
Advanced Linux Commands
& Shell Scripting

Advanced Genomics & Bioinformatics Workshop

James Oguya
Nairobi, Kenya
August, 2016

Man pages

● Most Linux commands are shipped with their reference manuals
● To view a command’s manual, use ‘man’ command & the command as an

argument; e.g.

$ man ls
$ man cat

● Since man itself is a command, we can view also view it’s manual

$ man man

● ‘man’ uses the same interface as ‘less’;
○ Use ‘q’ to quit/close ‘man’

Listing

● Use ‘ls’ command to list all files & directories in the current directory
○ doesn’t include hidden files & directories, by default

● Common pattern when using the command line is changing directories using
‘cd’ & then immediately using ‘ls’ to view the contents of the directory.

● ‘ls’ has 2 output formats:
○ Normal/short list format

$ ls
○ Long list format

$ ls -l

Listing

● To view hidden files & directories, use ‘-a’ option with ‘less’
$ ls -a
$ ls -la

● ‘ls’ command can also be used to check if a file/directory exists
$ ls file99.txt
$ ls ~
$ ls ~/earth

Copying

● Use ‘cp’ to copy a file or directory to the same or different directory.
○ cp source destination

● Copying a file within the same directory
$ cp file1.txt file2.txt

● Copying a file to a directory
$ mkdir files
$ cp file2.txt files/

● Copying multiple files to another directory
$ cp file1.txt file2.txt files/

● Use ‘-r’ option to copy a directory
$ cp -r files/ new-files/

Renaming

● Use ‘mv’ command to rename files & directories
○ mv source destination

● To rename a file
$ mv file1.txt file3.txt

● To move a file into a different directory
$ mv file3.txt new-files/

● To rename a directory
$ mv new-files/ old-files/

● To move a directory into another directory
$ mv old-files/ files/
$ ls files/

Deleting

● Use ‘rm’ command to delete files & directories
○ rm file

● Take care when using ‘rm’ command because there is NO Recycle Bin/Trash
● Use ‘-r’ to recursively delete directories and their contents
● To delete a file

$ rm file2.txt
● Delete a folder

$ rm -rf files/old-files

Globbing

● Globbing(filename expansion) recognizes and expands wildcard characters(‘*’
and ‘?’), character lists in square brackets & other special characters(e.g. ‘^’ for
negating the sense of a match)

○ wildcard characters will not match filenames that start with a dot(‘.’) e.g. .bashrc
● A few examples

○ List all files beginning with ‘file’

$ ls file*
○ List all files ending with ‘.txt’

$ ls *.txt

Redirecting and Appending

● Everything you type & read on the command line can be considered as
character streams or just streams in general

● 3 types of streams:
○ standard output(stdout): normal command output displayed on the screen
○ standard error(stderr): displays errors from a command or program; similar to stdout
○ Standard input(stdin): standard input stream for a command or program

● To redirect the stdout(output of a command) to a file
$ echo “Current date and time is” > today.txt
$ cat today.txt

Redirecting and Appending

● To append the stderr(output of a command) to a file
$ date >> today.txt
$ cat today.txt

● To use a file as stdin stream to a command
$ cat < today.txt

● To write stderr output to a file
$ ls files/ file99.txt 2> stderr

● To write stdout & stderr to different files
$ ls files/ file99.txt 1> output 2> error
$ cat output
$ cat error

Redirecting and Appending

● To combine both stdout & stderr to one file
$ ls files/ file99.txt &> streams
$ cat streams

Piping

● A form of stream redirection whereby the output of a command is used as an
input the other command

○ The pipe operator(‘|’) is placed in between the 2 commands

■ command1 | command2
■ command1 | command2 | command3 | command4

● A few examples:
$ cat streams | wc -l
$ ls -l | less
$ cat streams | grep file | wc -l

Downloading from the internet

● GNU wget is a powerful non-interactive download manager in Linux
○ non-interactive: can run in the background even when you're logged out

● Basic wget usage
○ wget URL

● Downloading a file:
$ wget
http://hpc.ilri.cgiar.org/~joguya/gene-description.txt

● Download a file & save it with a different name
$ wget
http://hpc.ilri.cgiar.org/~joguya/gene-description.txt -O
gene-desc.txt

http://hpc.ilri.cgiar.org/~joguya/gene_description.txt
http://hpc.ilri.cgiar.org/~joguya/gene_description.txt
http://hpc.ilri.cgiar.org/~joguya/gene_description.txt

Grepping

● Use ‘grep’ command to search for a substring in a file
○ grep substring file

● To ignore case distinctions in both substring & input file, use ‘-i’ option
● A few examples:

$ grep date today.txt
$ grep protein_coding gene-description.txt | wc -l

Making heads and tails of your files

● Two complementary commands for inspecting file contents
○ ‘head’: shows the beginning(head) of a file
○ ‘tail’: shows the end(tail) of a file

● You can also use stdout stream with ‘head’ & ‘tail’

○ commandA | head
○ commandB | tail

● To view the first 5 lines of a file
$ head -n5 gene-description.txt

● To view the last 5 lines of a file
$ head -n5 gene-description.txt

Your first shell script

● A shell script is a text with a list of commands.
● Shell scripts are good for automating tasks you frequently do or for running

batch jobs
● Using ‘nano’(text editor), we’ll create a new file named script1.sh with the

following contents:

echo "Date and time is:"
date
echo "Your current directory is:"
pwd

Your first shell script

● Run script1.sh shell script
$ sh script1.sh

● It should output something similar this:

Date and time is:
Mon Aug 8 12:30:54 EAT 2016
Your current directory is:
/home/user1

Your second shell script

● Using ‘nano’(text editor), we’ll create another file named script2.sh with
the following contents:

DATE=$(date)
PWD=$(pwd)

echo "Date and time is: $DATE"
echo "Your current directory is: $PWD"

Your second shell script

● Two new concepts:
○ variables: a symbolic name for to hold data e.g. numbers, text, e.t.c.

○ command substitution: starts a subshell to run the named command; It's recommended to use

$(command) instead of `command`

Loops and sequences

● A loop is a block of code that iterates a list of commands as long as the loop
control condition is true.

● Basic looping construct

for arg in [list]
do

command(s)...
done

○ During each pass through the loop, arg takes on the value of each successive item in the list
● So, why do we need loops?

Loops and sequences

● Using ‘nano’(text editor), we’ll create another file named script3.sh with
the following contents:

for num in 1 2 3
do

echo “we are on number: $num”
done

● Run script3.sh shell script
$ sh script3.sh

Sequences

● Let’s create another file named script4.sh with the following contents:

for num in {1..3}
do

echo “we are on number: $num”
done

● Run script4.sh shell script
$ sh script4.sh

More sequences

● Same results but using a command substitution & ‘seq’ command
○ Create another file named script4.sh with the following contents:

for num in $(seq 1 3)
do

echo “we are on number: $num”
done

○ Run script5.sh shell script

$ sh script5.sh
● Several ways to achieve the same thing!!

Questions?

