

### **Correlational Analysis**

- The purpose is to measure the strength of a <u>linear</u> relationship between 2 variables.
- A correlation coefficient does not ensure "causation" (i.e. a change in X causes a change in Y)
- X is typically the input, measured, or Independent variable.
- Y is typically the output, predicted, or dependent variable.
- If X increases and there is a <u>predictable</u> shift in the values of Y, a correlation exists.

# **General Properties of Correlation Coefficients**

- Correlation coefficients values ranges between +1 and -1.
- The value of the correlation coefficient represents the scatter of points on a scatterplot.
- You should be able to look at a scatterplot and estimate what the correlation would be.
- You should be able to look at a correlation coefficient and visualize the scatterplot.





















# **Negative Correlation**

- Association between variables such that high scores on one variable tend to have low scores on the other variable
- · An inverse relation between the variables





# Pearson Correlation Coefficient (r)

- A statistic that quantifies a relation between two variables
- Can be either positive or negative
- Falls between -1.00 and 1.00
- The value of the number (not the sign) indicates the strength of the relation

# The Pearson Correlation Coefficient

- Symbolized by the italic letter *r* when it is a statistic based on sample data.
- Symbolized by the italic letter *p* "rho" when it is a population parameter.

# **Correlation Coefficient**

• The correlation coefficient is a measure of the strength and the direction of a linear relationship between two variables. The symbol *r* represents the sample correlation coefficient. The formula for *r* is

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}.$$

The range of the correlation coefficient is -1 to 1. If x and y have a strong positive linear correlation, r is close to 1. If x and y have a strong negative linear correlation, r is close to -1. If there is no linear correlation or a weak linear correlation, r is close to 0.









| <b>Exan</b><br>Calcu | <b>nple</b> :<br>Jate the co | <b>Corr</b>                          | elation                                                                   | <b>Coeffi</b><br>the following                                 | <b>cient</b><br><sub>data.</sub> |
|----------------------|------------------------------|--------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------|
|                      | x                            | У                                    | xy                                                                        | x <sup>2</sup>                                                 | у <sup>2</sup>                   |
|                      | 1                            | - 3                                  | - 3                                                                       | 1                                                              | 9                                |
|                      | 2                            | - 1                                  | - 2                                                                       | 4                                                              | 1                                |
|                      | 3                            | 0                                    | 0                                                                         | 9                                                              | 0                                |
|                      | 4                            | 1                                    | 4                                                                         | 16                                                             | 1                                |
|                      | 5                            | 2                                    | 10                                                                        | 25                                                             | 4                                |
|                      | 1                            | $\cdot = \frac{n}{\sqrt{n\sum x^2}}$ | $\frac{\sum xy - \left(\sum x\right)^2}{-\left(\sum x\right)^2} \sqrt{n}$ | $\frac{\left(\sum y\right)}{\sum y^{2} - \left(\sum y\right)}$ | 2.                               |

| <b>Exar</b><br>Calci     | <b>nple</b> :<br>ulate the co                     | <b>Corr</b>                                               | elation                                                   | the following                                            | cient<br><sub>data.</sub>                               |                                              |
|--------------------------|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|
|                          | x                                                 | У                                                         | xy                                                        | x <sup>2</sup>                                           | y <sup>2</sup>                                          |                                              |
|                          | 1                                                 | - 3                                                       | - 3                                                       | 1                                                        | 9                                                       |                                              |
|                          | 2                                                 | - 1                                                       | - 2                                                       | 4                                                        | 1                                                       |                                              |
|                          | 3                                                 | 0                                                         | 0                                                         | 9                                                        | 0                                                       |                                              |
|                          | 4                                                 | 1                                                         | 4                                                         | 16                                                       | 1                                                       |                                              |
|                          | 5                                                 | 2                                                         | 10                                                        | 25                                                       | 4                                                       |                                              |
|                          | x = 15                                            | <i>y</i> = 1                                              | <i>xy</i> = 9                                             | $x^2 = 55$                                               | $y^2 = 15$                                              |                                              |
| $r = \frac{1}{\sqrt{n}}$ | $\frac{n\sum xy}{\sum x^2 - \left(\sum x\right)}$ | $\frac{-(\sum x)(\sum y)}{\sqrt{n\sum y^2 - (\sum y)^2}}$ | $\frac{1}{\left(\sum y\right)^2} = \frac{1}{\sqrt{5(5)}}$ | $\frac{5(9) - (15)}{(5) - 15^2} \sqrt{5(1+1)^2} = 0.986$ | $\frac{-1}{50 - (-1)^2}$<br>There is a linear conand y. | strong positive<br>relation between <i>x</i> |



# Correlation Coefficient Example: The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday. a. Display the scatter plot. b. Calculate the correlation coefficient r. Hours, x 0 1 2 3 5 5 6 7 7 10 Test score, y 96 85 82 74 95 68 76 84 58 65 75 50 Continued.



| Example contin                                              | ued:                    | С                                              | orre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elati                     | ion                   | Coe                 | ffici                            | ent                     |           |                     |      |         |
|-------------------------------------------------------------|-------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|---------------------|----------------------------------|-------------------------|-----------|---------------------|------|---------|
| Hours, x                                                    | 0                       | 1                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                         | 3                     | 5                   | 5                                | 5                       | 6         | 7                   | 7    | 10      |
| Test score, y                                               | 96                      | 85                                             | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74                        | 95                    | 68                  | 76                               | 84                      | 58        | 65                  | 75   | 50      |
| xy                                                          | 0                       | 85                                             | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                       | 285                   | 340                 | 380                              | 420                     | 348       | 455                 | 525  | 500     |
| x <sup>2</sup>                                              | 0                       | 1                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                         | 9                     | 25                  | 25                               | 25                      | 36        | 49                  | 49   | 100     |
| y <sup>2</sup>                                              | 9216                    | 7225                                           | 6724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5476                      | 9025                  | 4624                | 5776                             | 7056                    | 3364      | 4225                | 5625 | 2500    |
| $x = 54$ $r = \frac{n\sum xy}{\sqrt{n\sum x^2 - (\sum x)}}$ | $\frac{-(\sum x)}{x}$   | $y = 9$ $(\Sigma y)$ $\Sigma y^2 - (\Sigma y)$ | $\frac{1}{2} \frac{1}{2} \frac{1}$ | $\frac{\chi}{\sqrt{120}}$ | y = 37<br>12<br>(332) | $\frac{24}{(3724)}$ | $x^{2}$<br>(5)<br>$\sqrt{12(7)}$ | = 332<br>4)(90<br>0836) | 8)<br>(90 | $y^2 = \frac{1}{8}$ | 0.8  | 6<br>31 |
| There is a st<br>As the num<br>scores tend                  | trong<br>ber o<br>to de | nega<br>fhou<br>ecreas                         | tive li<br>rs sp<br>e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | near<br>ent w             | correl<br>atchi       | ation<br>ng T∖      | (-0.8<br>/ incre                 | 331).<br>eases,         | thet      | test                |      |         |



### **Testing a Population Correlation Coefficient**

Once the sample correlation coefficient r has been calculated, we need to determine whether there is enough evidence to decide that the population correlation coefficient  $\rho$  is significant at a specified level of significance.

- · One way to determine this is to use Critical Values of Pearson's Correlation Coefficient r Table
- If  $|{\bf r}|$  is greater than the critical value, there is enough evidence to decide that the correlation coefficient  $\rho$  is significant. •

| n | $\alpha = 0.05$ | $\alpha = 0.01$ |
|---|-----------------|-----------------|
| 4 | 0.950           | 0.990           |
| 5 | 0.878           | 0.959           |
| 6 | 0.811           | 0.917           |
| 7 | 0.754           | 0.875           |

For a sample of size n = 6,  $\rho$  is significant at the 5% significance level, if |r| >0.811.

### **Testing a Population Correlation Coefficient**

#### Finding the Correlation Coefficient $\rho$ In Words In Symbols

- 1. Determine the number of Determine n. pairs of data in the sample.
- 2. Specify the level of Identify  $\alpha$ . significance.
- 3. Find the critical value.

significant.

- 4. Decide if the correlation is If |r| >critical value, the
- context of the original claim. correlation is significant.

correlation is significant. Otherwise, there is not enough 5. Interpret the decision in the evidence to support that the

Use correlation Table .



Continued.







# Correlation and Causation

The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables.

If there is a significant correlation between two variables, you should consider the following possibilities.

- 1. Is there a direct cause-and-effect relationship between the variables?
- Does x cause y?
- 2. Is there a reverse cause-and-effect relationship between the variables? Does y cause x?
- 3. Is it possible that the relationship between the variables can be caused by a third variable or by a combination of several other variables?
- 4. Is it possible that the relationship between two variables may be a coincidence?