$ reject $\mathrm{H}_{0} \rightarrow$ there is a difference between groups
- The ratio of Between-Groups MS: Within-Groups MS is SMALL $\rightarrow$ do not reject $\mathrm{H}_{0} \rightarrow$ there is no difference between groups
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## P-values

- Use F-table to determine p
- Use df for numerator and denominator
- Choose level of significance
- If calculated F values > critical value, reject the null hypothesis (for one-tail test)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Computing ANOVA F statistic |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | WITHIN |  | BETWEEN |  |
|  |  |  | difference: |  | difference |  |
|  |  | group | data - group | mean | group mean - | - overall mean |
| data | group | mean | plain | squared | plain | squared |
| 5.3 | 1 | 6.00 | -0.70 | 0.490 | -0.4 | 0.194 |
| 6.0 | 1 | 6.00 | 0.00 | 0.000 | -0.4 | 0.194 |
| 6.7 | 1 | 6.00 | 0.70 | 0.490 | -0.4 | 0.194 |
| 5.5 | 2 | 5.95 | -0.45 | 0.203 | -0.5 | 0.240 |
| 6.2 | 2 | 5.95 | 0.25 | 0.063 | -0.5 | 0.240 |
| 6.4 | 2 | 5.95 | 0.45 | 0.203 | -0.5 | 0.240 |
| 5.7 | 2 | 5.95 | -0.25 | 0.063 | -0.5 | 0.240 |
| 7.5 | 3 | 7.53 | -0.03 | 0.001 | 1.1 | 1.188 |
| 7.2 | 3 | 7.53 | -0.33 | 0.109 | 1.1 | 1.188 |
| 7.9 | 3 | 7.53 | 0.37 | 0.137 | 1.1 | 1.188 |
| TOTAL |  |  |  | 1.757 |  | 5.106 |
| TOTAL/df |  |  |  | 0.25095714 |  | 2.55275 |
| $\begin{aligned} & \text { overall mean: } 6.44 ; \text { MSG }=5.106 /(3-1)=2.5528 ; M S W=(1.757 /(10-3)=0.251 \\ & \quad F=2.5528 / 0.251=10.21575 \end{aligned}$ |  |  |  |  |  |  |





$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Analysis of Variance
Source DF SS MS F P
$\begin{array}{llllll}\text { treatment } & 2 & 5.127 & 2.564 & 10.22 & 0.00839\end{array}$
Error $\quad 7 \quad 2.564$
Error
Total

F = MSG/MSE P-value
comes from F(DFG,DFE)
( P -values for the F statistic are in Table)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## $R^{2}$ Statistic

$R^{2}$ gives the percent of variance due to between group variation

$$
R^{2}=\frac{S S[\text { Between }]}{S S[\text { Total }]}=\frac{S S G}{S S T}
$$

We will discuss more on $R^{2}$ when we study regression.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Where' s the Difference? <br> Once ANOVA indicates that the groups do not all appear to have the same means, what do we do? |
| :---: |

## Multiple Comparisons

Once ANOVA indicates that the groups do not all
have the same means, we can compare them two
by two using the 2-sample $t$ test

- We need to adjust our $p$-value threshold because we are doing multiple tests with the same data.
-There are several methods for doing this.
- If we really just want to test the difference between one pair of treatments, we should set the study up that way.


## Post-hoc Comparisons of Treatments

$\qquad$
If differences in group means are determined from the $F$-test, researchers want to compare pairs of groups. Three popular methods include:

- Fisher's LSD - Upon rejecting the null hypothesis of no differences in group means, LSD method is equivalent to doing pairwise comparisons among all pairs of groups.
- Tukey's Method - Specifically compares all $t(t-1) / 2$ pairs of groups.
- Bonferroni's Method - Adjusts individual comparison error rates so that all conclusions will be correct at desired confidence/significance level. Any number of comparisons can be made. Very general approach can be applied to any inferential problem


## Factorial ANOVA

- ANOVA in which there are more than one $\qquad$ independent variable (factor)
- Seldom uses more than three or four factors
- Examples: Testing the effect of fertilizer rates, and types on yield; testing the effect of temperature and light on bacteria growth.


## Components of Factorial ANOVA

- Interaction - present when the differences between the groups of one independent variable on the dependent variable vary according to the level of a second independent variable [e.g., crop yield, fertilizer, varieties]
- Main effects - test of each independent variable (IV) when all other independent variables are held constant
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Questions of Interest

- Generally, the questions of interest here (i.e. hypotheses to be tested) concern three questions regarding the potential effects of the factors on the response variable.
- Question 1: Do the effects that factors $a$ and $b$ have on the response variable interact, i.e. is there a significant interaction between factors $a$ and $b$ ?


## Questions of Interest

- Question 1: If we conclude there is a significant interaction then we conclude the effects of both factors $a$ and $b$ are significant!
- When we have an interaction we cannot consider the effect of either factor independently of the other, therefore both factors matter. $\qquad$
$\qquad$


## Questions of Interest

- If there is not a significant interaction effect then we can consider the main effects separately, i.e. we ask the following:
- Question 2: Does factor a alone have a significant effect?
- Question 3: Does factor $b$ alone have a significant effect?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Tests of Hypotheses

$\qquad$
Just as we had Sums of Squares and Mean Squares in $\qquad$ One-way ANOVA, we have the same in Two-way ANOVA:

Recall, Mean Squares are measures of variability across the levels of the relevant factor of interest.
In balanced Two-way ANOVA, we measure the overall variability in the data by:
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Two-way ANOVA Table |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source of Variation | Degrees of Freedom | Sum of Squares | $\begin{aligned} & \text { Mean } \\ & \text { Square } \\ & \hline \end{aligned}$ | $F$-ratio | ${ }^{P}$-value |
| Factor $A$ | $a-1$ | SSA | $M S A$ | $F_{4}=M S_{A} /$ MSE | Tail area |
| Factor $B$ | $b-1$ | SSb | MSs | $F_{B}=M S_{B} /$ MS | Tail a |
| Interaction | $(a-1)(b-1)$ | SSAB | ${ }_{\text {MSAB }}$ | $F_{A B}=M S_{A B} / M$. | Tail area |
| Error | $a b(n-1)$ | SSE | MSE |  |  |
| Total | $a b n-1$ | SST |  |  |  |
|  |  |  |  | s is our initi ch is the p stion 1: Is t raction effe | focus lue for re an ? |

## Tests of Hypotheses

- If the interaction is not statistically significant (i.e. $p$-value $>0.05$ ) then we conclude the main effects (if present) are independent of one another.
- We can then test for significance of the main effects separately, again using an F-test.
- If a main effect is significant we can then use multiple comparison procedures as usual to compare the mean response for different levels of the factor while holding the other factor fixed. $\qquad$

