
B!GRe
Bioinformatique des

Génomes et Réseaux

Université Libre de Bruxelles

Service de Bioinformatique des Génomes et Reséaux (BiGRe)

Laboratory of Genome and Network Biology

http://www.bigre.ulb.ac.be/

Regulatory Sequence Analysis Tools (RSAT)

Tutorial: command-line utilization of the tools

Jacques VAN HELDEN & the RSATteam

February 17, 2014

http://www.bigre.ulb.ac.be/

Contents

1 Introduction 8

1.1 Prerequisites . 8

1.2 Creating a directory for this tutorial . 8

1.3 Warning . 9

1.4 Configuring RSAT . 10

1.4.1 Adding RSATto your path . 10

2 Getting help 13

3 Retrieving sequences 14

3.1 Retrieving a single upstream sequence . 14

3.2 Combining upstream and coding sequence 15

3.3 Retrieving a few upstream sequences . 15

3.4 Retrieving a larger list of upstream sequences 15

3.5 Preventing the inclusion of upstream ORFs 16

3.6 Getting information about genes . 17

3.6.1 Getting gene location, names and description 17

3.6.2 Selecting gene by name or description 17

3.6.3 Selecting genes by their description 18

3.6.4 Adding selected fields to a list of gene 18

3.7 Retrieving sequences of a random selection of genes 19

3.8 Retrieving all upstream sequences . 19

3.9 Retrieving downstream sequences . 20

3.10 Inferring operons . 20

3.10.1 Inferring operon from a list of query genes 21

3.10.2 Selecting custom return fields . 21

3.10.3 Operons with non-CDS genes . 22

3.10.4 Inferring all operons for a given organism 22

3.10.5 Retrieving operon leader genes and inferred operon promoters 22

3.10.6 Collecting all upstream regions from the query gene up to the leader gene 22

3.10.7 Automatic inference . 23

3.11 Purging sequences . 23

4 Pattern discovery 24

4.1 Requirements . 25

2

5 String-based pattern discovery 26

5.1 Requirements . 27

5.2 oligo-analysis . 27

5.2.1 Counting word occurrences and frequencies 28

5.2.2 Pattern discovery in yeast upstream regions 28

5.2.3 Answers . 30

5.2.4 Assembling the patterns . 31

5.2.5 Alternative background models . 32

5.3 Genome-scale pattern discovery . 35

5.3.1 Detection of over-represented words in all the yeast upstream sequences 35

5.3.2 Detection of under-represented words in bacterial genomes 36

5.4 dyad-analysis . 36

6 String-based pattern matching 37

6.1 dna-pattern . 37

6.2 Matching a single pattern . 37

6.3 Matching on both strands . 38

6.4 Allowing substitutions . 38

6.5 Extracting flanking sequences . 39

6.6 Changing the origin . 39

6.7 Matching degenerate patterns . 39

6.8 Matching regular expressions . 40

6.9 Matching several patterns . 41

6.10 Counting pattern matches . 41

6.11 Getting a count table . 42

7 Drawing graphs 43

7.1 feature-map . 43

7.1.1 Converting dna-pattern matches into features 43

7.1.2 Basic feature maps . 44

7.1.3 Refining the feature map . 44

7.1.4 Map orientation . 44

7.1.5 Export formats . 45

7.1.6 HTML maps . 45

7.1.7 Other options . 45

7.1.8 Feature converters . 46

7.2 XYgraph . 46

7.2.1 Exercise: drawing features from patser 47

8 Markov models 48

8.0.2 Transition frequency tables . 48

8.0.3 Oligonucleotide frequency tables 48

8.0.4 Converting oligonucleotide frequencies into transition frequencies . . 48

8.0.5 Bernoulli models . 49

3

9 Matrix-based Pattern discovery 50

9.1 consensus (program developed by Jerry Hertz) 50

9.1.1 Getting help . 50

9.1.2 Sequence conversion . 50

9.1.3 Running consensus . 50

9.2 Random expectation . 51

10 Matrix-based pattern matching 52

10.1 Prerequisite . 52

10.2 patser (program developed by by Jerry Hertz) 52

10.2.1 Getting help . 52

10.2.2 Extracting the matrix from the consensus result file 52

10.2.3 Getting information about a matrix 53

10.2.4 Detecting Pho4p sites in the PHO genes 53

10.2.5 Detecting Pho4p sites in all upstream regions 54

10.2.6 Interpretation of the P-value returned by patser 54

10.2.7 Score distributions in promoter sequences 57

10.3 Scanning sequences with matrix-scan . 57

10.3.1 Bernoulli background models . 58

10.3.2 Higher order (Markov) background models 58

10.3.3 P-values . 59

10.3.4 Observed distribution of scores and site enrichment 60

10.3.5 Scanning sequences with multiple matrices 61

10.3.6 Detecting Cis-Regulatory element Enriched Regions (CRER) 63

10.4 Computing the theoretical score distribution of a PSSM 63

10.4.1 Estimating the quality of a PSSM 65

11 Evaluating the quality of position-specific scoring matrices 66

11.1 Prerequisite . 66

11.2 Why is important to estimate the quality of a matrix? 66

11.3 How to estimate the theoretical distribution of a matrix? 67

11.4 How to compare the theoretical distribution with the scores of the known binding sites? 69

11.5 Distribution in full collections of promoters 70

11.6 Negative control with random sequences . 71

11.7 Negative controls with permuted matrices 72

11.8 ROC curves indicate the trade-off between sensitivity and false positive rate . 72

12 Generating random sequences 74

12.1 Sequences with identically and independently distributed (IID) nucleotides . . 74

12.2 Sequences with nucleotide-specific frequencies 74

12.3 Markov chain-based random sequences . 74

13 Pattern comparisons 76

13.1 Comparing patterns with patterns . 76

4

13.2 Comparing discovered patterns wirth a library of TF-binding consensus . . . 76

14 Comparing classes, sets and clusters 77

15 Comparative genomics 78

15.1 Genome-wise comparison of protein sequences 78

15.1.1 Applying genome-blast between two genomes 78

15.1.2 Applying genome-blast between a genome and a taxon 80

15.2 Getting putative homologs, orthologs and paralogs 80

15.2.1 Getting genes by similarities . 80

15.2.2 Obtaining information on the BLAST hits 81

15.2.3 Selecting bidirectional best hits . 81

15.2.4 Selecting hits with more stringent criteria 82

15.3 Retrieving sequences for multiple organisms 83

15.4 Detection of phylogenetic footprints . 83

15.5 Phylogenetic profiles . 83

15.6 Detecting pairs of genes with similar phylogenetic profiles 85

15.6.1 Comparing binary profiles with compare-profiles 85

15.6.2 Comparing binary profiles with compare-classes 85

16 Automated analysis of multiple gene clusters 87

16.1 Input format . 88

16.2 Example of utilization . 88

16.3 Loading the results in a relational database 90

16.4 Comparing programs . 90

16.5 The negative control: analyzing random gene selections 91

16.6 Analyzing a large set of regulons . 91

17 Utilities 92

17.1 gene-info . 92

17.2 On-the-fly compression/uncompression . 92

18 Downloading genomes 94

18.1 Original data sources . 94

18.2 Requirement : wget . 94

18.3 Importing organisms from the RSATmain server 95

18.3.1 Obtaining the list of organisms supported on the RSATserver 95

18.3.2 Importing a single organism . 95

18.3.3 Importing a few selected organisms 96

18.3.4 Importing all the organisms from a given taxon 96

19 Installing additional genomes on your machine 97

19.1 Adding support for Ensembl genomes . 97

19.1.1 Handling genomes from Ensembl 97

5

19.2 Installing genomes and variations from EnsEMBL 98

19.2.1 install-ensembl-genome . 98

19.2.2 Installing genomes from Ensembl genomes 99

19.2.3 Downloading variations . 99

19.3 Importing genomes from NCBI BioProject 99

19.4 Importing multi-genome alignment files from UCSC 100

19.4.1 Warning: disk space requirement . 100

19.4.2 Checking supported genomes at UCSC 101

19.4.3 Downloading multiz files from UCSC 101

19.5 Installing genomes from NCBI/Genbank files 101

19.5.1 Organization of the genome files . 101

19.5.2 Downloading genomes from NCBI/Genbank 104

19.5.3 Parsing a genome from NCBI/Genbank 105

19.5.4 Parsing a genome from the Broad institute (MIT) 105

19.5.5 Updating the configuration file . 106

19.5.6 Checking the start and stop codon composition 106

19.5.7 Calibrating oligonucleotide and dyad frequencies with install-organisms 106

19.5.8 Installing a genome in your own account 107

19.6 Installing genomes from EMBL files . 107

20 Regulatory variations (rSNPs and insertion/deletions) 110

20.1 Requirements . 110

20.2 Detecting regulatory variations . 110

20.2.1 Scanning a selected variation with selected matrices 110

20.2.2 Obtaining a list of disease-associated variation IDs 110

20.2.3 Scanning a list of selected variations with a list of matrices 111

20.2.4 Scanning all variations with a selected matrix 111

21 Exercises 112

21.1 Some hints . 112

21.1.1 Sequence retrieval . 112

21.1.2 Detection of over-represented motifs 112

22 Using RSAT Web Services 113

22.1 Introduction . 113

22.2 Examples of WS clients in Perl with SOAP::WSDL 2.00 (or above) 113

22.2.1 Requirements . 113

22.2.2 Retrieving sequences from RSATWS 113

22.3 Examples of WS clients in Perl with SOAP::WSDL 1.27 (or below) 116

22.3.1 Requirements . 116

22.3.2 Getting gene-info from RSATWS 116

22.3.3 Documentation . 118

22.3.4 Retrieving sequences from RSATWS 118

22.3.5 Work flow using RSATWS . 120

6

22.3.6 Discover patterns with RSATWS . 123

22.3.7 Example of clients using property files 125

22.3.8 Other tools in RSATWS . 127

22.4 Examples of WS client in java . 127

22.4.1 Same workflow as above with RSATWS 127

22.5 Examples of WS client in python . 129

22.5.1 Get infos on genes having methionine or purine in their description, as above in perl129

22.6 Full documentation of the RSATWS interface 130

23 Graph analysis 131

23.1 Introduction . 131

23.1.1 Definition . 131

23.1.2 Some types of graphs . 131

23.1.3 Graph files formats . 132

23.2 RSAT Graph tools . 132

23.2.1 convert-graph . 132

23.2.2 graph-node-degree . 133

23.2.3 graph-neighbours . 133

23.2.4 compare-graphs . 133

23.2.5 graph-get-clusters . 133

23.2.6 compare-graph-clusters . 134

24 Pathway extraction tools 135

24.1 Using pathway extraction tools . 135

24.1.1 Listing tools and getting help . 135

24.1.2 Abbreviating tool names . 135

24.1.3 Increasing JVM memory . 135

24.2 Obtaining metabolic networks . 135

24.2.1 Downloading MetaCyc and KEGG generic metabolic networks from the NeAT web server135

24.2.2 Building KEGG generic metabolic networks 136

24.2.3 Building KEGG organism-specific metabolic networks 136

24.2.4 Building metabolic networks from biopax files 137

24.3 Finding k-shortest paths . 137

24.4 Linking genes to reactions . 139

24.4.1 Prerequisites . 139

24.4.2 Linking genes of the isoleucine-valine operon to reactions 139

24.5 Predicting metabolic pathways . 139

24.5.1 Predicting a metabolic pathway for the isoleucine-valine operon . . . 140

24.5.2 Mapping reference pathways onto the predicted pathway 140

24.5.3 Annotating the predicted pathway 140

24.5.4 Visualizing the predicted pathway 141

25 References 142

7

1 Introduction

This tutorial aims at introducing how to use Regulatory Sequence Analysis Tools (RSAT)

directly from the Unix shell.

RSATis a package combining a series of specialized programs for the detection of regu-

latory signals in non-coding sequences. A variety of tasks can be performed: retrieval of

upstream or downstream sequences, pattern discovery, pattern matching, graphical represen-

tation of regulatory regions, sequence conversions,

A web interface has been developed for the most common tools, and is freely available for

academic users.

http://rsat.ulb.ac.be/rsat/

All the programs in RSATcan also be used directly from the Unix shell. The shell access is

less intuitive than the web interface, but it allows to perform more complex analyses, and it is

very convenient for automatizing repetitive tasks.

This tutorial was written by Jacques van Helden (Jacques.van.Helden@ulb.ac.be). Unless

otherwise specified, the programs presented here were written by Jacques van Helden.

1.1 Prerequisites

This program requires a basic knowledge of the Unix environment. Before starting you should

be familiar with the concepts of Unix shell, directory, file, path.

1.2 Creating a directory for this tutorial

During this tutorial, we wll frequently save data and result files. I propose to create a dedicated

directory for these files. In the following chapters, we will assume that this directory is named

practical_rsat and is located at the root of your personnal account (everyone is of course

allowed to change the name and location of this directory).

To create the directory for the tutorials, you can simply type the following commands.

cd $HOME ## Go to your home directory

mkdir -p practical_rsat ## Create the directory for the tutorial

cd practical_rsat ## Go to this directory

pwd ## Check the path of your directory

From now on, we will assume that all the exercises are executed from this directory.

8

http://rsat.ulb.ac.be/rsat/

1.3 Warning

This tutorial is under construction. Some sections are still to be written, and only appear as a

title without any further text. The tutorial will be progressively completed. We provided it as

it is.

9

1.4 Configuring RSAT

In order to use the command-line version of RSAT, you first need an account on a Unix

machine where RSAThas been installed, and you should know the directory where the tools

have been installed (if you don’t know, ask assistance to your system administrator).

In the following instruction, we will assume that RSATis installed in the directory

/home/fred/rsat.

Note: in all subsequent instructions, this path has to be replaced by the actual path where

RSAThas been installed on your computer.

1.4.1 Adding RSAT to your path

Before starting to use the tools, you need to define an environment variable (RSAT), and to

add some directories to your path.

For the following instructions, we will denote as

RSAT _PARENT _PAT H

the path of the parent folder in which the RSATsuite has been downloaded.

For example, if the rsat folder has been installed in your home directory (it is thus found at

/home/fred/rsat), you should replace

RSAT _PARENT _PAT H

by /home/fred in all the following instructions.

1. Identify your SHELL.

The way to execute the following instructions depends on your “shell” environment. If

you don’t know which is your default shell, type

echo $SHELL

The answer should be something like

/sbin/bash

or

/bin/tcsh

2. Declare the RSATenvironment variables.

We will define configuration parameters necessary for RSAT. This includes an environ-

ment variable named RSAT. We will then add the path of the RSAT perl scripts, python

scripts and binaries to your path.

• If your shell is bash, you should copy the following lines in a file named .bash_profile

at the root of your account (depending on the Unix distribution, the bash custom

10

parameters may be declered in a file named .bash_profile or) .bashrc, in case of

doubt ask your system administrator).

If you dispose of admin rights, you may decide to store this configuration ina

file that will be laoded for all users of the server (e.g. /etc/profile.d/rsat.sh or

/etc/bashrc, depending on the operating system).

Note: replace [PARENT_PATH] by the full path of the directory in which the rsat

folder has been created.

##

Configuration for Regulatory Sequence Analysis Tools (RSAT)

export RSAT=[PARENT_PATH]/rsat

export PATH=${RSAT}/bin:${PATH}

export PATH=${RSAT}/perl-scripts:${PATH}

export PATH=${RSAT}/python-scripts:${PATH}

if [${CLASSPATH}]; then

export CLASSPATH=${CLASSPATH}:${RSAT}/java/lib/NeAT_javatools.jar

else

export CLASSPATH=.:${RSAT}/java/lib/NeAT_javatools.jar

fi

Pass through ssh for CVS (required to install Ensembl API)

export CVS_RSH=ssh

• If your default shell is tcsh or csh, copy the following lines in a file named .chsrc

that should be found at root of your account.

Note: replace [PARENT_PATH] by the full path of the directory in which the rsat

folder has been created.

##

Configuration for Regulatory Sequence Analysis Tools (RSAT)

setenv RSAT [PARENT_PATH]/rsat

set path=($RSAT/bin $path)

set path=($RSAT/perl-scripts $path)

set path=($RSAT/python-scripts $path)

if [${CLASSPATH}]; then

setenv CLASSPATH ${CLASSPATH}:${RSAT}/java/lib/NeAT_javatools.jar

else

setenv CLASSPATH .:${RSAT}/java/lib/NeAT_javatools.jar

fi

Pass through ssh for CVS (required to install Ensembl API)

setenv CVS_RSH=ssh

• If you are using a different shell than bash, csh or tcsh, the specification of envi-

ronment variables might differ from the syntax above. In case of doubt, ask your

system administrator how to configure your environment variables and your path.

3. In order for the variables to be taken in consideration, you need to log out and open a

new terminal session. To check that the variables are correctly defined, type.

11

echo $RSAT

In the example above, this command should return

/home/fred/rsat

12

2 Getting help

The first step before using any program is to read the manual. All programs in the RSATpackage

come with an on-line help, which is obtained by typing the name of the program followed by

the option -h. For example, to get a detailed description of the functionality and options for

the program retrieve-seq, type

retrieve-seq -h

The detailed help is specially convenient before using the program for the first time. A

complementary functionality is offered by the option -help, which prints a short list of

options. Try:

retrieve-seq -help

which is convenient to remind the precise formulation of arguments for a given program.

13

3 Retrieving sequences

The program retrieve-seq allows you to retrieve sequences from a genome (provided this

genome is supported on your machine). In particular (and by default), this program extracts

the non-coding sequences located upstream the start codon of the query genes. The reason

for selecting upstream sequences (rather than coding) is that regulatory elements are generally

found upstream of the coding regions, at least in microbial organisms.

3.1 Retrieving a single upstream sequence

First trial: we will extract the upstream sequence for a single gene. Try:

retrieve-seq -type upstream -org Escherichia_coli_K12 \

-q metA -from -200 -to -1

This command retrieves a 200 bp upstream sequence for the gene metA of the bacteria

Escherichia coli K12.

By default, coordinates are calculated from the start codon. Ideally, we would prefer to

retrieve sequences upstream of the Transcription Start Site (TSS), since this is the place where

the RNA polymerase starts to transcribe the gene. Unfortunately, the precise location of the

TSS is unknown for most genes, in most sequecned genome. For this reason, the default

reference is the start codon rather than the TSS.

Note that for some organisms (e.g. Homo sapiens), genome annotations include mRNA

boundaries. In this case, the option -feattype mRNA allows you to specify that the refer-

ence point is the start of the mRNA (thus the TSS) rather than the start codon.

Whichever reference point you decide to use, negative coordinates indicate sequences up-

stream to this reference point, and positive coordinates downstream sequences.

With the default parameters,

- the reference point is the start codon;

- position −1 corresponds to the first residue upstream of the coding sequence;

- position 0 is the first letter from the start codon (the A from ATG);

- positive coordinates indicate the coding sequence (downstream from the start codon).

To better understand the system of coordinates, try to locate the start codon in the sequence

obtained with the following commands.

retrieve-seq -type upstream -org Escherichia_coli_K12 \

-q metA -from -5 -to 6

14

3.2 Combining upstream and coding sequence

For E.coli genes, regulatory signals sometimes overlap the 5’ side of the coding sequence. By

doing so, they exert a repression effect by preventing RNA-polymerase from binding DNA.

The command retrieve-seq allows you to extract a sequence that overlaps the start codon, to

combine an upstream and a coding segment.

retrieve-seq -type upstream -org Escherichia_coli_K12 \

-q metA -from -200 -to 49

3.3 Retrieving a few upstream sequences

The option -q (query gene) can be used iteratively in a command to retrieve sequences for

several genes.

retrieve-seq -org Escherichia_coli_K12 \

-from -200 -to 49 -q metA -q metB -q metC

3.4 Retrieving a larger list of upstream sequences

If you have to retrieve a large number of sequences, it might become cumbersome to type each

gene name on the command-line. A list of gene names can be provided in a text file, each gene

name coming as the first word of a new line.
As an example, we willuse the command

gene-info

to collect all genes whose matches the prefix PHO followed by one or several numbers (this

will return a list of genes involved in phosphate metabolism).

gene-info -org Saccharomyces_cerevisiae -q 'PHO\d+' -o PHO_genes.txt

We can check the content of your file by typing

cat PHO_genes.txt

This file can now be used as input to indicate the list of query genes for

retrieve-seq

, with the option -i.

retrieve-seq -type upstream -i PHO_genes.txt \

-org Saccharomyces_cerevisiae \

-from -800 -to -1

The option -o allows you to indicate the name of a file where the sequence will be stored.

retrieve-seq -type upstream -i PHO_genes.txt \

-org Saccharomyces_cerevisiae \

-from -800 -to -1 -label name \

-o PHO_up800.fasta

15

Check the sequence file:

more PHO_up800.fasta

3.5 Preventing the inclusion of upstream ORFs

With the command above, we retrieved sequences covering precisely 200 bp upstream the

start codon of the selected genes. Intergenic regions are sometimes shorter than this size. In

particular, in bacteria, many genes are organized in operons, and the intergenic distance is

very short (typically between 0 and 50 bp). If your gene selection contains many intra-operon

genes, the sequences will be mainly composed of coding sequences (more precisely ORF,

open reading frame), which will bias subsequent analyses.

The option -noorf of retrieve-seq indicates that, if the upstream gene is closer than the

specified limit, the sequence should be clipped in order to return only intergenic regions.

As an example, we will store the list of histidin genes in a file and compare the results

obtained with and without the option -noorf.

Create a text file named his_genes.txt with the following genes.

hisL

hisG

hisD

hisC

hisH

hisA

hisF

hisI

hisP

hisM

hisQ

hisJ

hisS

The default behaviour will return 200bp for each gene.

retrieve-seq -type upstream -org Escherichia_coli_K12 \

-i his_genes.txt -from -200 -to -1

With the option -noorf, sequences are clipped depending on the position of the closest

upstream neighbour.

retrieve-seq -type upstream -org Escherichia_coli_K12 \

-i his_genes.txt -from -200 -to -1 -noorf \

-o his_up200_noorf.fasta

more his_up200_noorf.fasta

You can measure the length of the resulting sequences with the program sequence-lengths .

sequence-lengths -i his_up200_noorf.fasta

16

Notice that some genes have very short upstream sequences (no more than a few bp, or even

0bp). These are the internal genes of the his operon.

We will now apply the same option to the list of PHO genes entered above, in order to

obtaine the corresponding non-coding upstream sequences, with a size up to 800bp.

retrieve-seq -type upstream -i PHO_genes.txt \

-org Saccharomyces_cerevisiae \

-from -800 -to -1 -noorf -label name \

-o PHO_up800-noorf.fasta

Check the sequence file:

more PHO_up800-noorf.fasta

We can now use the command

sequence-lengths

to compare the sequence sizes of the files PHO_up800.fasta, and PHO_up800-noorf.fasta,

respectively.

sequence-lengths -i PHO_up800.fasta

sequence-lengths -i PHO_up800-noorf.fasta

3.6 Getting information about genes

RSATinclude several utilities to obtain information about a set of genes, we will illustrate

some basic features.

3.6.1 Getting gene location, names and description

In the previous section, we created a text file with the names of a set of genes related to
phosphate metabolism. The command

gene-info

returns the complete information concerning a set of genes. By default, the first word of each

row of the input file is considered as a query.

gene-info -i PHO_genes.txt -org Saccharomyces_cerevisiae

3.6.2 Selecting gene by name or description

Another common need is to search all the names whose name or description matches some

string. For example, let us assume that we want to ollect all the genes whose name indicates

a role in the methionine metabolism, in the yeast Saccharomyces cerevisiae. The program

gene-info allows us to specify this type of query. according to the naming convention in the

yeast community, gene names start with three letters indicating the function (e.g. PHO for

17

phosphate, MET for methionine), wollowed by a number. We can ask the program to return

all the gene names having the string “MET” in their names.

In this example, we will enter the query string with the option -q on the command line,

rather than in a file.

gene-info -q 'MET' -org Saccharomyces_cerevisiae

We could also refine the query by taking advantage of our knowledge of the yeast gene

nomenclature, and selecting the genes whose name starts with the prefix “MET”, followed by

one or several numbers.

gene-info -q '^MET\d+' -org Saccharomyces_cerevisiae

The query is formulatd as a regular expression, where \d indicates a number, and the symbol

+ is a multiplier, so \d+, indicates that we accept a succession of one or more numbers after

the string “MET”. The character ˆ indicates that the string MET should be at the start of the

name (thus, there can be no letter before MET).

We can now store this list of genes in a separate file, and retrieve the coresponding upstream

sequences.

gene-info -q '^MET\d+' -org Saccharomyces_cerevisiae -o MET_genes.txt

retrieve-seq -type upstream -i MET_genes.txt \

-org Saccharomyces_cerevisiae \

-from -800 -to -1 -noorf -label name \

-o MET_up800-noorf.fasta

3.6.3 Selecting genes by their description

By default, the program gene-info matches a query string against the list of gene names for

the selected organism. The option -descr extends the search to the gene descriptions. For

instance, we could search all the genes having the word “methionine” in their description.

gene-info -descr -q methionine -org Saccharomyces_cerevisiae

3.6.4 Adding selected fields to a list of gene

As we saw in the previous section, the program gene-info takes as input a list of gene names

or identifiers, and return the complete description of each gene.

In some cases, one needs only a part of this information (e.g. the common name, or the

descripion), in order to to add some columns to a pre-existing tab-delimited file where each

row represents one gene. For example, imagine that you have a file containing expression

profiles for 6,000 yeast genes, measured by microarray experiments under 200 conditions.

The file contains 201 columns: the first column indicates the ID of each gene, and the 200

next column give expression values measured in the 200 microarrays. In such case, you would

typically use add-gene-info to add a few columns after each profile, in order to indicate the

common name and the description of each gene.

18

The program add-gene-info allows add columns to an input file, with user-selected fields of

information about the genes. For example, the options below will add the gene identifier and

the list of synonym to each row of our PHO gene list.

add-gene-info -i PHO_genes.txt -org Saccharomyces_cerevisiae \

-info id,names

If the input file contains additional columns (e.g. expression profiles), these will be pre-

served in the output, and the requested information columns will be added at the end of each

row.

You can check the list of fields supported by add-gene-info by consulting the help message.

add-gene-info -help

3.7 Retrieving sequences of a random selection of

genes

It is also sometimes interesting to select a set of random genes, which canbe used as negative

control or some analyses. This is exactly the purporse of the program random-genes . We

will perform a random selection of 20 yeast genes, and retrieve their upstream sequences.

This selection will also be used in the next chapters.

random-genes -org Saccharomyces_cerevisiae -n 20 -o RAND_genes.txt

retrieve-seq -type upstream -i RAND_genes.txt \

-org Saccharomyces_cerevisiae \

-from -800 -to -1 -noorf -label name \

-o RAND_up800-noorf.fasta

3.8 Retrieving all upstream sequences

For genome-scale analyses, it is convenient to retrieve upstream sequences for all the genes of

a given genome, without having to specify the complete list of names. For this, simply use the

option -all.
As an illustration, we will use

retrieve-seq

to retrieve all the start codons from Escherichia coli. As we saw before, negative coordinates

specify upstream positions, 0 being the first base of the coding sequence. Thus, by specifying

positions 0 to 2, we will extract the three first coding bases, i.e. the start codon.

retrieve-seq -type upstream -org Escherichia_coli_K12 \

-from 0 -to 2 \

-all -format wc -nocomments -label id,name \

-o Escherichia_coli_K12_start_codons.wc

19

Check the result:

more Escherichia_coli_K12_start_codons.wc

3.9 Retrieving downstream sequences

retrieve-seq can also be used to retrieve downstream sequences. In this case, the origin (po-

sition 0) is the third base of the stop codon, positive coordinates indicate downstream (3’)

location, and negative coordinates locations upstream (5’) from the stop codon (i.e. coding

sequences).

For example, the following command will retrieve 200pb downstream sequences for a few

yeast genes. The first nucleotides of the retrieved sequences are those immediately after the

stop codon.

retrieve-seq -type downstream -org Saccharomyces_cerevisiae \

-from 1 -to 200 -label id,name -q PHO5 -q MET4

Since with the option -type downstream, the coordinates smaller than 1 indicate po-

sitions upstream of the stop codon, we can use retrieve-seq to extract the stop codons for all

the genes of Escherichia coli.

retrieve-seq -type downstream -org Escherichia_coli_K12 \

-from -2 -to 0 \

-all -format wc -nocomments -label id,name \

-o Escherichia_coli_K12_stop_codons.wc

3.10 Inferring operons

In Bacteria, genes are organized in operon, which means that several genes are transcribed in

a single transcription unit. The transcription of a whole operon is driven by a single promoter,

located upstream of the so-called leader gene.

Let us assume that we dispose of a set of bacterial genes for which we want to predict

cis-acting elements (e.g. co-expressed genes in a microarray experiment). A good fraction

of these genes might be located inside operons. For these, the putative regulatory elements

should be searched in the promoter of the operon leader gene, rather than in the upstream

sequence of the gene itself.

The program infer-operon allows to infer the operons and return the corresponding leader

genes for a set of input genes. The approach is inspired by the Salgado-Hagelsieb method,

which consists in predicting, for each upstream region, if it is within an operon (WO) or t a

transcription unit border (TUB). This prediction is based on two rules:

1. Orientation rule If the intergenic region is flanked by two genes located on different

strands, it is a TUB.

20

2. [Distance rule If the intergenic region is flanked two tandem genes (adjacent genes

transcribed in the same direction), it is classified as WO if the intergenic distance is

lower than some threshold (by default, 55bp), and as TUB otherwise.

The default distance threshold was chosen to obtain a good balance between sensitivity (Sn,

fraction of annotated WO regions which are correctly predicted) and positive predictive value

(PPV, fraction of predicted WO region which indeed correspond to annotations).

The option -dist allows to specify a custom distance threshold. By increasing the thresh-

old, the number of regions predicted as WO increases, at the expense of those predicted as

WO. This will thus increase the Sn and decrease PPV.

The accuracy measures the balance between Sn and PPV by taking their arithmetic average.

With the default value, one can expect 78% of accuracy (Reki’s janky and Jacques van Helden,

unpublished results).

We will illustrate the use of infer-operons with a few examples.

3.10.1 Inferring operon from a list of query genes

With the following command, we infer the operon for a set of input genes.

infer-operon -v 1 -org Escherichia_coli_K12 -q hisD -q mhpR \

-q mhpA -q mhpD

Note that the prediction is incorrect for the gene hisD: the program predict hisG as operon

leader, whereas the well known leader of the his operon is hisL. This is due to the fact that

the intergenic distance between hisL and hisG is 145bp, which exceeds the default distance

threshold (55bp).

One option would be to increase the distance threshold to 150bp.

infer-operon -v 1 -org Escherichia_coli_K12 -q hisD -q mhpR \

-q mhpA -q mhpD -dist 150

However, we should be very careful with this option, since it has a strong consequence on

all the other operon inferenes in the same genome. Since a good fraction of promoters of

Escherichia coli are shorted than 150bp, by increasing the distance threshold to 150, we will

undully consider these promoters as WO.

3.10.2 Selecting custom return fields

The option -return allows to specify custom return fields.

infer-operon -v 1 -org Escherichia_coli_K12 -q hisD -q lacI -q lacZ \

-return q_info,up_info,leader,trailer,operon

Note that the famous lac operon contains three genes: lacZ, lacY and lacA, but the inferred

operon only returns the two first genes because the distance between lacY and lacA is 65bp.

This can be checked with the return field down_info.

infer-operon -v 1 -org Escherichia_coli_K12 -q lacZ -q lacY \

-return q_info,up_info,down_info,operon

21

3.10.3 Operons with non-CDS genes

Note that operons can contain non-coding genes. For example, the metT operon contains a

series of tRNA genes for methionine, leucine and glutamina, respectively.

infer-operon -org Escherichia_coli_K12 -q glnV -q metU -q ileV \

-return q_info,up_info,operon

3.10.4 Inferring all operons for a given organism

The option -all allows to infer operons for all the genes of an organism.

infer-operon -v 1 -org Escherichia_coli_K12 -all \

-return q_info,up_info,leader,operon

3.10.5 Retrieving operon leader genes and inferred operon

promoters

As explained above, a common usage of operon inference is to predict a list of leader genes

from a set of query genes, in order to retrieve the corresponding promoter sequences. For this,

we will use the option -return to obtain the leader gene in the first column of the result

table.

infer-operon -org Escherichia_coli_K12 -return leader,q_info,up_info,operon \

-q lacI -q lacZ -q lacY -q mhpD -q mhpF

The first column now indicates the inferred leader genes rather than tne query genes, and

that this column contains some redundancy: the same leader gene appears multiple times. This

comes from the fact that several of our query genes were part of the same operon (e.g.:lacZ

and lacY).

To avoid including twice their leader, we use the unix command sort -u (unique).

infer-operon -org Escherichia_coli_K12 -return leader,q_info,up_info,operon \

-q lacI -q lacZ -q lacY -q mhpD -q mhpF \

| cut -f 1 \

| sort -u

We can now use the resulting non-redundant list of operon leaders as input for retrieve-seq.

infer-operon -org Escherichia_coli_K12 -return leader,q_info,up_info,operon \

-q lacI -q lacZ -q lacY -q mhpD -q mhpF \

| cut -f 1 \

| sort -u \

| retrieve-seq -org Escherichia_coli_K12 -noorf

3.10.6 Collecting all upstream regions from the query gene up to

the leader gene

TO BE IMPLEMENTED

22

3.10.7 Automatic inference

TO BE IMPLEMENTED

3.11 Purging sequences

TO BE WRITTEN

23

4 Pattern discovery

In a pattern discovery problem, you start from a set of functionally related sequences (e.g. up-

stream sequences for a set of co-regulated genes) and you try to extract motifs (e.g. regulatory

elements) that are characteristic of these sequences.

Several approaches exist, either string-based or matrix-based. String-based pattern dis-

covery is based on an analysis of the number of occurrences of all possibles words (oligo-

analysis), or spaced pairs (dyad-analysis). The methods for matrix-based pattern discovery

rely on the utlisation of some machine-learning method (e.g. greedy algorithm, expectation-

maxiisation, gibbs sampling, ...) in order to optimise of some scoring function (log-likelihood,

information,...) which is likely to return significant motifs.

In this chapter we will mainly focus on string-based approaches, and illustrate some of their

advantages. A further chapter will be dedicated to matrix-based pattern discovery.

For microbial cis-acting elements, string-based approaches give excellent results. The main

advantages of these methods:

+ Simple to use

+ Deterministic (if you run it repeatedly, you always get the same result), in contrast with

stochastic optimization methods.

+ Exhaustive : each word or space pair is tested independently. Consequently, if a set of

sequences contains several exceptional motifs, all of them can be detected in a single

run.

+ The tests of significances can be performed on both tails of the theoretical distribution,

in order to detect either over-represented, or under-represented patterns.

+ Fast.

+ Able to return a negative answer: if no motif is significant, the programs return no motif

at all. This is particularly important to reduce the rate of false positive.

An obvious advantage of matrix-based approach is that they provide a more refined de-

scription of motifs presenting a high degree of degeneracy. However, a general problem of

matrix-based approaches is that it is impossible to analyze all possible position-weight matri-

ces, and thus one has to use heuristics. There is thus a risk to miss the global optimum because

the program is attracted to local maxima. Another problem is that there are more parameters

to select (typically, matrix width and expected number of occurrences of the motif), and their

choice drastically affects the quality of the result.

24

Basically, I would tend to prefer string-based approaches for any problem of pattern discov-

ery. On the contrary, matrix-based approaches are much more sensitive for pattern matching

problems (see below). My preference is thus to combine string-based pattern discovery and

matrix-based pattern matching.

But I am obviously biased because I developed string-based approaches. An important

factor in the success obtained with a program is to understand precisely its functioning. I thus

think that each user should test different programs, compare them and select the one that best

suits his/her needs.

4.1 Requirements

This part of the tutorial assumes that you already performed the tutorial about sequence re-

trieval (above), and that you have the result files in the current directory. Check with the

command:

cd ${HOME}/practical_rsat

ls -1

You should see the following file list:

Escherichia_coli_K12_start_codons.wc

Escherichia_coli_K12_stop_codons.wc

MET_genes.txt

MET_up800-noorf.fasta

PHO_genes.txt

PHO_up800-noorf.fasta

PHO_up800.fasta

RAND_genes.txt

RAND_up800-noorf.fasta

his.genes.txt

his.up200.noorf.fasta

25

5 String-based pattern discovery

In a pattern discovery problem, you start from a set of functionally related sequences (e.g. up-

stream sequences for a set of co-regulated genes) and you try to extract motifs (e.g. regulatory

elements) that are characteristic of these sequences.

Several approaches exist, either string-based or matrix-based. String-based pattern dis-

covery is based on an analysis of the number of occurrences of all possibles words (oligo-

analysis), or spaced pairs (dyad-analysis). The methods for matrix-based pattern discovery

rely on the utlisation of some machine-learning method (e.g. greedy algorithm, expectation-

maxiisation, gibbs sampling, ...) in order to optimise of some scoring function (log-likelihood,

information,...) which is likely to return significant motifs.

In this chapter we will mainly focus on string-based approaches, and illustrate some of their

advantages. A further chapter will be dedicated to matrix-based pattern discovery.

For microbial cis-acting elements, string-based approaches give excellent results. The main

advantages of these methods:

+ Simple to use

+ Deterministic (if you run it repeatedly, you always get the same result), in contrast with

stochastic optimization methods.

+ Exhaustive : each word or space pair is tested independently. Consequently, if a set of

sequences contains several exceptional motifs, all of them can be detected in a single

run.

+ The tests of significances can be performed on both tails of the theoretical distribution,

in order to detect either over-represented, or under-represented patterns.

+ Fast.

+ Able to return a negative answer: if no motif is significant, the programs return no motif

at all. This is particularly important to reduce the rate of false positive.

An obvious advantage of matrix-based approach is that they provide a more refined de-

scription of motifs presenting a high degree of degeneracy. However, a general problem of

matrix-based approaches is that it is impossible to analyze all possible position-weight matri-

ces, and thus one has to use heuristics. There is thus a risk to miss the global optimum because

the program is attracted to local maxima. Another problem is that there are more parameters

to select (typically, matrix width and expected number of occurrences of the motif), and their

choice drastically affects the quality of the result.

26

Basically, I would tend to prefer string-based approaches for any problem of pattern discov-

ery. On the contrary, matrix-based approaches are much more sensitive for pattern matching

problems (see below). My preference is thus to combine string-based pattern discovery and

matrix-based pattern matching.

But I am obviously biased because I developed string-based approaches. An important

factor in the success obtained with a program is to understand precisely its functioning. I thus

think that each user should test different programs, compare them and select the one that best

suits his/her needs.

5.1 Requirements

This part of the tutorial assumes that you already performed the tutorial about sequence re-

trieval (above), and that you have the result files in the current directory. Check with the

command:

cd ${HOME}/practical_rsat

ls -1

You should see the following file list:

Escherichia_coli_K12_start_codons.wc

Escherichia_coli_K12_stop_codons.wc

MET_genes.txt

MET_up800-noorf.fasta

PHO_genes.txt

PHO_up800-noorf.fasta

PHO_up800.fasta

RAND_genes.txt

RAND_up800-noorf.fasta

his.genes.txt

his.up200.noorf.fasta

5.2 oligo-analysis

The program oligo-analysis is the simplest pattern discovery program. It counts the number

of occurrences of all oligonucleotides (words) of a given length (typically 6), and calculates

the statistical significance of each word by comparing its observed and expected occurrences.

The program returns words with a significant level of over-representation.

Despite its simplicity, this program generally returns good results for groups of co-regulated

genes in microbes.

For a first trial, we will simply use the program to count word occurrences. The application

will be to check the start and stop codons retrieved above. We will then use oligo-analysis in a

pattern discovery process, to detect over-represented words from the set of upstream sequences

retrieved above (the PHO family). In a first time, we will use the appropriate parameters,

which have been optimized for pattern discovery in yeast upstream sequences (van Helden et

27

al., 1998). We will then use the sub-optimal settings to illustrate the fact that the success of

word-based pattern-discovery crucially depends on a rigorous statistical approach (choice of

the background model and of the scoring function).

5.2.1 Counting word occurrences and frequencies

Try the following command:

oligo-analysis -v 1 -i Escherichia_coli_K12_start_codons.wc \

-format wc -l 3 -1str

Call the on-line option description to understand the meaning of the options you used:

oligo-analysis -help

Or, to obtain more details:

oligo-analysis -h

You can also ask some more information by speifying a verbosity of 1 (option -v 1), and

store the result in a file:

oligo-analysis -v 1 -i Escherichia_coli_K12_start_codons.wc \

-format wc -l 3 -1str -return occ,freq \

-o Escherichia_coli_K12_start_codon_frequencies.tab

Read the result file:

more Escherichia_coli_K12_start_codon_frequencies.tab

Note the effect of the verbose option (-v 1). You receive information about sequence

length, number of possible oligonucleotides, the content of the output columns, ...

Exercise 5.1 Follow the same procedure as above to check the frequencies of stop codons in

the genomes of Escherichia coli K12, and Saccharomyces cerevisia, respectively.

5.2.2 Pattern discovery in yeast upstream regions

Try the following command:

oligo-analysis -i PHO_up800-noorf.fasta -format fasta \

-v 1 -l 6 -2str -lth occ_sig 0 -noov \

-return occ,proba,rank -sort \

-bg upstream-noorf -org Saccharomyces_cerevisiae \

-o PHO_up800-noorf_6nt-2str-noov_ncf_sig0

Note that the return fields (“occ”, “proba”, and “rank”) are separated by a comma without

space. Call the on-line help to understand the meaning of the parameters.

28

oligo-analysis -h

For this analysis, the expected frequency of each word was estimate on the basis of pre-

calibrated frequency tables. These tables have been previously calculated (with oligo-analysis)

by counting hexanucleotide frequencies in the whole set of yeast upstream regions (-bg

upstream). Our experience is that these frequencies are the optimal estimator for discover-

ing regulatory elements in upstream sequences of co-regulated genes.

Analyze the result file:

more PHO_up800-noorf_6nt-2str-noov_ncf_sig0

; Counted on both strands

; grouped by pairs of reverse complements

; Background model upstream

; Organism Saccharomyces_cerevisiae

; Method Frequency file

...

; Nb of sequences 19

; Sum of sequence lengths 11352

; discarded residues 0 (other letters than ACGT)

; discarded occurrences 0 (contain discarded residues)

; nb possible positions 11257

; total oligo occurrences 11257

[...]

; nb possible oligomers 2080

; oligomers tested for significance 2080

[...]

; column headers

; 1 seq oligomer sequence

; 2 identifier oligomer identifier

; 3 exp_freq expected relative frequency

; 4 occ observed occurrences

; 5 exp_occ expected occurrences

; 6 occ_P occurrence probability (binomial)

; 7 occ_E E-value for occurrences (binomial)

; 8 occ_sig occurrence significance (binomial)

; 9 rank rank

; 10 ovl_occ number of overlapping occurrences (discarded from the count)

; 11 forbocc forbidden positions (to avoid self-overlap)

; 12 test

;seq identifier exp_freq occ exp_occ occ_P occ_E occ_sig rank ovl_occ forbocc

acgtgc acgtgc|gcacgt 0.0002182431087 16 2.46 8.4e-09 1.7e-05 4.76 1 2 76

cccacg cccacg|cgtggg 0.0001528559297 11 1.72 2e-06 4.2e-03 2.37 2 0 55

acgtgg acgtgg|ccacgt 0.0002257465554 13 2.54 2.8e-06 5.9e-03 2.23 3 1 65

cacgtg cacgtg|cacgtg 0.0001299168211 10 1.46 3.3e-06 6.8e-03 2.17 4 0 100

cgcacg cgcacg|cgtgcg 0.0001322750472 10 1.49 3.8e-06 8.0e-03 2.10 5 0 50

cgtata cgtata|tatacg 0.0005113063008 17 5.76 0.00011 2.2e-01 0.65 6 1 85

agagat agagat|atctct 0.0006913890231 19 7.78 0.00047 9.8e-01 0.01 7 0 95

A few questions:

29

1. How many hexanucleotides can be formed with the 4-letter alphabet A,T,G,C ?

2. How many possible oligonucleotides were analysed here ? Is it the number you would

expect ? Why ?

3. How many patterns have been selected as significant ?

4. By simple visual inspection, can you identify some sequence similarities between the

selected patterns?

5.2.3 Answers

1. The number of possible hexanucleotides is 46 = 4,096.

2. The result file however reports 2,080 possible oligonucleotides. This is due to the fact

that the analysis was performed on both strands. Each oligonucleotide is thus regrouped

with its reverse complement. The number of pairs is hovever larger than 4096/2, be-

cause there are 43 = 64 motifs (e.g. CACGTG) which are identical to their reverse

complements. The number of motifs distinct from their reverse complement is thus

4,069− 64 = 4,032, and they are regrouped into 4,032/2 = 2,016 pairs. The total

number of motifs is thus T = 64+2016 = 2080.

3. Among the 2080 tested oligonucleotides (+reverse complement), no more than 7 were

selected as significantly over-represented.

4. Some pairs of words are mutually overlapping (e.g. ACGTGc and cACGTG).

We can now interpret these results in terms of statistics.

exp_ f req The expected frequency of an oligonucleotide is the probability to find it by chance

at any position of the sequences analyzed. The expected frequencies are estimated on

the basis of the background model.

The program oligo-analysis uses the binomial statistics to compare the observed and ex-

pected number of occurrences, an to calculate the over-representation statistics.

Pval P-value: probability for a given oligonucleotide to be a false positive, i.e. to be consid-

ered as over-represented whereas it is not.

Eval = T ·Pval number of false positive patterns expected by chance given the P-value of the

considered pattern.

occsig =−log10(Eval) significance of the oligonucleotide occurrences. This is a simple

minus-log conversion of th E-value.

30

5.2.4 Assembling the patterns

A separate program, pattern-assembly , allows to assemble a list of patterns, in order to group

those that overlap mutually. Try:

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_ncf_sig0 \

-v 1 -subst 1 -2str -o PHO_up800-noorf_6nt-2str-noov_ncf_sig0.asmb

Read the on-line help to have a look at the assembly parameters.

pattern-assembly -h

Let us have a look at the assembled motifs.

more PHO_up800-noorf_6nt-2str-noov_ncf_sig0.asmb

Should give something llike this (the precise result might be slightly different depending on

the version of the genome).

; pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_ncf_sig0 -v 1 -subst 1 -2str -o PHO_up800-noorf_6nt-2str-noov_ncf_sig0.asmb

; Input file PHO_up800-noorf_6nt-2str-noov_ncf_sig0

; Output file PHO_up800-noorf_6nt-2str-noov_ncf_sig0.asmb

; Input score column 8

; Output score column 0

; two strand assembly

; max flanking bases 1

; max substitutions 1

; max assembly size 50

; max number of patterns 100

; number of input patterns 7

;

;assembly # 1 seed: acgtgc 9 words length

; alignt rev_cpl score

cccacg....cgtggg 2.37

cgcacg....cgtgcg 2.10

.gcacgt... ...acgtgc. 4.76

.ccacgt... ...acgtgg. 2.23

..cacgtg.. ..cacgtg.. 2.17

...acgtgc. .gcacgt... 4.76

...acgtgg. .ccacgt... 2.23

....cgtggg cccacg.... 2.37

....cgtgcg cgcacg.... 2.10

cgcacgtgcg cgcacgtgcg 4.76 best consensus

; Isolated patterns: 2

;alignt rev_cpl score

cgtata tatacg 0.65 isol

agagat atctct 0.01 isol

;Job started 26/10/06 09:58:21 CDT

;Job done 26/10/06 09:58:21 CDT

The result of the assembly shows us that several of the significant hexanucleotides actually

reflect various fragments of a same motif. We also see that, despite the fact that oligo-analysis

only analyzed the 4-letters DNA alphabet, the assembly indicates some degeneracy in the mo-

tif, revealed by the presence of alternative letters at the same position. For instance, in the

penultimate position of the assembly, we can observe either C or G. In addition, the scores

besides each oligonucleotide indicate us that these alternative letters can be more or less sig-

nificantly over-represented in our sequence set. In summary, the result of pattern-assembly is

the real key to the interpretation of oligo-analysis: the discovered motifs are not each separate

oligo-analysis, but the assemblies that can be formed out of them.

The best consensus indicates, for each position of the alignment, the letter corresponding to

the oligonucleotide with the highest significance. This consensus should be considered with

31

caution, because its complete sequence is built from the collection of various oligonucleotides,

and might not correspond to any real site in the input sequences. Also, this “best consensus”

is generally too stringent to perform pattern matching (see next chapters), and we usually

prefer to search all the oligonucleotides separately, and analyze their feature map to identify

the putative cis-acting elements.

Exercise 5.2 Use the same procedure as above to discover over-represented hexanucleotides

in the upstream sequences of the MET genes obtained in the chapter on sequence retrieval.

Analyze the results of oligo-analysis and pattern-assembly.

Exercise 5.3 Use the same procedure as above to discover over-represented hexanucleotides

in the upstream sequences of the RAND genes (randoms election of genes) obtained in the

chapter on sequence retrieval. Analyze the results of oligo-analysis and pattern-assembly.

5.2.5 Alternative background models

One of the most important parameters for the detectin of significant motifs is the choice of an

appropriate background model.

This chapter aims at emphasizing how crucial is the choice of appropriate statistical param-

eters. We saw above that a background model calibrated on all the yeast upstream sequences

gives good results with the PHO family: despite the simplicity of the algorithm (counting

non-degenerate hexanucleotide occurrences), we were able to extract a description of the reg-

ulatory motif over a larger width than 6 (by pattern assembly), and we got some description

of the degeneracy (the high and low affinity sites).

We will now intentionally try other parameter settings and see how they affect the quality

of the results.

Equiprobable oligonucleotides

Let us try the simplest approach, where each word is considered equiprobable. For this, we

simply suppress the options -bg upstream -org Saccharomyces_cerevisiae fom

the above commands. We also omit to specify the output file, so results will immediately ap-

pear on the screen.

oligo-analysis -v 1 -i PHO_up800-noorf.fasta -format fasta \

-l 6 -2str -return occ,proba,rank -lth occ_sig 0 -sort -bg equi

You can combine oligo-analysis and pattern-assembly in a single command, by using the

pipe character as below.

oligo-analysis -i PHO_up800-noorf.fasta -format fasta -v 1 \

-l 6 -2str -return occ,proba -lth occ_sig 0 -sort \

| pattern-assembly -2str -subst 1 -v 1

On unix systems, the “pipe” character is used to concatenate commands, i.e. the output of

the first command (in this case oligo-analysis) is not printed to the screen, but is sent as input

for the second command (in this case pattern-assembly).

Note that

32

• The number of selected motifs is higher than in the previous trial. with the 2006 version

of the sequences, I obtain 92 patterns, instead of the 7 obtained with the background

model calibrated on yeast upstream sequences.

• The most significant motifs are not related to the Pho4p binding sites. All these false

positives are AT-rich motifs.

• Two of the selected patterns (acgttt and acgtgc) are related to Pho4p binding site.

However, they come at the 56th and 65th positions only.

• With this background model, we would thus not be able to detect the Pho4p binding

sites.

Markov chains

Another possibility is to use Markov chain models to estimate expected word frequencies.

Try the following commands and compare the results. None is as good as the option -bg

upstream-noorf, but in case one would not have the pre-calibrated non-coding frequen-

cies (for instance if the organism has not been completely sequenced), Markov chains can

provide an interesting approach.

in a Markov chain model, the probability of each oligonucleotide is estimated on the basis

of the probabilities smaller oligonucleotides that enter in its composition.

We will first apply a Markov model of order 1.

Markov chain of order 1

oligo-analysis -v 1 -markov 1 \

-i PHO_up800-noorf.fasta -format fasta \

-l 6 -lth occ_sig 0 -sort \

-2str -return occ,proba,rank \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv1

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv1

The number of patterns is strongly reduced, compared to the equiprobable model. A few

AT-rich patterns are still rpesent, but the Pho4p motif now appears at the 3rd position. We can

assemble these oligos in order to highligh the different motifs.

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_sig0_mkv1 \

-2str -sc 7 -subst 1 -v 1 \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv1.asmb

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv1.asmb

We can now increase the stringency, by using a Markov model of order 2.

33

Markov chain of order 2

oligo-analysis -v 1 -markov 2 \

-i PHO_up800-noorf.fasta -format fasta \

-l 6 -lth occ_sig 0 -sort \

-2str -return occ,proba,rank \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv2

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv2

We now have a very restricted number of patterns, with onnly 2 remaining AT-rich motifs.

Besides these, most of the selected oligos can be assembled to form a moti corresponding to

the Pho4p binding site.

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_sig0_mkv2 \

-2str -sc 7 -subst 1 -v 1 \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv2.asmb

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv2.asmb

We can still increase the stringency with a Markov model of order 3.

Markov chain of order 3

oligo-analysis -v 1 -markov 3 \

-i PHO_up800-noorf.fasta -format fasta \

-l 6 -lth occ_sig 0 -sort \

-2str -return occ,proba,rank \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv3

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv3

If we further increase the order of the Markov chain, there is not a single significant oligonu-

cleotide.

Markov chain of order 4

oligo-analysis -v 1 -markov 4 \

-i PHO_up800-noorf.fasta -format fasta \

-l 6 -lth occ_sig 0 -sort \

-2str -return occ,proba,rank,rank \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv4

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv4

Bernoulli model

Note that the Markov order 0 means that there is no dependency between successive residues.

The probability of a word is thus simply the prodct of its residue probabilities. This is a

Bernoulli model, but, by extension of the concepts of Markov chain, it is accepted to call it

markov chain of order 0.

34

Markov chain of order 0 = Bernoulli model

oligo-analysis -v 1 -markov 0 \

-i PHO_up800-noorf.fasta -format fasta \

-l 6 -lth occ_sig 0 -sort \

-2str -return occ,proba,rank \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv0

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_sig0_mkv0 \

-2str -sc 7 -subst 1 -v 1 \

-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv0.asmb

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv0.asmb

Summary about the Markov chain background models

• The Markov model of order 1 returns AT-rich patterns with the highest significance, but

the Pho4p high affinity site is described with a good accuracy. The medium affinity site

appears as a single word (acgttt) in the isolated patterns.

• Markov order 1 returns less AT-rich motifs. The poly-A (aaaaaa) is however still asso-

ciated with the highest significance, but comes as isolated pattern.

• The higher the order of the markov chain, the most stringent are the conditions. For

small sequence sets, selecting a too high order prevents from selecting any pattern. Most

of the patterns are missed with a Markov chain of order 2, and higher orders don’t return

any single significant word.

5.3 Genome-scale pattern discovery

The detection of exceptional words can also be used to detect signals in large sequence sets,

such as th whole set of upstream sequences for a given organism, or even its complete genome.

We will illustrate this with two examples.

5.3.1 Detection of over-represented words in all the yeast

upstream sequences

retrieve-seq -org Saccharomyces_cerevisiae -type upstream -all \

-from -1 -to -800 -noorf -o Saccharomyces_cerevisiae_allup_800-noorf.fasta.gz

Note that we added the extension .gz to the name of the output file. This suffix is inter-
preted by all the RSATprograms as an indication to compress the result using the command

gzip

. The result file occupies a much smaller space on your hard drive.

We will now analyze the frequency of all the heptanucleotides, and analyze their level of

over- or under-representation (for this, we use the option -two_tails). To estimate ex-

pected frequencies, we will use a Markov model of order 4 (the other models are left as

exercise).

35

oligo-analysis -v 1 -i Saccharomyces_cerevisiae_allup_800-noorf.fasta.gz \

-l 7 -2str -noov -return occ,freq,proba,zscore,rank -sort -markov 4 \

-two_tails \

-o Saccharomyces_cerevisiae_allup_800-noorf_7nt-2str-noov_mkv4.tab

you can now compare the most significant oligonucleotides with the transcription factor

binding sites annotated in SCPD, the Sacharomyces cerevisiae Promoter Database (http://rulai.cshl.edu/cgi-

5.3.2 Detection of under-represented words in bacterial genomes

Exercise 5.4 Analyze the frequencies of al the hexanucleotides in Escherichia coli K12. One

of them shows a very high degree of under-representation. Try to understand the reason why

this hexanucleotide is avoided in this genome.

Info: the full genome of Escherichia coli K12 can be found in the RSATgenome directory.

ls $RSAT/data/genomes/Escherichia_coli_K12/genome/contigs.txt

This file contains the list of chromosomes of the bacteria (in this cxase there is a single

one, but for S.cerevisiae there are 16 nuclear and one mitochondrial chromosomes). It can be

idrectly used as input by specifying the format -format filelist.

5.4 dyad-analysis

In the previous chapter, we saw that oligo-analysis allows to detect over- and under-represented

motifs in biological sequences, according to a user-specified background model. Since 1997,

this program has been routinely used to predict cis-acting elements from groups of co-expressed

genes.

However, some motifs escape to oligo-analysis , because they do not correspond to an

oligonucleotide, but to a spaced pair of very short oligonucleotides (dyads). To address this

problem, we developed another program called dyad-analysis .

TO BE WRITTEN

36

http://rulai.cshl.edu/cgi-bin/SCPD/searchmotif

6 String-based pattern matching

In a pattern matching problem, you start from one or several predefined patterns, and you

match this pattern against a sequence, i.e. you locate all occurrences of this pattern in the

sequences.

Patterns can be represented as strings (with dna-pattern) or position-weight matrices (with

patser).

6.1 dna-pattern

dna-pattern is a string-based pattern matching program, specialized for searching patterns in

DNA sequences.

• This specialization mainly consists in the ability to search on both the direct and reverse

complement strands.

• A single run can either search for a single pattern, or for a list of patterns.

• multi-sequence file formats (fasta, filelist, wc, ig) are supported, allowing to match pat-

terns against a list of sequences with a single run of the program.

• String descriptions can be refined by using the 15-letters IUPAC code for uncompletely

specified nucleotides, or by using regular expressions.

• The program can either return a list of matching positions (default behaviour), or the

count of occurrences of each pattern.

• Imperfect matches can be searched by allowing substitutions. Insertions and deletions

are not supported. The reason is that, when a regulatory site presents variations, it is

generally in the form of a tolerance for substitution at a specific position, rather than

insertions or deletions. It is thus essential to be able distinguishing between these types

of imperfect matches.

6.2 Matching a single pattern

We will start by searching all positions of a single pattern in a sequence set. The sequence is

the set of upstream regions from the PHO genes, that was obtained in the tutorial on sequence

retrieval. We will search all occurrences of the most conserved core of the Pho4p medium

affinity binding site (CACGTT) in this sequence set.

Try the following command:

37

dna-pattern -v 1 -i PHO_up800.fasta -format fasta \

-1str -p cacgtt -id ’Pho4p_site’

You see a list of positions for all the occurrences of CACGTT in the sequence.

Each row represents one match, and the columns provide the following information:

1. pattern identifier

2. strand

3. pattern searched

4. sequence identifier

5. start position of the match

6. end position of the match

7. matched sequence

8. matching score

6.3 Matching on both strands

To perform the search on both strands, type:

dna-pattern -v 1 -i PHO_up800.fasta -format fasta \

-2str -p cacgtt -id ’Pho4p_site’

Notice that the strand column now contains two possible values: D for “direct” and R for

“reverse complement”.

6.4 Allowing substitutions

To allow one substitutions, type:

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -p cacgtt -id ’Pho4p_site’ -subst 1

Notice that the score column now contains 2 values: 1.00 for perfect matches, 0.83 (=5/6)

for single substitutions. This si one possible use of the score column: when substitutions are

allowed, the score indicates the percentage of matching nucleotides.

Actually, for regulatory patterns, allowing substitutions usually returns many false positive,

and this option is usually avoided. We will not use it further in the tutorial.

38

6.5 Extracting flanking sequences

The matching positions can be extracted along with their flanking nucleotides. Try:

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -p cacgtt \

-id ’Pho4p_site’ -N 4

Notice the change in the matched sequence column: each matched sequence contains the

pattern CACGTT in uppercase, and 4 lowercase letters on each side (the flanks).

6.6 Changing the origin

When working with upstream sequences, it is convenient to work with coordinates relative to

the start codon (i.e. the right side of the sequence). Sequence matching programs (including

dna-pattern) return the positions relative to the beginning (i.e. the left side) of the sequence.

The reference (coordinate 0) can however be changed with the option -origin. In this case,

we retrieved upstream sequences over 800bp. the start codon is thus located at position 801.

Try:

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -p cacgtt \

-id ’Pho4p_site’ -N 4 -origin 801

Notice the change in coordinates.

In some cases, a sequence file will contain a mixture of sequences of different length (for

example if one clipped the sequences to avoid upstream coding sequences). The origin should

thus vary from sequence to sequence. A convenient way to circumvent the problem is to use a

negative value with the option origin. for example, -origin -100 would take as origin

the 100th nucleotide starting from the right of each sequence in the sequence file. But in our

case we want to take as origin the position immediately after the last nucleotide. For this, there

is a special convention: -origin -0.

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -p cacgtt \

-id ’Pho4p_site’ -N 4 -origin -0

In the current example, since all sequences have exactly 800bp length, the result is identical

to the one obtained with -origin 801.

6.7 Matching degenerate patterns

As we said before, there are two forms of Pho4p binding sites: the protein has high affinity

for motifs containing the core CACGTG, but can also bind, with a medium affinity, CACGTT

39

sites. The IUPAC code for partly specified nucleotides allows to represent any combination of

nucleotides by a single letter.
A (Adenine)

C (Cytosine)

G (Guanine)

T (Thymine)

R = A or G (puRines)

Y = C or T (pYrimidines)

W = A or T (Weak hydrogen bonding)

S = G or C (Strong hydrogen bonding)

M = A or C (aMino group at common position)

K = G or T (Keto group at common position)

H = A, C or T (not G)

B = G, C or T (not A)

V = G, A, C (not T)

D = G, A or T (not C)

N = G, A, C or T (aNy)
Thus, we could use the string CACGTK to represent the Pho4p consensus, and search both

high and medium affinity sites in a single run of the program.

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -p cacgtk \

-id ’Pho4p_site’ -N 4 -origin -0

6.8 Matching regular expressions

Another way to represent partly specified strings is by using regular expressions. This not

only allows to represent combinations of letters as we did above, but also spacings of variable

width. For example, we could search for tandem repeats of 2 Pho4p binding sites, separated

by less than 100bp. This can be represented by the following regular expression:

cacgt[gt].{0,100}cacgt[gt]

which means

• cacgt

• followed by either g or t [gt]

• followed by 0 to 100 unspecified letters .0,100

• followed by cacgt

• followed by either g or t [gt]

Let us try to use it with dna-pattern

40

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -id ’Pho4p_pair’ \

-N 4 -origin -0 \

-p ’cacgt[gt].{0,100}cacgt[gt]’

Note that the pattern has to be quoted, to avoid possible conflicts between special characters

used in the regular expression and the unix shell.

6.9 Matching several patterns

TO match a series of patterns, you first need to store these patterns in a file. Let create a pattern

file:

cat > test_patterns.txt

cacgtg high

cacgtt medium

(then type Ctrl-d to close)
check the content of your pattern file.

more test_patterns.txt

There are two lines, each representing a pattern. The first word of each line contains the

pattern, the second word the identifier for that pattern. This column can be left blank, in which

case the pattern is used as identifier.

We can now use this file to search all matching positions of both patterns in the PHO se-

quences.

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -N 4 -origin -0 \

-pl test_patterns.txt

6.10 Counting pattern matches

In the previous examples, we were interested in matching positions. It is sometimes interesting

to get a more synthetic information, in the form of a count of matching positions for each

sequences. Try:

dna-pattern -i PHO_up800.fasta -format fasta \

-2str -N 4 -origin -0 -c \

-pl test_patterns.txt

With the option -c, the program returns the number of occurrences of each pattern in each

sequence. The output format is different: there is one row for each combination pattern-

sequence. The columns indicate respectively

41

1. sequence identifier

2. pattern identifier

3. pattern sequence

4. match count

An even more synthetic result can be obtained with the option -ct (count total).

dna-pattern -i PHO_up800.fasta -format fasta -2str \

-pl test_patterns.txt -N 4 -origin -0 -ct

This time, only two rows are returned, one per pattern.

6.11 Getting a count table

Another way to display the count information is in the form of a table, where each row repre-

sents a gene and each column a pattern.

dna-pattern -i PHO_up800.fasta -format fasta -2str \

-pl test_patterns.txt -N 4 -origin -0 -table

This representation is very convenient for applying multivariate statistics on the results (e.g.

classifying genes according to the patterns found in their upstream sequences)

Last detail: we can add one column and one row for the totals per gene and per pattern.

dna-pattern -i PHO_up800.fasta -format fasta -2str \

-pl test_patterns.txt -N 4 -origin -0 -table -total

42

7 Drawing graphs

7.1 feature-map

The program feature-map draws a graphical map of a list of features. A typical usage of

feature-map is to draw maps with the positions of regulatory motifs detected by pattern match-

ing programs such dna-pattern (string-based matching) or patser (matrix-based matching).

7.1.1 Converting dna-pattern matches into features

We will analyze the same PHO family as in the tutorial on pattern discovery. We will use

successively oligo-analysis , dna-pattern and convert-features to obtain a list of features

with the matching locations of the over-represented hexanucleotides.

1. Run oligo-analysis to detect over-represented hexanucleotides in the upstream sequences

of the PHO genes.

oligo-analysis -i PHO_up800.fasta -format fasta \

-v -l 6 -2str \

-return occ,proba -lth occ_sig 0 -bg upstream \

-org Saccharomyces_cerevisiae -sort \

-o PHO_up800_6nt_2str_ncf_sig0

2. Run dna-pattern to locate these patterns in the upstream sequences.

dna-pattern -i PHO_up800.fasta -format fasta \

-pl PHO_up800_6nt_2str_ncf_sig0 -origin -0 \

-o PHO_up800_6nt_2str_ncf_sig0_matches.tab

3. Run convert-features to convert these pattern matches into features.

convert-features \

-from dnapat -to ft \

-i PHO_up800_6nt_2str_ncf_sig0_matches.tab \

-o PHO_up800_6nt_2str_ncf_sig0_matches.ft

We will now play with this feature file, in order to obtain different drawings.

43

7.1.2 Basic feature maps

feature-map -format jpg \

-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \

-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg

You can now open the file PHO_up800_6nt_2str_ncf_sig0_matches.jpg with a web browser

or a drawing application.

This is a very simple representation: each feature is represented as a box. A specific color

is associated to each pattern (feature ID).

7.1.3 Refining the feature map

We will use a few additional options to add information on this feature map.

feature-map -format jpg \

-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \

-legend -scalebar -scalestep 50 \

-from -800 -to 0 -scorethick \

-title ’Over-represented 6nt in PHO upstream sequences’ \

-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg

This example illustrates some capabilities of feature-map:

• A title has been added to the drawing.

• A specific height is associated to each box, to reflect the score associated to the corre-

sponding feature.

• The scale bar indicates the location, in base pairs.

• A legend indicates the color associated to each pattern, as well as its score.

7.1.4 Map orientation

Feature-maps can be oriented horizontally or vertically. The horizontal orientation is usually

the most convenient, but when labels are attached to each feature, the vertical orientation

prevents them from expanding over each other.

feature-map -format jpg \

-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \

-legend -scalebar -scalestep 50 \

-from -800 -to 0 \

-vertical -symbol -label pos \

-title ’Over-represented 6nt in PHO upstream sequences’ \

-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg

In this representation, a label is written besides each feature box. In addition, a symbol has

been attached to each feature ID (pattern). This symbol improves the readability of the map,

and is convenient for monochrome printers.

44

7.1.5 Export formats

Feature-map can be exported in different formats, specified with the option -format.

jpg (default) The jpg format (also called jpeg) is a bitmap format recognized by all the web

browsers and most drawing applications. The jpg standard includes a compression pro-

tocol, so that the resulting images occupy a reasonable space on the hard disk.

png The png format is a bitmap format which gives a better color rendering than jpg. It is

not compressed, and requires more space for storage. It is recognized by most browsers.

ps The postscript (ps) format is a vectorial format, which ensures a high quality result on

printing devices. Postscript files can be opened with specific applications, depending on

the operating system (ghostview, ghostscript). This format is recommended for drawing

graphs to be included in publications.

7.1.6 HTML maps

A HTML map can be created, which allows to display dynamically the feature-map in a web

browser. When the users positions the mouse over a feature, the corresponding information is

displayed in the status bar.

feature-map -format jpg \

-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \

-legend -scalebar -scalestep 50 \

-from -800 -to 0 \

-scorethick -dots \

-title ’Over-represented 6nt in PHO upstream sequences’ \

-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg \

-htmap > PHO_up800_6nt_2str_ncf_sig0_matches.html

Notice that we used the option -dot to attach a colored filled circle to each feature box.

Open the file PHO_up800_6nt_2str_ncf_sig0_matches.html with a web browser (e.g. Netscape,

Mozilla, Safari). Position the mouse cursor over a feature (either the box or the filled circle

attached to it), and look the status bar at the bottom of the browser window.

7.1.7 Other options

The program feature-map includes a few other options.

feature-map -help

A complete description of their functionality is provided in the help pages.

feature-map -h

45

7.1.8 Feature converters

In the previous tutorial, we used the program convert-features to convert matches from dna-

pattern to features.

RSATincludes a few additional converters (these are older versions, and their functionalities

will progressively be incorporated in convert-features).

features-from-dssp extracts features from the output file of dssp (secondary structures)

features-from-fugue extracts features from the output file of fugue

features-from-gibbs extracts features from the gibbs motif sampler, developed by Andrew

Neuwald.

features-from-matins extracts features from the result of matinspector , developed in Thomas

Werner’s team.

features-from-msf converts a multiple alignment file from format msf for features.

features-from-patser extracts features from the result of the matrix-based pattern match-

ing patser , developed by Jerry Hertz.

features-from-sigscan extracts features from the results of the sigscan program.

features-from-swissprot extracts features from a Swissprot file.

If you need to draw features from any other type of program output, it is quite simple to

write your own converter. The feature-map input is a tab-delimited text file, with one row per

feature, and one column per attribute.

1. map label (eg gene name)

2. feature type

3. feature identifier (ex: GATAbox, Abf1_site)

4. strand (D for Direct, R for Reverse),

5. feature start position

6. feature end position

7. (optional) description

8. (optional) score

7.2 XYgraph

The program XYgraph is a simple utility which plots graphs from a series of (x,y) coordi-

nates.

46

7.2.1 Exercise: drawing features from patser

In the section on pattern-matching, we scanned all yeast upstream sequences with the PHO

matrix and stored the result in a file (PHO_matrix_matches_allup.txt).

With the programs features-from-patser and feature-map, draw a map of the sites found in

this analysis.

47

8 Markov models

Markov models allow to represent local dependencies between successive residues. A Markov

model of order m assumes that the probability to find the residue r at position i of a sequence

depends on the m preceding residues.

8.0.2 Transition frequency tables

Markov models are described by transition frequencies P(R|Wm), i.e. the probability to os-

berve residue R at a certain position, depending on the preceding word Wm of size m.

8.0.3 Oligonucleotide frequency tables

RSATallows to derive organism-specific Markov models from oligonucleotide frequency ta-

bles.

Pre-calibrated oligonucleotide frequency tables are stored in the form of oligonucleotide

frequency tables (see chapter on pattern discovery).

The calibration tables for Escherichia coli K12 can be found in the RSATdirectory oligo-

frequencies.

cd $RSAT/data/genomes/Escherichia_coli_K12/oligo-frequencies

ls -ltr

For example, the file 4nt_upstream-noorf_Escherichia_coli_K12-1str.freq.gz indicates the

tetranucleotide frequencies for all the upstream sequences of E.coli.

cd $RSAT/data/genomes/Escherichia_coli_K12/oligo-frequencies/

Have a look at the content of the 4nt frequency file

gunzip -c 4nt_upstream-noorf_Escherichia_coli_K12-1str.freq.gz | more

8.0.4 Converting oligonucleotide frequencies into transition

frequencies

Transition frequencies are automatically derived from the table of oligonucleotide frequencies,

but one should take care of the fact that, in order to estimate the transition frequencies for a

Markov model of order m, we need to use the frequency tables for oligonucleotides of size

m+1.

We can illustrate this by converting the table of dinucleotide frequencies into a transition

matrix of first order. For this, we can use the program convert-background-model .

48

convert-background-model \

-i 2nt_upstream-noorf_Escherichia_coli_K12-1str.freq.gz \

-from oligo-analysis -to tab

The output displays the transition matrix of a Markov model of order 1. Each row of the

transition matrix indicates the prefix Wm, and each column the suffix r. For a Markov model

of order 1, the prefixes are single residues.

We can now calculate a Markov model of 2nd order, from the table of trinucleotide frequen-

cies.

convert-background-model \

-i 3nt_upstream-noorf_Escherichia_coli_K12-1str.freq.gz \

-from oligo-analysis -to tab

The transition matrix contains 16 rows (prefixes, corresponding to dinucleotides) and 4

columns (the suffixes, corresponding to nucleotides).

The same operation can be extended to higher order markov models.

8.0.5 Bernoulli models

In contrast with Markov model, Bernoulli models assume that the residue probabilities are

independent from the position. By extension of the concept of Markov order, Bernoulli models

can be conceived as a Markov model of order 0. We can thus derive a Bernoulli model (m = 0)

from the nucleotide frequencies (m+1 = 1).

convert-background-model \

-i 1nt_upstream-noorf_Escherichia_coli_K12-1str.freq.gz \

-from oligo-analysis -to tab

The suffix column is now empty (there is no suffix, since the order is 0), and the matrix

simply displays 4 columns with the frequencies of A, C, G and T.

49

9 Matrix-based Pattern discovery

RSATdoes not (yet) contain programs for matrix-based pattern discovery. However, several

excellent programs exist for matrix-based pattern discovery, and it is often useful to combine

various approaches in order to compare the results and select the most consistent ones. We

show hereafter some examples of utilization for some of these programs:

• consensus , a greedy approach of pattern discovery, developed by Jerry Hertz.

9.1 consensus (program developed by Jerry Hertz)

An alternative approach for matrix-based pattern discovery is consensus, a program written by

Jerry hertz, an based on a greedy algorithm. We will see how to extract a profile matrix from

upstream regions of the PHO genes.

9.1.1 Getting help

As for RSAT programs, there are two ways to get help from Jerry Hertz’ proigrams: a detailed

manual can be obtained with the option -h, and a summary of options with -help. Try these

options and read the manual.

consensus -h

consensus -help

9.1.2 Sequence conversion

consensus uses a custom sequence format. Fortunately, the RSAT package contains a sequence

conversion program (convert-seq) which supports Jerry Hertz’ format. We will thus start by

converting the fasta sequences in this format.

convert-seq -i PHO_up800-noorf.fasta -from fasta -to wc -o PHO_up800-noorf.wc

9.1.3 Running consensus

Using consensus requires to choose the appropriate value for a series of parameters. We

found the following combination of parameters quite efficient for discovering patterns in yeast

upstream sequences.

50

consensus -L 10 -f PHO_up800-noorf.wc -A a:t c:g -c2 -N 10

The main options used above are

-L 10 we guess that the pattern has a length of about 10 bp;

-N 10 we expect about 10 occurrences in the sequence set. Since there are 5 genes in the fam-

ily, this means that we expect on average 2 regulatory sites per gene, which is generally

a good guess for yeast.

-c2 indicates consensus that the motif can be searched on both strands.

-A a:t c:g specifies the alphabet. Indeed, consensus can be used to extract motif from DNA

sequences, proteins, or a text based on an arbitrary alphabet. In thus tutorial we are only

interested in DNA sequences, we wpecify thus -A a:t c:g (the semicolons indicate

the complementary residues).

By default, several matrices are returned. Each matrix is followed by the alignment of the

sites on which it is based. Note that the 4 matrices are highly similar, basically they are all

made of several occurrences of the high afinity site CACGTG, and matrices 1 and 3 contain

one occurrence of the medium affinity site CACGTT. These matrices are thus redundant, and

it is generally appropriate to select the first one of the list for further analysis, because it is the

most significant matrix found by the program.

Also notice that these matrices are not made of exactly 10 sites each. consensus is able to

adapt the number of sites in the alignment in order to get the highest information content. The

option -N 10 was an indication rather than a rigid requirement.

We can use the options -pt 1 and -pf 1 to restrict the result to a single matrix (the most

significant one). To save the result in a file, we can use the symbol “greater than” (>) which

redirects the output of a program to a file.

consensus -L 10 -f PHO_up800-noorf.wc -A a:t c:g -c2 -N 10 -pf 1 -pt 1 \

> PHO_consensus_L10_N10_c2.matrix

(this may take a few minutes)

Once the task is achieved, check the result.

more PHO_consensus_L10_N10_c2.matrix

9.2 Random expectation

random-seq -format wc -r 10 -l 800 -bg upstream-noorf \

-org Saccharomyces_cerevisiae -ol 6 -lw 0 -o rand_Sc_ol6_n10_l800.wc

consensus -L 10 -f rand_Sc_ol6_n10_l800.wc -A a:t c:g -c2 -N 10 -pf 1 -pt 1 \

> rand_Sc_ol6_n10_l800_L10_N10_c2.matrix

51

10 Matrix-based pattern matching

10.1 Prerequisite

This tutorial assumes that you already followed the tutorial on Matrix-based pattern discovery.

To check this, list the files contained in directory with the results of your tutorial.

cd ${HOME}/practical_rsat

ls -1

You should find the following files.

PHO_up800-noorf.fasta

PHO_up800-noorf.wc

PHO_consensus_L10_N10_c2.matrix

10.2 patser (program developed by by Jerry Hertz)

We will now see how to match a profile matrix against a sequence set. For this, we use patser,

a program written by Jerry Hertz.

10.2.1 Getting help

help can be obtained with the two usual options.

patser -h

patser -help

10.2.2 Extracting the matrix from the consensus result file

Patser requires two input data:

• a sequence file (option -f),

• a position-specific scoring matrix (option -m), like the one we obtained in the previ-

ouschapter, with consensus.

52

The output from consensus can however not be used directly because it contains additional

information (the parameters of analysis, the sequences used to build the matrix, . . .) besides

the matrix itself. One possibility is to cut the matrix of interest and save it in a separate file.

To avoid manual editing, RSAT contains a program convert-matrix, which automaticaly

extracts a matrix from various file formats, including consensus.

convert-matrix -in_format consensus -i PHO_consensus_L10_N10_c2.matrix \

-return counts -o PHO_consensus_L10_N10_c2_matrix.tab

more PHO_consensus_L10_N10_c2_matrix.tab

10.2.3 Getting information about a matrix

The program convert-matrix includes several output options, which allow you to get additional

information about your matrix. For example you can obtain the degenerate consensus from a

matrix with the following options.

convert-matrix -v 1 -pseudo 1 -in_format consensus -i PHO_consensus_L10_N10_c2.matrix \

-return consensus

convert-matrix -v 1 -pseudo 1 -in_format consensus -i PHO_consensus_L10_N10_c2.matrix \

-return parameters

The program convert-matrix also allows to derive frequencies, weights or information

from the count matrix.

convert-matrix -v 1 -pseudo 1 -in_format consensus -i PHO_consensus_L10_N10_c2.matrix \

-return frequencies,weights,information

Additional information can be otbained with the on-line help for convert-matrix.

convert-matrix -h

10.2.4 Detecting Pho4p sites in the PHO genes

After having extracted the matrix, we can match it against the PHO sequences to detect puta-

tive regulatory sites.

patser -m PHO_consensus_L10_N10_c2_matrix.tab -f PHO_up800-noorf.wc -A a:t c:g -c -ls 9

By default, patser uses equiprobable residue frequencies. However, we can impose our own

priors in the following way.

patser -m PHO_consensus_L10_N10_c2_matrix.tab -f PHO_up800-noorf.wc -A a:t 0.325 c:g 0.175

53

We an also adapt our expected frequencies from pre-calibrated genome frequencies, for

example, residue frequencies from all the yeast upstream sequences.

Calculate prior frequencies

convert-background-model -from oligo-analysis -to patser \

-i ${RSAT}/data/genomes/Saccharomyces_cerevisiae/oligo-frequencies/1nt_upstream-noorf_Saccharomyces_cerevisiae-noov-2str.freq.gz

-o 1nt_upstream-noorf_Saccharomyces_cerevisiae-noov-2str_patser.tab

more 1nt_upstream-noorf_Saccharomyces_cerevisiae-noov-2str_patser.tab

patser -m PHO_consensus_L10_N10_c2_matrix.tab -f PHO_up800-noorf.wc -a 1nt_upstream-noorf_Saccharomyces_cerevisiae-noov-2str_patser.tab

10.2.5 Detecting Pho4p sites in all upstream regions

We will now match the PHO matrix against the whole set of upstream regions from the ≈ 6000

yeast genes. This should allow us to detect new genes potentially regulated by Pho4p.

One possibility would be to use retrieve-seq to extract all yeast upstream regions, and save

the result in a file, which will then be used as input by patser. Alternatively, in order to avoid

occupying too much space on the disk, we can combine both tasks in a single command, and

immediately redirect the output of retrieve-seq as input for patser. This can be done with the

pipe character ‖ as below.

patser result can be redirected to a file with the unix “greater than” (>) symbol. We will

store the result of the genome-scale search in a file PHO_matrix_matches_allup.txt.

retrieve-seq -type upstream -from -1 -to -800 \

-org Saccharomyces_cerevisiae \

-all -format wc -label id,name \

| patser -m PHO_consensus_L10_N10_c2_matrix.tab -ls 9 -A a:t c:g \

> PHO_consensus_L10_N10_c2_matrix.tab_matches_allup.txt

more PHO_consensus_L10_N10_c2_matrix.tab_matches_allup.txt

10.2.6 Interpretation of the P-value returned by patser

The program patser returns a column with the P-value of each mach. The P-value indicates

the probability of false-positive, i.e. the probability to consider a site as an instance of the

motif whereas it is not.

In other terms, the P-value represents the probability to observe a score (X) at least as high

as that of the current sequence segment (xi,i+w−1)

Pval = P(X ≥ xi,i+w−1|B)

where

X is a random variable representing the matrix score,

54

xi,i+w−1 is the score assigned to the sequence segment of width w starting at position i of the

sequence,

B is the background model.

We will evaluate the reliability of this P-value by analyzing the distribution of estimated

P-value for all the positions of a random sequence. By default, patser only calculates the P-

value for the weight scores > 0. We will add the option -M -999 to force patser to calculate

P-values for all the score.

The raw results from patser will be processed in the fillowing way:

1. features-from-patser converts the patser result into a tab-delimited file;

2. awk is used to cut the 8th column of this file, and convert the P-value into a significance

(sig=-log10(Pval))

3. classfreq calculates the distribution of ln(P-value);

4. XYgraph is used to draw an XY plot, representinf the theoretical P-value on the X axis,

and on the Y axis the frequency observed for this P-value in the random sequence.

random-seq -l 100000 -format wc \

| patser -A a:t c:g -m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \

| XYgraph -xcol 8 -ycol 9 -o PHO_consensus_L10_N10_c2_rand_score_versus_Pval.png

random-seq -l 100000 -format wc \

| patser -A a:t c:g -m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \

| awk -F ’\t’ ’{print -$9/log(10)}’ \

| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_sig_distrib.tab

more PHO_consensus_L10_N10_c2_rand_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_sig_distrib.tab \

-title1 ’Validation of P-values returned by patser’ \

-title2 ’Distribution of these P-values in random sequences’ \

-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ -ymax 1 \

-yleg1 ’inverse cumulative frequency’ -ylog 10 \

-xsize 800 -format png -lines \

-o PHO_consensus_L10_N10_c2_rand_sig_distrib.png

The image file can be opened with any graphical display application (e.g. xv), or with a

web browser (e.g. Mozilla).

The distribution almost perfectly follows a diagonal, indicating that the theoretical P-value

calculated by patser corresponds to the empirical one.

55

However, we should bear in mind that this P-value is based on the basis of a Bernoulli

model, i.e. it assumes that successive residues are independent from each other.

The previous test was based on th simplest possible model for generating the random se-

quence: equiprobable and independent nucleotides. We can thus wonder if the P-value will

still be valid with random sequences generated following a more complex model. We will

successively test two models:

• random sequences generated according to a Bernoulli model, with unequal residue fre-

quencies;

• random sequences generated according to a higher-order Markov model.

Bernoulli model with unequal frequencies

Generate a bg model for patser

convert-background-model -from oligo-analysis -to patser \

-i $RSAT/data/genomes/Saccharomyces_cerevisiae/oligo-frequencies/1nt_upstream-noorf_Saccharomyces_cerevisiae-1str.freq.gz

-o 1nt_upstream-noorf_Saccharomyces_cerevisiae-1str_freq.tab

Generate a random sequence with a Bernouli model

and analyze it with patser using the same expected residue frequencies

random-seq -l 100000 -format wc -bg upstream-noorf -ol 1 -org Saccharomyces_cerevisiae \

| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisiae-1str_freq.tab \

-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \

| awk -F ’\t’ ’{print -$9/log(10)}’ \

| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_Mkv0_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_Mkv0_sig_distrib.tab \

-title1 ’Validation of P-values returned by patser’ \

-title2 ’Distribution of these P-values in random sequences’ \

-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ -ymax 1 \

-yleg1 ’inverse cumulative frequency’ -ylog 10 \

-xsize 800 -format png -lines \

-o PHO_consensus_L10_N10_c2_rand_Mkv0_sig_distrib.png

Markov model of order 1

random-seq -l 100000 -format wc -bg upstream-noorf -ol 2 -org Saccharomyces_cerevisiae \

| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisiae-1str_freq.tab \

-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \

| awk -F ’\t’ ’{print -$9/log(10)}’ \

| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_Mkv1_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_Mkv1_sig_distrib.tab \

-title1 ’Validation of P-values returned by patser’ \

-title2 ’Distribution of these P-values in random sequences’ \

56

-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ -ymax 1 \

-yleg1 ’inverse cumulative frequency’ -ylog 10 \

-xsize 800 -format png -lines \

-o PHO_consensus_L10_N10_c2_rand_Mkv1_sig_distrib.png

Markov model of order 5

random-seq -l 100000 -format wc -bg upstream-noorf -ol 6 -org Saccharomyces_cerevisiae \

| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisiae-1str_freq.tab \

-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \

| awk -F ’\t’ ’{print -$9/log(10)}’ \

| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_Mkv5_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_Mkv5_sig_distrib.tab \

-title1 ’Validation of P-values returned by patser’ \

-title2 ’Distribution of these P-values in random sequences’ \

-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ -ymax 1 \

-yleg1 ’inverse cumulative frequency’ -ylog 10 \

-xsize 800 -format png -lines \

-o PHO_consensus_L10_N10_c2_rand_Mkv5_sig_distrib.png

10.2.7 Score distributions in promoter sequences

retrieve-seq -all -noorf -org Saccharomyces_cerevisiae -format wc \

| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisiae-1str_freq.tab \

-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \

| awk -F ’\t’ ’{print -$9/log(10)}’ \

| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_allup_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_allup_sig_distrib.tab \

-title1 ’Validation of P-values returned by patser’ \

-title2 ’Distribution of these P-values in random sequences’ \

-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ -ymax 1 \

-yleg1 ’inverse cumulative frequency’ -ylog 10 \

-xsize 800 -format png -lines \

-o PHO_consensus_L10_N10_c2_allup_sig_distrib.png

10.3 Scanning sequences with matrix-scan

The program matrix-scan allows to scan sequences with a position-specific scoring matrix

(PSSM), in the same way as patser. However, it presents some differences:

57

1. matrix-scan is much slower than patser , because it is a perl script (whereas patser is

compiled). However, for most tasks, we can affor dto spend a few minuts per genome

rather than a few seconds.

2. matrix-scan supports higher-order Markov chain models, whereas paters only sup-

ports Bernoulli models. The markov models can be defined from different sequence

sets: external sequences, input sequences, or even locally (adaptive background mod-

els).

3. matrix-scan calculates the P-value associated to each match for Bernouilli models as

well as higher-order Markov chain models.

10.3.1 Bernoulli background models

In matrix-scan , the background model can be calculated from the sequences to be scanned.

We use the option -bginput in association with -markov 0 to calculate a Bernoulli model from

the input sequences. The option -return bg_model displays in the output details on the calcu-

lated background model.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \

-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \

-lth score 0 -return sites,limits,bg_model \

-origin -0 \

-o PHO_consensus_L10_N10_c2_matches_mkv0.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv0.tab \

-format png -legend -scalebar -scalestep 50 -scorethick \

-o PHO_consensus_L10_N10_c2_matches_mkv0.png

10.3.2 Higher order (Markov) background models

Global background models

To use pre-calibrated background model, we use -bgfile option. Such models are available

from within RSAT (refer to Chapter 8 - Markov models for more details). As input for matrix-

scan , we use the models trained with oligo-analysis with the options "ovlp" and "1str".

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \

-i PHO_up800-noorf.wc -seq_format wc \

-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisiae/oligo-frequencies/2nt_upstream-noorf_Saccharomyces_cerevisiae-ovlp-1str.freq.gz\

-lth score 0 -return sites,limits,normw\

-origin -0 \

-o PHO_consensus_L10_N10_c2_matches_mkv1.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv1.tab \

-format png -legend -scalebar -scalestep 50 -scorethick \

-o PHO_consensus_L10_N10_c2_matches_mkv1.png

58

In this command, we have used Markov model of order 1, and in addition to the weight, the

output displays the normalised weight.

Adaptive Markov models

Adaptative background models are calculated in sliding windows centered on the scored seg-

ment. We use option -window to define the size of the window in combination with -markov

for the Markov order. The return field bg_residues returns the frequencies of the residues in

each background model and can be used to estimate the GC content in the surroundings of the

scored segment.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \

-i PHO_up800-noorf.wc -seq_format wc -window 200 -markov 2 \

-lth score 0 -return sites,limits,bg_residues\

-origin -0 \

-o PHO_consensus_L10_N10_c2_matches_mkv2.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv2.tab \

-format png -legend -scalebar -scalestep 50 -scorethick \

-o PHO_consensus_L10_N10_c2_matches_mkv2.png

10.3.3 P-values

One of the matrix-scan innovative features is the estimation of P-values for each match,

including for higher-order Markov chain background models. (see below "Computing the

theoretical score distribution of a PSSM" for more details on the calculation). For use with

adaptative Markov models, it is necessary to provide a threshold on the score to limit comput-

ing time. With the rank return field, the matches are sorted by decreasing significativity, and

we select only the 3 top scoring matches for each sequences.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \

-i PHO_up800-noorf.wc -seq_format wc -window 200 -markov 1 \

-lth score 0 -return sites,limits,pval,rank -uth rank 3\

-origin -0 \

-o PHO_consensus_L10_N10_c2_matches_mkv1_pval.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv1_pval.tab \

-format png -legend -scalebar -scalestep 50 -scorethick \

-o PHO_consensus_L10_N10_c2_matches_mkv1_pval.png

With non-adpatative background models, it is possible to select a threshold on the P-value.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \

-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \

-uth pval 0.0001 -return sites,limits,pval \

-origin -0 \

59

-o PHO_consensus_L10_N10_c2_matches_mkv0_pval.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv0.tab \

-format png -legend -scalebar -scalestep 50 -scorethick \

-o PHO_consensus_L10_N10_c2_matches_mkv0_pval.png

10.3.4 Observed distribution of scores and site enrichment

Distribution of scores

matrix-scan can return the observed distribution of scores instead of each individual matches.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \

-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \

-return distrib \

-o PHO_consensus_L10_N10_c2_distrib_mkv0.tab

We can now draw an XY plot of this distribution.

Draw the theoretical distribution

XYgraph -i PHO_consensus_L10_N10_c2_distrib_mkv0.tab \

-xcol 2 -ycol 3 \

-title1 ’PHO matrix’ \

-title2 ’Observed distribution of weight scores (Bernoulli model)’ \

-ymin 0 -yleg1 ’Probability’ \

-xsize 800 -xleg1 ’Weight score’ \

-format png -lines -legend \

-o PHO_consensus_L10_N10_c2_distrib_mkv0.png

Enrichment in sites

A typical use of the distribution of scores is to compare the number of occurences of a given

match in the input sequence to the expected number of occurences in the background model.

A Binomial test is run for each possible weight and a P-value is returned. This P-value repre-

sents the probability to observe at least the observed number of matches with a given weight

by chance in a sequence of the same length as the input sequence. If the difference between the

observed and expected occurences is significant, the matches with the given weight are consid-

ered as true positives. This approach estimates the over-representation of matches in the input

sequences and can be used to retrieve significant matches based on the over-representation of

these matches in the input sequence. In the following command, results are sorted by decreas-

ing significativity on the overrepresentation of the given scores.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \

-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \

-return occ_proba -lth occ_sig 0 -sort_distrib\

60

-o PHO_consensus_L10_N10_c2_occ_proba_mkv0.tab

XYgraph -i PHO_consensus_L10_N10_c2_occ_proba_mkv0.tab \

-xcol 2 -ycol 11 \

-title1 ’PHO matrix’ \

-title2 ’Site enrichment (Bernoulli model)’ \

-ymin 0 -yleg1 ’Over-representation significativity’ \

-xsize 800 -xleg1 ’Weight score’ \

-format png -lines -legend \

-o PHO_consensus_L10_N10_c2_occ_proba_mkv0.png

10.3.5 Scanning sequences with multiple matrices

matrix-scan can scan sequences with multiple motifs at a time. There are 3 ways to pro-

vide several matrices : (i) by calling repeatedly -m option, (ii) by providing a file containing

multiple sequences, (iii) bu using -mlist option to provide a list of matrices filenames.

We will now work with the motifs describing the binding sites of Met31p and Met4p tran-

scription factors that are involved in the regulation of methionine metabolism in the yeast

Saccharomyces cerevisiae (Gonze et al, 2005).

First, we will retrieve the promoter sequences of the methionine-responding genes of the

following list with retrieve-seq (refer to the Chapter Retrieve sequences if necessary).

MET8

MET32

MET18

MET30

MET28

MET6

MET10

MET13

MET3

ECM17

MET14

MET1

MET17

VPS33

MET2

ZWF1

MET4

MET22

MET7

MET31

MET12

MET16

The sequences should be in a file named MET_up800-noorf.fasta.

Copy the following matrices describing the MET motifs in a file named MET_matrices.tab.

61

; MET4 matrix, from Gonze et al. (2005). Bioinformatics 21, 3490-500.

A | 7 9 0 0 16 0 1 0 0 11 6 9 6 1 8

C | 5 1 4 16 0 15 0 0 0 3 5 5 0 2 0

G | 4 4 1 0 0 0 15 0 16 0 3 0 0 2 0

T | 0 2 11 0 0 1 0 16 0 2 2 2 10 11 8

//

; MET31 matrix, from Gonze et al. (2005). Bioinformatics 21, 3490-500.

A | 3 6 9 6 14 18 16 18 2 0 0 0 1 3 8

C | 8 3 3 2 3 0 1 0 13 2 0 1 0 3 6

G | 4 3 4 8 0 0 1 0 2 0 17 1 17 11 1

T | 3 6 2 2 1 0 0 0 1 16 1 16 0 1 3

Individual matches

We can search for individual matches with the 2 matrices, with a threshold on the P-value. This

threshold is particularly important when dealing with multiple matrices. Indeed, matrices may

be very different in terms of size or information content, leading to very different score ranges.

Putting a threshold on the score may thus return many false positive predictions for one of the

matrices. By putting a threshold on the P-value, the threshold is coherent for all matrices

and results are not biased by the differences in weight ranges. Here we only report the 3 top

scoring sites for each matrix in each sequences with the option -rank_pm.

matrix-scan -m MET_matrices.tab -consensus_name \

-i MET_up800-noorf.fasta -bginput -markov 0\

-return sites,pval,rank,limits -uth pval 1e-04 -uth rank_pm 3 \

-origin -0 \

-o MET_3topsites_matches_mkv0.tab

feature-map -i MET_3topsites_matches_mkv0.tab \

-format png -legend -scalebar -scalestep 50 -scorethick \

-o MET_3topsites_matches_mkv0.png

Sites enrichment

It is also possible to detect the most significant matches, as regards to their enrichment in the

input sequence, compared to the background. For each matrix, the 2 most significant scores

are returned by using the threshold -uth occ_sig_rank 2.

matrix-scan -m MET_matrices.tab -consensus_name \

-i MET_up800-noorf.fasta -bginput -markov 0\

-return occ_proba -uth occ_sig_rank 2 -sort_distrib\

-o MET_2topscores_occ_mkv0.tab

62

10.3.6 Detecting Cis-Regulatory element Enriched Regions

(CRER)

An extension of the concept of enrichement of sites in the input sequence is the detecttion

of CRER, which are local over-representation of matches. The enrichment is calculated in

windows of variable sizes, which may be overlapping. This concept is to be related to the

search of homo- and hetero-typic modules, also known as CRM (Cis-Regulatory Modules).

The rationale is that matches that are located in a region containing multiple predictions are

more likely to be binding sites.

Two options are required for CRER search : a threshold on P-value and a maximum size

for the CRER (typically between 150 and 300 bp).

matrix-scan -m MET_matrices.tab -consensus_name \

-i MET_up800-noorf.fasta \

-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisiae/oligo-frequencies/2nt_upstream-

noorf_Saccharomyces_cerevisiae-ovlp-1str.freq.gz \

-uth pval 0.0001 -origin 0 -decimals 1 \

-return crer,normw,rank \

-uth crer_size 200 \

-o MET_crer_mkv1.tab

feature-map -i MET_crer_mkv1.tab \

-format png -legend -scalebar -scalestep 50 -scorethick \

-o MET_crer_mkv1.png

To view individual site matches over CRERs, we use -return sites,crer. The result file is

only intended for display with feature-map since the columns for sites and crer return types

are differents.

matrix-scan -m MET_matrices.tab -consensus_name \

-i MET_up800-noorf.fasta \

-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisiae/oligo-frequencies/2nt_upstream-noorf_Saccharomyces_cerevisiae-ovlp-1str.freq.gz

-uth pval 0.0001 -origin 0 -decimals 1 \

-return crer,sites,limits \

-uth crer_size 200 \

-o MET_crer_sites_mkv1.tab

feature-map -i MET_crer_sites_mkv1.tab \

-format png -legend -scalebar -scorethick -symbol \

-o MET_crer_sites_mkv1.png

10.4 Computing the theoretical score distribution of a

PSSM

The program matrix-distrib returns the probability to observe a given score, on the basis of

the theoretical model proposed by Staden (1989). For Bernoulli (Markov order 0) background

63

models, the distribution of scores is computed with the algorithm described by Bailey (Bioin-

formatics, 1999). For Markov background models with higher orders, we have extended this

algorithm to take into account the dependencies between residues.

Calculat the theoretical distribution of a PSSM

matrix-distrib -v 1 -matrix_format consensus \

-m PHO_consensus_L10_N10_c2.matrix \

-decimals 2 \

-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisiae/oligo-frequencies/2nt_upstream-noorf_Saccharomyces_cerevisiae-ovlp-1str.freq.gz

-o PHO_consensus_L10_N10_c2_distrib_theor.tab

Note that we restricted here the precision to 2 decimals. Indeed, for computational reasons,

the computing time increases exponentially with the number of decimals. You can experiment

this by changing the number of decimals, and you will see that the computation time increases

drastically above 3 decimals.

In any case, for most practical applications, 2 decimals are more than enough for the detec-

tion of matches with matrices (the first decimal would even be sufficient).

We can now draw an XY plot of this distribution.

Draw the theoretical distribution

XYgraph -i PHO_consensus_L10_N10_c2_distrib_theor.tab \

-xcol 1 -ycol 2 \

-title1 ’PHO matrix’ \

-title2 ’Theoretical distribution of weight scores’ \

-ymin 0 -yleg1 ’Probability’ \

-xsize 800 -xleg1 ’Weight score’ \

-format png -lines -legend \

-o PHO_consensus_L10_N10_c2_theor_distrib.png

The raw distribution is not very informative. A more interpretable information will be pro-

vided by the inverse cumulative distribution, which indicates, for each score, the probability

to observe by chance a site with at least that score. This distribution can be considered as an

estimation of the P-value, i.e. the risk of error if we consider as significant a site with a given

score.

Draw the theoretical distribution

XYgraph -i PHO_consensus_L10_N10_c2_distrib_theor.tab \

-xcol 1 -ycol 2,4 \

-title1 ’PHO matrix’ \

-title2 ’Theoretical distribution of weight scores’ \

-ymin 0 -ymax 1 -yleg1 ’Probability’ \

-xsize 800 -xleg1 ’Weight score’ \

-format png -lines -legend \

-o PHO_consensus_L10_N10_c2_Pval_distrib.png

As expected, the distribution of P-value rapidly decreases with increasing values of scores.

for the purpose of deteecting binding sites, the most intersting part of this distribution is the

64

right tail, corresponding to high values of weight scores. We would like to display this tail

with a higher detail, in order to distinguish the low P-values. A convenient way to do this is to

use a logarithmic scale for the Y axis.

Draw the theoretical distribution

XYgraph -i PHO_consensus_L10_N10_c2_distrib_theor.tab \

-xcol 1 -ycol 2,4 \

-title1 ’PHO matrix’ \

-title2 ’Theoretical distribution of weight scores’ \

-ymin 0 -ymax 1 -ylog -yleg1 ’Probability’ \

-xsize 800 -xleg1 ’Weight score’ \

-format png -lines -legend \

-o PHO_consensus_L10_N10_c2_Pval_distrib_Ylog.png

10.4.1 Estimating the quality of a PSSM

The program matrix-quality can be used to estimate the quality of a position-specific scoring

matrix, by comparing the distribution of scores observed in a positive set (typically, the known

binding sites for a transcriptiojn factor), and a negative set (for example, a set of randomly

selected promoter sequences).

65

11 Evaluating the quality of

position-specific scoring matrices

11.1 Prerequisite

This tutorial assumes that you alredy followed the tutorial on Matrix based pattern matching.

11.2 Why is important to estimate the quality of a

matrix?

Position-specific scoring matrices are frequently used to predict transcription factor binding

sites in genome sequences. At this point, following the tutorial, you have been able to built

a matrix from a set of known binding sites for a transcription factor, and use it to detect new

putative binding sites on different promoters, so the result is already there. But! What if there

was a problem with the original set of biding sites? Where did they came from? Is the original

experiment 100% reliable?

Matrices are generally built from a collection of experimentally characterized binding sites,

databases as RegulonDB or TRANSFAC gather all the information reported in the literature

about the interaction between Transcription Factors and their respective binding sites, on those

databases you can get the sequences to built a matrix or download one or several available

matrices for your favourite TF.

However, even if you built your own matrix or if you got it from a database, their reliability

to predict novel binding sites is highly variable, due to the small number of training sites or

the inappropriate choice of parameters when building the matrix.

There are some classical theoretical measures to describe some properties of matrices, but

this measures may fail to predict the behaviour in real situations, cause they don’t tell if the

new detected putative sites might have a biological relevance.

So at the end in order to know if we can trust the sites we detected with pattern matching

methodologies we need to:

• Know the composition of the matrix.

• Analyse the sites used to build the matrix.

• Analyze the behaviour of the matrix in a real situation.

• Analyze a negative control of the matrix and it’s behavior in a real situation.

66

All this procedure can be done with the program matrix-quality and a correct tune of it’s

parameters. This is done combining theoretical and empirical score distributions to assess the

predictive capability of matrices.

As a example we are going to use the matrix for the E. coli K12 transcriptional factor LexA,

which is available at RegulonDB.

AC ECK12_ECK120012770_LexA.20.cons

XX

ID ECK12_ECK120012770_LexA.20.cons

XX

P0 A T C G

1 12 3 3 5

2 0 1 22 0

3 0 23 0 0

4 0 0 0 23

5 1 14 2 6

6 12 5 3 3

7 1 15 5 2

8 12 5 2 4

9 6 15 2 0

10 10 6 5 2

11 7 11 5 0

12 13 5 2 3

13 4 12 4 3

14 12 2 7 2

15 0 0 23 0

16 23 0 0 0

17 0 0 0 23

18 1 13 8 1

19 12 6 2 3

20 6 13 2 2

21 11 8 3 1

XX

//

Please copy this matrix and paste it on a file. For the propose of the chapter the file will be

named LexA_matrix.transfac.

11.3 How to estimate the theoretical distribution of a

matrix?

As has been explained in the previous chapter matrix-scan gives a Weight Score (WS) to each

site, and we usually take this weigth or statistics based on it to decide if the site is good or if

it’s not.

However, this WS can be misleading, because its range depends on the matrix width and

information content. For example: The relevance of a site with a WS of 15 detected with a

matrix having a WS range of -5 to 40 is not the same as if the range was -5 to 16.

67

So depending on the WS range you can decide whether a WS for a given site is relevant.

One way to calculate all the possible Weight Scores that a matrix can give, is to generate an

endless random sequence , and search for sites with matrix-scan but without any threshold, so

it will return ALL the evaluated sites, which means a lot of sites with negative WS and few

ones with positives WS. This way you’ll see not only the highestt and lowest WS, but also

you’ll be able to see the frequency of each score.

As a little test we generate a long random sequence based on E. coli K12 genome composi-

tion.

random-seq -l 1000 -bg upstream -org Escherichia_coli_K12 -ol 2 \

-o random_seq_E.coliK12.fas

And now we run search sites with our matrix using matrix-scan without any thresholds.

matrix-scan -m LexA_matrix.transfac -i random_seq_E.coliK12.fas \

-bgfile 2nt_upstream-noorf_Escherichia_coli_K12-1str.freq.gz \

-matrix_format transfac \

-o LexA_bs_search_random_seq.tab

So now we can count how many times does a WS appers in a random enviroment just

by chance, remeber the count will change a bit for each generated random sequence and the

variation in the count will decreas as we increase sequence length.

But instead of doing this manually trying to simulate an infinite randome sequence and scan

it, which will take a lot of time, we will use matrix-distrib and this program will calculate the

number of times a score should appear in an endless random sequence, and oviusly this result

contains as well the range for possible Weight Scores (WS).

First of all we will need to convert the matrix in to tab format.

convert-matrix -i LexA_matrix.transfac \

-from transfac -to tab \

-return counts,parameters,consensus

-o LexA_matrix.tab

matrix-distrib -m LexA_matrix.tab \

-bgfile 2nt_upstream-noorf_Escherichia_coli_K12-noov-2str.freq.gz \

-o LexA_matrix_distrib.tab

So this simulates a search for sites in an endless random sequence based on the genome of

E. coli K12.

In this file you can see the frequency (probability) of finding each value of WSs, or in other

words we have the probaility distribution of weight scores .

XYgraph -i LexA_matrix_distrib.tab -format png \

-xcol 1 -ycol 2 \

-o LexA_matrix_probability_distrib.png

68

Now we know the range of WS goes from -40 to 17.7, and in the graph showing the prob-

ability distribution of scores you can se the probability of having a positive score is low, and

since the range goes up to 17 a WS of 15 for a site in the genome, seams to be a good score,

at least in theory.

But this graph is only for one matrix, and is a matrix for one of the transcriptional factors

with the most conserved binding sites, other matrices based in fewer and/or less conserved

sites will have a different shape, e.g. a widder distribution.

In the output file from matrix-distrib we also have the inverse cumulative distribution of

WS at column num. 4 so we can know how frequent (probable) is to find a WS of a given X

value or higher, which is the definition of the P-value.

XYgraph -i LexA_matrix_distrib.tab -format png \

-xcol 1 -ycol 2,4 \

-o LexA_matrix_probability_distrib_invcum.png

But we want to be able to se the probabilities for the higher WSs, for this we will apply log

to the y-axis.

XYgraph -i LexA_matrix_distrib.tab -format png \

-xcol 1 -ycol 2,4 -ylog \

-o LexA_matrix_probability_distrib_invcum_ylog.png

e.g. As you see in the graph to find a WS of 10 or higher than 10 has a P-value of aprox. 1e5,

which seems excellent at first sight. However, with this cutoff, we would still expect about 42

false positives if we scan the whole genome of E. coli (4.2Mb) on both strands.

Remember each matrix has a specific theoretical distribution, depending on the particular

frequency of each residue in each column.

11.4 How to compare the theoretical distribution with

the scores of the known binding sites?

In order to estimate the capability of a matrix to distinguish bona fide binding sites from

genome background, matrix-quality implements a method that relies on the combined analysis

of theoretical and empirical score distributions in positive and negative control sets.

The sensitivity of a matrix is the fraction of correct sites detected above a score threshold.

Sensitivity is defined as

Sn = T P/(T P+FN) (11.1)

where TP is the number true positives (i.e. annotated sites with WS above a threshold), and

FN is the number of false negatives (i.e. annotated sites scoring below that threshold).

The logic positive control should be the set of sequences that have been used to build the

matri, if we scan this set with the matrix using matrix-scan and calculate the invers cumulative

frequency of scores they should show a high scores distribution.

69

matrix-quality calculates the theoretical score distribution and also the distribution of scores

on diferent set of sequences.

From RegulonDB we download the set of sites used in the aligment form which the matrix

was generated.

matrix-quality -v 1 -m LexA_matrix.transfac \

-seq matrix_sites LexA.fna \

-bgfile 2nt_upstream-noorf_Escherichia_coli_K12-ovlp-2str.freq.gz \

-o matrix-quality_tutorial \

-matrix_format transfac

matrix-quality generates various files, we are going to describe them step by step in order

to show how they should be interpretate.

Take a view on the graph file matrix-quality_tutorial_score_distrib_compa.png. The blue

line in the graphs is the same theoretical distribution we saw in the previous chapter, now

we can look the distribution of scores for the set of known binding sites, and we can see this

distribution has an important number of positive scores.

However, this matrix is probably over-fitted to these particular sites, since each of them is

in the alignment from which the matrix is derived. For an unbiased estimate of sensitivity,

we would ideally need two separate collections of sites: one for build-ing the PSSM, another

for testing it. Unfortunately, for most tran-scription factors, very few binding sites are known.

In order to ensure an independent assessment whilst minimizing the loss of information, the

program matrix-quality performs a Leave-One-Out (LOO) validation, iteratively discarding

one annotated site, re-building the matrix, and scoring the left-out site with the new matrix.

The program also discards multiple copies of identical sites, which would otherwise induce

the same kind of bias.

The LOO curve (green) provides an unbiased estimate of the sensitivity of a matrix, and the

difference with the matrix sites curve indicates the level of over-fitting to the training sites.

11.5 Distribution in full collections of promoters

Matrices are frequently used to predict transcription factor binding sites in genome sequences,

for this what we want to know is the behaviour of the matrix in a real situation.

As a example we will take the complete set of upstream regions of the E.coli K12 genome.

retrieve-seq -org Escherichia_coli_K12 -tipe upstream \

-all -feattype CDS -noorf \

-o Escherichia_coli_K12_upstream-noorf.fas

With matrix-quality we can have the distriution of WSs of the matrix in a given sequence set,

and we will give thsi set to the program with the same command we used for the matrix_sites

set.

70

matrix-quality -v 1 -m LexA_matrix.transfac \

-matrix_format transfac \

-seq matrix_sites LexA.fna \

-bgfile 2nt_upstream-noorf_Escherichia_coli_K12-ovlp-2str.freq.gz \

-o matrix-quality_tutorial \

-seq allup Escherichia_coli_K12_upstream-noorf.fas

From the previous section we know now the range of WS we should expect from real sites

we know the expected scores are the ones with less frequency, since this might be difficult

to analyze on a normal scale the program gives the same graph with a y-log axis matrix-

quality_tutorial_score_distrib_compa_logy.png

In this graph we can see the light blue line corresponding to the inverse distribution of

scores from the matrix-scan search over the complete set of upstream regions from E. coli

K12 genome. At higher weights the curves separate, revealing a small number of sites with a

much higher score than expected by chance (WS>= 9), supposedly corresponding to bona fide

binding sites (see previous section). The abrupt separation between the two curves results in a

plateau-like shape in the high score range, suggesting that the matrix efficiently distinguishes

binding sites from the background. Now we need a negative control to probe our statment.

11.6 Negative control with random sequences

An ideal negative control would be a set of sequences where the TF of interest does not bind.

Unfortunately, experimental results of this type are generally not available. An alternative

is to select a random set of promoters, but this could accidentally include some real binding

sites. Another possibility is to generate random sequences using some background model (e.g.

Markov chain).

For this we are going to simulate a set of E. coli K12 upstream regions using 3000 random

sequences of length 2000.
‘

random-seq -l 200 -n 3000 -bg upstream -org Escherichia_coli_K12 -ol 2 \

-o random_seq_upstream_E.coliK12.fas

and we will add this new set to the matrix-quality command.

matrix-quality -v 1 -m LexA_matrix.transfac \

-matrix_format transfac \

-seq matrix_sites LexA.fna \

-bgfile 2nt_upstream-noorf_Escherichia_coli_K12-ovlp-2str.freq.gz \

-o matrix-quality_tutorial \

-seq allup Escherichia_coli_K12_upstream-noorf.fas \

-seq random random_seq_upstream_E.coliK12.fas

However, nothing guarantees that Markov chains provide realistic models of biological se-

quences.

71

11.7 Negative controls with permuted matrices

To circumvent the common problems to obtain a negative control, matrix-quality supports

an original type of negative controls by scanning input sequences with randomized matrices,

obtained by permuting the columns of the original matrix. This presents the advantage of

preserving important characteristics of the PSSM such as residue composition (sum of each

row), number of sites (sum of any column), total information content, and even the complete

theoretical score distribution (for Bernoulli models).

Now we are going to add a permutation instruction for each of our sequence sets, we will

make 3 permutations of the matrix and scan with this 3 matrices the matrix_sites set, and we

will make 5 permutatios for the other two sets.

matrix-quality -v 1 -m LexA_matrix.transfac \

-matrix_format transfac \

-seq matrix_sites LexA.fna \

-bgfile 2nt_upstream-noorf_Escherichia_coli_K12-ovlp-2str.freq.gz \

-o matrix-quality_tutorial \

-seq allup Escherichia_coli_K12_upstream-noorf.fas \

-seq random random_seq_upstream_E.coliK12.fas \

-perm 3 matrix_sites

-perm 5 allup

-perm 5 random

We scanned all the promoters of E. coli using 5 randomized versions of the matrix (in total,

5Mb of sequences were scanned on both strands). The cyan curve closely follows the blue

curve for low scores (weight <= 7), without showing any separation at high scores. This

confirms that the plateau observed for the original non-permuted matrix corresponds to sites

specifically found in the genome by this matrix.

The column-permuted distribution can be considered an empirical estimate of the FPR.

This distribution is however estimated from scanning a few Mb of sequences, and its precision

is thereby limited. To combine the advantages of theoretical and empirical FPR curves, we

propose the following strategy: (1) scan a representative set of biological sequences with

column-permuted matrices; (2) if the results fit the theoretical distribution, use the latter to

estimate the P-value of predicted sites.

11.8 ROC curves indicate the trade-off between

sensitivity and false positive rate

We still have tow output figures we have not described yet.

The Receiver Operating Characteristic (ROC) curve is a standard representation of the trade-

off between False Positive Rate (FPR) and sensitivity. You can see the ROC curve displayed

for each distribution of scores in the figure matrix-quality_tutorial_score_distrib_compa_roc.png

However, the risk of false positive applies to every position of the scanned sequences. Even

with an apparently low FPR, the actual number of FP can be very high when scanning a

genome. For example, the E. coli promoters scanned on both strands represent more than

72

1 million scored positions, so that an FPR of 0.001 would return 1,159 FP on all E. coli

promoters. Consequently, regular ROC curves are of no use for estimating the discriminatory

power of a matrix. For the same reason, the Area Under the Curve (AUC), classically used to

assess the quality of ROC curves, is ineffective. Indeed, this area is obtained by integrating

the sensitiv-ity over the full range of FPR from 0 to 1, yet genome-wide predictions performed

with an FPR of 90%, 50%, 10% or even 1% are not useful.

To emphasize the lower, more relevant, range of FPR, we draw ROC curves with a loga-

rithmic abscissa (matrix-quality_tutorial_score_distrib_compa_roc_xylog.png), emphasiz-

ing the smaller FPR values. For example, for TrpR, we estimate that 70% sensitivity can be

reached at a cost of 1 FP per Mb. Note that given the LOO procedure, our estimate of sensi-

tivity is unbiased, but it is based only on five non-redundant sites, thus being of questionable

robustness (it could change if new binding sites become available).

For the LexA matrix, built from 23 binding sites, the ROC curves shows a gradual increase:

for a sensitivity of 50%, the expected FPR remains reasonably low (FPR0.5 = 1.3x10−5),

whereas collect-ing 90% of the sites would include almost 1FP per 100bp (FPR0.9 = 8.3x10−3).

73

12 Generating random sequences

Th program random-seq allows to generate random sequences wih different random models.

It supports Bernoulli models (independence between successive residues) and Markov mod-

els of any order. Markov models are generally more suitable to represent biological sequences.

We will briely illustrate different ways to use this program.

12.1 Sequences with identically and independently

distributed (IID) nucleotides

random-seq -l 200 -r 20 -o rand_L200_N20.fasta

We can now check th residue cmposition of this random sequence.

oligo-analysis -v 1 \

-i rand_L200_N20.fasta \

-l 1 -1str -return occ,freq \

-o rand_L200_N20_1nt-1str.tab

12.2 Sequences with nucleotide-specific frequencies

In general, the residue composition of biological sequences is biased. We can impose residue-

specific probabilities for the random sequence generation.

random-seq -l 200 -r 20 -a a:t 0.3 c:g 0.2 \

-o rand_L200_N20_at30.fasta

oligo-analysis -v 1 \

-i rand_L200_N20_at30.fasta \

-l 1 -1str -return occ,freq \

-o rand_L200_N20_at30_1nt-1str.tab

12.3 Markov chain-based random sequences

The random generator random-seq supports Markov chains of any order (as far as the cor-

responding ferquency table has previously been calculated). The Markov model is specified

by indicating an oligonucleotide frequency table. The table of oligonucleotides of length k

is automatically converted in a transition table of order m = k − 1 duing the execution of

random-seq .

74

random-seq -l 200 -r 20 \

-expfreq $RSAT/data/genomes/Escherichia_coli_K12/oligo-frequencies/3nt_upstream-noorf_Escherichia_coli_K12-1

-o rand_L200_N20_mkv2.fasta

A simpler way to obtain organism-specific Markov models is to use the options -bg and

-org of random-seq .

This command generates random sequences with a Markov model of order 2,

calibrated on all the non-coding upstream sequences of E.coli.

random-seq -l 200 -r 20 \

-org Escherichia_coli_K12 -bg upstream-noorf -ol 3 \

-o rand_L200_N20_mkv2.fasta

75

13 Pattern comparisons

TO BE WRITTEN

13.1 Comparing patterns with patterns

compare-patterns

13.2 Comparing discovered patterns wirth a library of

TF-binding consensus

Let us suppose that we dispose of a collection of experimentally characterized binding con-

sensus for the organism of interest, in a file called known_consensus.pat.

compare-patterns -v 1 \

-file1 dyads.tab \

-file2 RegulonDB_sites.tab \

-return weight,offset,strand,length,Pval,Eval_p,sig_p,Eval_f,sig_f,id,seq \

-2str -lth weight 6 \

-o dyads_vs_RegulonDB.tab

76

14 Comparing classes, sets and

clusters

TO BE WRITTEN

77

15 Comparative genomics

15.1 Genome-wise comparison of protein sequences

In this section, we explain how to use the program genome-blast , which runs the sequence

similarity search program BLAST to detect significant similarities between all the proteins of

a set of genomes.

This operation can take time, and the result tables occupy a considerable amount of space

on the hard disk. For this reason, the RSATdistribution does thus not include the complete

comparison of all genomes against all other ones, but is restricted to some model genomes

(Escherchia coli K12 versus all bacteria, Saccharomyces cerevisiae against all Fungi, ...).

Depending on your organism of interest, you might wish to perform additional comparisons

for your own purpose. In this section, we explain how to compute the similiraty tables between

a query organism (e.g. Mycoplasma pneumoniae) and a reference taxon (e.g. all Bacteria).

In order to install the tables of similarities between gene products in RSAT, you need writing

permissions in the directory $RSAT/data. If this is not the case, ask your system administrator

to do it for you.

15.1.1 Applying genome-blast between two genomes

As a first test, we will use genome-blast to compare all the gene products (proteins) of a

query organism (e.g. Mycoplasma pneumoniae) against all the gene products of a reference

organism (e.g. Bacillus subtilis).

This protocol assumes that the two organisms are already installed on your RSATsite, as

explained in the installation guide.

We will perform in two steps:

1. Use the program formatdb (which is part of the BLAST distribution) to create a

BLAST-formatted structure (the “database”) with all proteins of the reference organ-

ism (Bacillus subtilis).

2. Use the program blastall (part of the BLAST distribution) to detect similarities be-

tween each protein of the query organism (Mycoplasma pneumoniae) and the reference

organism.

Formatting the BLAST DB

This DB formatting step is very efficient, it should be completed in a few seconds.

78

genome-blast -v 1 -task formatdb \

-q Mycoplasma_pneumoniae \

-db Bacillus_subtilis

The result is found in the data directory containing Bacillus subtilis. A new directory

blastdb has been created, which contains the BLAST-formatted database with all the proteins

of the reference organism.

ls -ltr $RSAT/data/genomes/Bacillus_subtilis/blastdb

These are binary files, that you should in principle not open as such.

Searching similarities

The program blastall compares all the sequences of an input set against all the sequences

of a database (the one we just created above). The program genome-blast generates the

appropriate blastall command to find the BLAST database directory, and query it with the

proteins of the query organism.

genome-blast -v 1 -task blastall \

-q Mycoplasma_pneumoniae \

-db Bacillus_subtilis

This task takes a bit less that one minute for Pneumoniae (because we chose a very small

genomes), and can take around 10 minutes for medium-sized bacterial genomes (4,000 genes).

Note that the blastall command is written in the verbosity message. If you have specific

reasons to customize this command, you can adapt it to apply different parameters.

Searching reciprocal similarities

One classical orthology criterion (which is not perfect but has practical advantages) is to select

the bidirectional best hits as candidate orthologs.

For this, we need to run the reciprocal blast, i.e. using Bacillus subtilis as query organism,

and Mycoplasma genitalium as reference organism.

Note that you can run the two BLAST commands (formatdb and blastall) in a single shot,

by specifying multiple tasks for genome-blast .

genome-blast -v 1 -task formatdb,blastall \

-q Bacillus_subtilis \

-db Mycoplasma_pneumoniae

We can now perform a quick test: select the bidirectional best hit (-rank 1) for the gene

NP_109706.1.

get-orthologs -q NP_109706.1 -uth rank 1 -return all \

-org Mycoplasma_pneumoniae -taxon Bacillus_subtilis

79

15.1.2 Applying genome-blast between a genome and a taxon

Generally, we want to compare a query organism to all the organisms of a given taxon (the

reference taxon). This can be done with the option -dbtaxon.

As an example, we will BLAST all the proteins of Mycoplasma pneumoniae against all the

proteins of each species of Mollicutes.

genome-blast -v 1 -task formatdb,blastall \

-q Mycoplasma_pneumoniae \

-dbtaxon Mollicutes

And now the reciprocal search: BLAST all gene products of each bacteria of the taxon

Mollicutes against those of Mycoplasma pneumoniae.

genome-blast -v 1 -task formatdb,blastall \

-db Mycoplasma_pneumoniae \

-qtaxon Mollicutes

We can now retrieve the orthologs of a Mycoplasma pneumoniae gene (e.g. NP_109706.1)

in all Mollicutes.

get-orthologs -q NP_109706.1 -uth rank 1 -return all \

-org Mycoplasma_pneumoniae -taxon Mollicutes

15.2 Getting putative homologs, orthologs and

paralogs

In this section, I will explain how to use the program get-orthologs . This program takes

as input one or several query genes belonging to a given organism (the reference organism),

and return the genes whose product (peptidic sequence) show significant similarities with the

products of the query genes. The primary usage of get-orthologs is thus to return lists of

similar genes, not specialy orthologs. Additional criteria can be imposed to infer orthology.

In particular, one of the most common criterion is to select bidirectional best hits (BBH). This

can be achieved by imposing the rank 1 with the option -uth rank 1.

We will illustrate the concept by retrieving the genes whose product is similar to the protein

LexA of Escherichia coli K12, in all the Gammaproteobacteria. We will then refine the query

to extract putative orthologs.

15.2.1 Getting genes by similarities

get-orthologs -v 1 -org Escherichia_coli_K12 \

-taxon Gammaproteobacteria \

-q lexA -o lexA_orthologs_Gammaproteobacteria.tab

The result file is a list of all the Gammaproteobacterial genes whose product shows some

similarity with the LexA protein from E.coli K12.

80

...

#ref_id ref_org query

Sde_1787 Saccharophagus_degradans_2-40 b4043

CPS_0237 Colwellia_psychrerythraea_34H b4043

CPS_2683 Colwellia_psychrerythraea_34H b4043

CPS_1635 Colwellia_psychrerythraea_34H b4043

IL0262 Idiomarina_loihiensis_L2TR b4043

...

c5014 Escherichia_coli_CFT073 b4043

c3190 Escherichia_coli_CFT073 b4043

b4043 Escherichia_coli_K12 b4043

...

Each similarity is reported by the ID of the gene, the organism to which is belong, and the

ID of the query gene. In this case, the third column contains the same ID on all lines: b4043,

which is the ID of the gene lexA in Escherichia coli K12. It seems thus poorly informative,

but this column becomes useful when several queries are submitted simultaneously.

15.2.2 Obtaining information on the BLAST hits

The program get-orthologs allows to return additional information on the hits. The list of

supported return fields is obtained by calling the command with the option -help. For ex-

ample, we can ask to return the percentage of identity, the alignment length, the E-value and

the rank of each hit.

get-orthologs -v 1 -org Escherichia_coli_K12 \

-taxon Gammaproteobacteria \

-q lexA -o lexA_orthologs_Gammaproteobacteria.tab \

-return ident,ali_len,e_value,rank

Which gives the following result:

...

#ref_id ref_org query ident ali_len e_value rank

Sde_1787 Saccharophagus_degradans_2-40 b4043 65.33 199 1e-68 1

CPS_0237 Colwellia_psychrerythraea_34H b4043 65.69 204 6e-75 1

CPS_2683 Colwellia_psychrerythraea_34H b4043 33.94 109 1e-10 2

CPS_1635 Colwellia_psychrerythraea_34H b4043 34.12 85 1e-06 3

IL0262 Idiomarina_loihiensis_L2TR b4043 66.83 202 1e-75 1

...

c5014 Escherichia_coli_CFT073 b4043 100.00 202 2e-111 1

c3190 Escherichia_coli_CFT073 b4043 43.33 90 2e-14 2

b4043 Escherichia_coli_K12 b4043 100.00 202 2e-111 1

...

Not surprisingly, the answer includes the self-match of lexA (ID b4043) in Escherichia coli

K12, with 100% of identify.

15.2.3 Selecting bidirectional best hits

We can see that the output contains several matches per genome. For instance, there are 3

matches in Colwellia psychrerythraea 34H. If we assume that these similarities reflect ho-

mologies, the result contains thus a combination of paralogs and orthologs.

The simplest criterion to select ortholog is that of bidirectional best hit (BBH). We can

select BBH by imposing an upper threshold on the rank, with the option -uth.

81

get-orthologs -v 1 -org Escherichia_coli_K12 \

-taxon Gammaproteobacteria \

-q lexA -o lexA_orthologs_Gammaproteobacteria_bbh.tab \

-return ident,ali_len,e_value,rank \

-uth rank 1

The result has now been reduced to admit at most one hit per genome.

...

#ref_id ref_org query ident ali_len e_value rank

Sde_1787 Saccharophagus_degradans_2-40 b4043 65.33 199 1e-68 1

CPS_0237 Colwellia_psychrerythraea_34H b4043 65.69 204 6e-75 1

IL0262 Idiomarina_loihiensis_L2TR b4043 66.83 202 1e-75 1

...

c5014 Escherichia_coli_CFT073 b4043 100.00 202 2e-111 1

b4043 Escherichia_coli_K12 b4043 100.00 202 2e-111 1

...

15.2.4 Selecting hits with more stringent criteria

It is well known that the sole criterion of BBH is not sufficient to infer orthology between two

genes. In particular, there is a risk to obtain irrelevant matches, due to partial matches between

a protein and some spurious domains. To avoid this, we can add a constraint on the percentage

of identity (min 30%), and on the alignment length (min 50 aa). These limits are somewhat

arbitrary, we use them to illustrate the principe, and leave to each user the responsibility to

choose the criteria that she/he considers as relevant. Finally, we will use a more stringent

threshold on E-value than the default one, by imposing an upper threshold of 1e-10.

Note that or this test we suppress the BBH constraint (-uth rank 1)

get-orthologs -v 1 -org Escherichia_coli_K12 \

-taxon Gammaproteobacteria \

-q lexA -o lexA_orthologs_Gammaproteobacteria_id30_len50_eval-10.tab \

-return ident,ali_len,e_value,rank \

-lth ident 30 -lth ali_len 50 -uth e_value 1e-10

We can now combine the constrains above with the criterion of BBH.

Note that or this test we include the BBH constraint (-uth rank 1)

get-orthologs -v 1 -org Escherichia_coli_K12 \

-taxon Gammaproteobacteria \

-q lexA -o lexA_orthologs_Gammaproteobacteria_bbh_id30_len50_eval-10.tab \

-return ident,ali_len,e_value,rank \

-lth ident 30 -lth ali_len 50 -uth e_value 1e-10 \

-uth rank 1

As expected, the number of selected hits is reduced by adding these constraints. In Sept

2006, we obtained the following number of hits for lexA in Gammaproteobacteria.

• 122 hits without any constraint;

• 107 hits with contrains on ident,ali_len and e_value;

82

• 69 hits with the constraint of BBH;

• 69 hits with the combined constraint of BBH, at least 30% identity and an alignment

over more than 50 aminoacids, and an E-value <= 1.e-10.

Actually, in the particular case of lexA, the BBH constraint already filtered out the spurious

matches, but inother cases they can be useful.

15.3 Retrieving sequences for multiple organisms

The program retrieve-seq-multigenome can be used to retrieve sequences for a group of

genes belonging to different organisms.This program takes as input a file with two columns.

Each row of this file specifies one query gene.

1. The first column contains the name or identifier of the gene (exactly as for the single-

genome program retrieve-seq).

2. The second column indicates the organism to which the gne belongs.

The output of get-orthologs can thus directly be used as input for retrieve-seq-multigenome .

retrieve-seq-multigenome -noorf \

-i lexA_orthologs_Gammaproteobacteria_bbh_id30_len50_eval-10.tab \

-o lexA_orthologs_Gammaproteobacteria_up-noorf.fasta

\end{footnotesize}

15.4 Detection of phylogenetic footprints

TO BE WRITTEN

dyad-analysis -v 1 \

-i lexA_orthologs_Gammaproteobacteria_up-noorf.fasta \

-sort -2str -noov -lth occ 1 -lth occ_sig 0 \

-return occ,freq,proba,rank \

-l 3 -spacing 0-20 -bg monads \

-o lexA_orthologs_Gammaproteobacteria_up-noorf_dyads-2str-noov.tab

15.5 Phylogenetic profiles

The notion of phylogenetic profile was introduced by Pellegrini et al. (1999). They identi-

fied putative orthologs for all the genes of Escherichia coli K12 in all the complete genomes

available at that time, and built a table with one row per gene, one column per genome. Each

cell of this table indicates if an ortholog of the considered gene (row) has been identified in

the considered genome (column). Pellegrini et al. (1999) showed that genes having similar

phylogenetic profiles are generally involved in common biological processes. The analysis

83

of phylogenetic profiles is thus a powerful way to identify functional grouping in completely

sequenced genomes.

The program get-orthologs can be used to obtain the phylogenetic profiles. The principle

is to submit the complete list of protein-coding genes of the query organism. We process in

two steps :

1. With get-orthologs , we can identify the putative ortholgos for all the genes of the query

organism, using the criterion of bidirectional best hit (BBH). This generate a large table

with one row per pair of putative orthologs.

2. We then use convert-classes to convert the ortholog table into profiles (one row per

gene, one column per genome).

We will illustrate this by calculating the phylogenetic profiles of all the genes from Sac-

charomyces cerevisiae across all the Fungi. We use a level of verbosity of 2, in order to get

information about the progress of the calculations.

Identify all the putative orthologs (BBH)

get-orthologs -v 2 \

-i $RSAT/data/genomes/Saccharomyces_cerevisiae/genome/cds.tab \

-org Saccharomyces_cerevisiae \

-taxon Fungi \

-uth rank 1 -lth ali_len 50 -lth ident 30 -uth e_value 1e-10 \

-return e_value,bit_sc,ident,ali_len \

-o Saccharomyces_cerevisiae_vs_Fungi_bbh.tab

Convert ortholog table into a profile table

with the IDs of the putative orthologs

convert-classes -v 2 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh.tab \

-from tab -to profiles \

-ccol 2 -mcol 3 -scol 1 -null "<NA>" \

-o Saccharomyces_cerevisiae_vs_Fungi_phyloprofiles_ids.tab

The resulting table indicates the identifier of the ortholog genes. The option -null was

used to specify that the string <NA> should be used to indicate the absence of putative orhtolog.

Another option would be to obtain a “quantitative” profile, where each cell indicates the

E-value of the match between the two orthologs. This can be done by specifying a different

score column with the option -scol of convert-classes .

Convert ortholog table into a profile table

with the E-value of the putative orthologs

convert-classes -v 2 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh.tab \

-from tab -to profiles \

-ccol 2 -mcol 3 -scol 4 -null "<NA>" \

-o Saccharomyces_cerevisiae_vs_Fungi_phyloprofiles_evalue.tab

84

15.6 Detecting pairs of genes with similar

phylogenetic profiles

In the previous section, we generated tables indicating the phylogenetic profiles of each gene

from Saccharomyces cerevisiae. This table contains one row per gene, and one column per

fungal genome.

We will now use the program compare-profiles to compare each gene profile to each other,

to select the pairs of genes with significantly similar profiles. The problem is of course to

choose our criterion of similarity between two gene profiles.

15.6.1 Comparing binary profiles with compare-profiles

For the binary profiles, the most relevant statistics is the hypergeometric significance.

Compare the binary phylogenetic profiles

using the hypergeometric significance

compare-profiles -v 2 \

-i Saccharomyces_cerevisiae_vs_Fungi_phyloprofiles_evalue.tab \

-lth AB 1 -lth sig 0 \

-return counts,jaccard,hyper,entropy \

-o Saccharomyces_cerevisiae_vs_Fungi_phyloprof_gene_pairs.tab

In the previous commands, we set the verbosity to 2, in order to keep track the progress of

the task. Actually, the processing can take a few minuts, it is probably the good moment for a

coffee break.

15.6.2 Comparing binary profiles with compare-classes

Another way to compare the phylogenetic profiles is to directly analyze with compare-classes

the table of orthology (previously obtained from get-orthologs).

This is just another way of considering the same problem: in order to compare genes A and

B, we will consider as a first class (Q) the set of genomes in which gene A is present, and as

a second class (R) the set of genomes in which gene B is present. We will then calculate the

intersection between these two classes, and assess the significance of this intersection, given

the total number of genomes.

Thus, compare-classes will calculate the hypergeometric statistics, exactly in the same way

as compare-profiles .

Convert the orthology into "classes", where each class (second column)

corresponds to a gene from Saccharomyces cerevisiae, and indicates

the set of genomes (first column) in which this gene is present.

convert-classes -from tab -to tab -mcol 2 -ccol 3 -scol 5 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh.tab \

-o Saccharomyces_cerevisiae_vs_Fungi_bbh_classes.tab

Compare the classes to detect significant overlaps

85

compare-classes -v 3 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh_classes.tab \

-lth QR 1 -lth sig 0 -sort sig -sc 3 \

-return occ,proba,dotprod,jac_sim,rank \

-o phyloprof_gene_pairs.tab

86

16 Automated analysis of multiple

gene clusters

The main interest of using RSATfrom the shell is that it allows to automatize the analysis of

multiple data sets. The different programs of the package can be combined in different ways to

apply an extensive analysis of your data. A typical example is the analysis of clusters obtained

from gene expression data.

When a few tens or hundreds of gene clusters have to be analyzed, it becomes impossible

to manage it manually. RSATincludes a program, multiple-family-analysis , which takes as

input a file with the composition of gene clusters (the cluster file), and automatically performs

the following analyses on each cluster :

directory management: the results are stored in a separate directory for each cluster. Di-

rectories are automatically created during the execution, and bear the name of the cluster.

sequence retrieval: upstream sequences are retrieved and stored in fasta format

sequence purging: upstream sequences are purged (with the program purge-sequences

to remove redundant fragments. Purged sequences are then used for pattern discovery,

and non-purged sequences for pattern matching.

oligonucleotide analysis: the program oligo-analysis is used to detect over-represented

oligonucleotides. dna-pattern and feature-map are used to draw a feature map of the

significant patterns.

dyad analysis: the program dyad-analysis is used to detect over-represented oligonucleotides.

dna-pattern and feature-map are used to draw a feature map of the significant patterns.

other pattern discovery programs: several matrix-based pattern discovery programs de-

veloped by other teams can be managed by multiple-family-analysis . These programs

have to be installed separately they are not part of the RSATdistribution).

feature map drawing: The patterns discovered by the different programs are matched against

the upsteram sequences, and the result is displayed as a feature map.

synthesis of the results: A synthetic table is generated (in HTML format) to facilitate the

analysis of the results, and the navigation between result files.

result export: The results can be exported to tab-delimited files, which can then automati-

cally be loaded in a relational database (mySQL, PostgreSQL or Oracle).

87

In addition to this cluster-per-cluster analysis, results are summarized in two format.

synthetic table A HTML table is generated with one row per cluster, and a summary of the

results (gene composition, significant oligonucleotides, significant dyads). This table

contains links to the feature maps, making it easy to browse the results.

sql table The list of significant patterns detected in all the cluster are compiled in a single

result table (a tab-delimited text file), with one row per pattern and cluster, and one

column per criterion (pattern type, occurrences, significance, ...).

The program also automatically exports SQL scripts which allow to create the appropri-

ate table in a relational database management system (RDBMS) and load the data.

16.1 Input format

The input format is a tab-delimited text file with two columns, providing respectively :

1. gene identifier or name

2. cluster name

An example of cluster file is displayed in Table 16.1. This file describes 3 yeast regulons,

each responding to some specific environmental condition: the NIT family contains 7 genes

expressed under nitrogen depletion, the PHO family 5 genes expressed under phosphate stress,

and the MET family 11 genes expressed when methionine is absent fom the culture medium.

Beware: the columns must be separate by tabulations, spaces are not valid separators.

Note that genes can be specified either by their name (as for the NIT and PHO families in

Table 16.1), or by their systematic identifier (MET family in Table 16.1).

16.2 Example of utilization

Let us assume that the file displayed in Table 16.1 has been saved under the name test.fam.

The following command will automatically perform all the analyses.

multiple-family-analysis -i test.fam -v 1 \

-org Saccharomyces_cerevisiae \

-2str -noorf -noov \

-task upstream,purge,oligos,oligo_maps,synthesis,sql,clean \

-outdir test_fam_results

Once the analysis is finished, you can open the folder synthetic_tables with aweb browser

and follow the links.

88

; gene cluster

DAL5 NIT

GAP1 NIT

MEP1 NIT

MEP2 NIT

MEP3 NIT

PUT4 NIT

DAL80 NIT

PHO5 PHO

PHO11 PHO

PHO8 PHO

PHO84 PHO

PHO81 PHO

YDR502C MET

YER091C MET

YHL036W MET

YIL046W MET

YJR010W MET

YKL001C MET

YKR069W MET

YLR180W MET

YLR303W MET

YNL241C MET

YNL277W MET

Table 16.1: Example of family file.

89

16.3 Loading the results in a relational database

The results were exported in tab-delimited text files in the directory test_fam_results/sql_export/.

This directory contains 3 files and one subdirectory :

Family_genes.tab

Family.tab

Pattern.tab

sql_scripts/

The subdirectory sql_scripts contains several SQL scripts for creating tables in a relational

database management system (RDBMS), loading data into these tables, and dropping these

tables when you don’t need them anymore.

family_genes_table_load.ctl

family.mk

family_table_create.sql

family_table_drop.sql

family_table_load.ctl

makefile

pattern.mk

pattern_table_create.sql

pattern_table_drop.sql

pattern_table_load.ctl

The file makefile allows you to automatically create the tables and load the data in two

operations.

make create MYSQL=’mysql -u [your login] -D multifam’

make load MYSQL=’mysql -u [your login] -D multifam’

This requires the existence of a database space ’multifam’ in your RDBMS. If you are not

familar with relational databases, you probably need to contact your system administrator to

create this space for you.

16.4 Comparing programs

The program multiple-family-analysis allows you to compare the results obtained by differ-

ent pattern discovery programs. Two of these programs are part of the RSATdistribution :

oligo-analysis and dyad-analysis . The other programs have been developed by other teams,

and can be downloaded from their original site. The command below assumes that these

programs were installed and included in your path.

90

multiple-family-analysis -i test.fam -v 1 \

-org Saccharomyces_cerevisiae \

-2str -noorf -noov \

-task upstream,purge,oligos,oligo_maps \

-task dyads,dyad_maps,consensus,gibbs \

-task meme,synthesis,sql,clean \

-outdir test_fam_results

Note that you can define multipe tasks either with a single call to the option -task, or by

insering iteratively the option in the command line.

16.5 The negative control: analyzing random gene

selections

An essential quality of pattern discovery programs is their ability to return a negative answer

when there are no specific patterns in a sequence set.

The program random-genes allows to select random sets of genes, which can then be used

by multiple-family-analysis to check the rate of false positive of pattern discovery programs.

The simplest way to use random-gene is to ask a set of n genes:

random-genes -org Saccharomyces_cerevisiae -n 10

You can also use the option -r to select r distinct sets of n genes.

random-genes -org Saccharomyces_cerevisiae -n 10 -r 5

Another possibility is to specify a template family file with the option -fam.

random-genes -org Saccharomyces_cerevisiae -fam test.fam

This will return a family file with the same number of gene family as in the input file

(test.fam). Each output family will contain the same number of gene as the corresponding

input family. This option provides thus a very convenient way to generate a negative control

of exactly the same size as the real family file.

16.6 Analyzing a large set of regulons

To get a better feeling about the potentialities of the different pattern discovery programs, you

can analyze the collection of regulons collected by Nicolas Simonis (2004), which is available

at:
http://rsat.ulb.ac.be/rsat/data/published_data/Simonis_Bioinformatics_2004/

91

http://rsat.ulb.ac.be/rsat/data/published_data/Simonis_Bioinformatics_2004/

17 Utilities

17.1 gene-info

gene-info allows you to get information on one or several genes, given a series of query words. Queries

are matched against gene identifiers and gene names. Imperfect matches can be specified by using

regular expressions.

For example, to get all info about the yeast gene GAT1:

gene-info -org Saccharomyces_cerevisiae -q GAT1

And to get all the purine genes from Escherichia coli, type:

gene-info -org Escherichia_coli_K12 -q ’pur.*’

Note the use of quotes, which is necessary whenever the query contains a *.

You can also combine several queries on the same command line, by using reiteratively the -q option:

gene-info -org Escherichia_coli_K12 \

-q ’met.*’ -q ’thr.*’ -q ’lys.*’

17.2 On-the-fly compression/uncompression

All programs from RSATsupport automatic compression and uncompression of gzip files. This can be

very convenient when dealing with big sequence files.

To compress the result of a query, simply add the extension .gz to the output file name.

retrieve-seq -all -org Saccharomyces_cerevisiae \

-from -1 -to -200 -noorf -format fasta \

-o all_up200.fa.gz

The result file is a compressed archive. Check its size with the command

ls -l

Uncompress the file with the command

gunzip all_up200.fa.gz

The file has now lost the .gz extension. Check the size of the uncompressed file.

Recompress the file with the command

gzip all_up200.fa

92

Similarly, you can directly use a compressed archive as input for RSAT, it will be uncompressed on

the fly, without occupying space on the hard drive. For example :

dna-pattern -i all_up200.fa.gz -p GATAAG -c -th 3

will return all the genes having at least three occurrences of the motif GATAAG in their 200 bp

upstream region.

93

18 Downloading genomes

RSATincludes a series of tools to install and maintain the latest version of genomes.

The most convenient way to add support for one or several organisms on your machine is to use the

programs supported-organisms and download-organism .

Beware, the complete data required for a single genome may occupy several hundreds of Mb, be-

cause RSATnot only stores the genome sequence, but also the oligonucleotide frequency tables used

to estimate background models, and the tables of BLAST hits used to get orthologs for comparative

genomics. If you want to install many genomes on your computer, you should thus reserve a sufficient

amount of space.

18.1 Original data sources

Genomes supported on RSATwere obtained from various sources.

Genomes can be installed either from the RSATweb site, or from their original sources.

• NCBI/Genbank (ftp://ftp.ncbi.nih.gov/genomes/) was the primary source for in-

stalling genomes on RSAT. Genomes are downloaded from the ftp site and installed locally on

the RSATserver by parsing the .gbk files.

• The EBI genome directory (ftp://ftp.ebi.ac.uk/pub/databases/genomes/Eukaryota/)

contains supplementary genomes, which can be downloaded and installed on the RSATserver by

parsing files in embl format.

• UCSC (http://genome.ucsc.edu/) for the multi-genome alingment files (multiz) used

by peak-footprints .

• Since 2008, ENSEMBL (http://www.ensembl.org/) genomes are supported by special

tools (retrieve-ensembl-seq , supported-organisms-ensembl), that remotely address queries to

the Ensembl database.

• Since 2013, genomes can be downloaded and installed on RSATservers, using the tool install-

ensembl-genome . Once installed, ensembl genomes can be queried with the same tools as the

other genomes installed on RSATservers (retrieve-seq , gene-info , . . .).

Other genomes can also be found on the web site of a diversity of genome-sequencing centers.

18.2 Requirement : wget

The download of genomes relies on the application wget , which is part of linux distribution1.

1For Linux: http://www.gnu.org/software/wget/; for Mac OSX

http://download.cnet.com/Wget/3000-18506_4-128268.html

94

ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ebi.ac.uk/pub/databases/genomes/Eukaryota/
http://genome.ucsc.edu/
http://www.ensembl.org/
http://www.gnu.org/software/wget/
http://download.cnet.com/Wget/3000-18506_4-128268.html

wget is a “web aspirator”, which allows to download whole directories from ftp and http sites. You

can check if the program is installed on your machine.

wget --help

This command should return the help pages for wget . If you obtain an error message (“command

not found”), you need to ask your system administrator to install it.

18.3 Importing organisms from the RSAT main server

The simplest way to install organisms on our RSATsite is to download the RSAT-formatted files from

the web server. For this, you can use a web aspirator (for example the program wget).

Beware, the full installation (including Mammals) requires a large disk space (several dozens of Gb).

You should better start installting a small genome and test it before processing to the full installation.

We illustrate the approach with the genome of our preferred model organism: the yeast Saccharomyces

cerevisiae.

18.3.1 Obtaining the list of organisms supported on the

RSAT server

By default, the program supported-organisms returns the list of organisms supported on your local

RSATinstallation. You can however use the option -server to obtain the list of organisms supported

on a remote server.

supported-organisms-server

The command can be refined by restricting the list to a given taxon of interest.

supported-organisms-server -taxon Fungi

You can also ask additional information, for example the date of the last update and the source of

each genome.

supported-organisms-server -taxon Fungi -return last_update,source,ID

18.3.2 Importing a single organism

The command

download-organism

allows you to download one or several organisms.

Beware, the complete data for a single genome may occupy several tens of Megabytes (Bacterial

genomes) or a few Gigabases (Mammalian). Downloading tenomes thus requires a fast Internet con-

nection, and may take time. If possible, please download genomes during the night (European time).

As a first step, we recommend to download the genome of the yeast Saccharomyces cerevisiae, since

this is the model organism used in our tutorials.

download-organism -v 1 -org Saccharomyces_cerevisiae

95

In principle, the download should start immediately. Beware, the data volume to be downloaded is

important, because the genome comes together with extra files (blast hits with other genoems, oligonu-

cleotide and dyad frequencies). Depending on the network bandwidth, the download of a genome may

take several minutes or tens of minutes.

After the task is completed, you can check if the configuration file has been correctly updated by

typing the command.

supported-organisms

In principle, the following information should be displayed on your terminal.

Saccharomyces_cerevisiae

You can also add parameters to get specific information on the supported organisms.

supported-organisms -return ID,last_update

18.3.3 Importing a few selected organisms

The program download-organism can be launched with a list of organisms by using iteratively the

option -org.

download-organism -v 1 -org Escherichia_coli_K12 -org Mycoplasma_genitalium_G37_uid57707

Note: genome names may change with time, since genome centers are occasionally adding new

suffixes for genomes. The organism names indicated after the option -org should belong to the list of

supported organisms collected with the command supported-organisms -server .

18.3.4 Importing all the organisms from a given taxon

For comparative genomics, it is convenient to install on your server all the organisms of a given taxon.

For this, you can simply use the option -taxon of download-organism .

Before doing this, it is wise to check the number of genomes that belong to this taxon on the server.

Get the list of organisms belonging to the order "Enterobacteriales" on the server

supported-organisms -taxon Enterobacteriales -server

Count the number of organisms

supported-organisms -taxon Enterobacteriales -server | wc -l

In Dec 2013, there are 203 Enterobacteriales supported on the RSATserver. Before starting the

download, you should check two things:

1. Has your network a sufficient bandwidth to ensure the transfer in a reasonable time ?

2. Do you have enough free space on your hard drive to store all those genomes ?

If the answer to both questions is “yes”, you can start the download.

download-organism -v 1 -taxon Enterobacteriales

96

19 Installing additional genomes on

your machine

The easiest way to install genomes on your machine is to download them from the main RSATserver,

as indicated in the Chapter “Downloading genomes” (Chap. 18 of the installation guide).

In some cases, you may however wish to install a genome by yourself, because this genome is not

supported on the main RSATserver. For this, you can use the programs that we use to install new

genomes on the main RSATserver.

19.1 Adding support for Ensembl genomes

In addition to the genomes imported and maintained on your local RSATserver, the program retrieve-

ensembl-seq allows you to retrieve sequences for any organism supported in the Ensembl database

(http://ensembl.org).

For this, you first need to install the Bioperl and Ensembl Perl libraries (see section ??).

19.1.1 Handling genomes from Ensembl

The first step to work with Ensembl genomes is to check the list of organisms currently supported on

their Web server.

supported-organisms-ensembl

You can then get more precise information about a given organism (build, chromosomes) with the

command ensembl-org-info .

ensembl-org-info -org Drosophila_melanogaster

Sequences can be retrieved from Ensembl with the command retrieve-ensembl-seq .

You can for example retrieve the 2kb sequence upstream of the transcription start site of the gene

PAX6 of the mouse.

retrieve-ensembl-seq.pl -org Mus_musculus -q PAX6 \

-type upstream -feattype mrna -from -2000 -to -1 -nogene -rm \

-alltranscripts -uniqseqs

Options

• -type upstream specifies that we want to collect the sequences located upstream of the

gene (more procisely, upstream of the mRNA).

• -feattype mrna indicates that the reference for computing coordinates is the mRNA. Since

we collect upstream sequences, the 5’most position of the mRNA has coordinate 0, and upstream

97

http://ensembl.org

sequences have negative coordinates. Note that many genes are annotated with multiple RNAs

for different reasons (alternative splicing, alternative transcription start sites). By default, the

program will return the sequences upstream of each mRNA annotated for the query gene.

• -nogene clip the sequences to avoid overlapping the next upstream gene.

• -rm repeat masking (important for pattern discovery). Repetitive sequences are replaced by N

characters.

19.2 Installing genomes and variations from EnsEMBL

19.2.1 install-ensembl-genome

The program install-ensembl-genome downloads the complete genomic sequence of a given organism

from the EnsEMBLWeb site, and installs it on the local RSATsite. It also installs the descriptions of

genomic features (genes, CDS, mRNAs, ...), and the variations.

As usually, the complete help message can be obtained with the option -help.

Get the description of the program + all options

install-ensembl-genome -help

Before installing a genome, it is generally a good idea to know which genomes are available. For

this, use the option -available_species.

Retrieve the list of supported species on EnsEMBL

install-ensembl-genome -v 1 -available_species -o available_species_ensembl.tab

Read the result file

more available_species_ensembl.tab

Note: inter-individual variations are available for a subset only of the genomes available in En-

sEMBL. The option -available_species indicates, for each species, the availability (genome,

features, variations). Obviously, the analysis of regulatory variations only makes sense for the genomes

documented with variations.

We can now download the complete genomic sequence for the species of our choice. For the sake of

space and time economy, we will use a small genome for this manual: the budding yeast Saccharomyces

cerevisiae.

Beware: some installation steps take a lot of time, in particular the installation of genomic features,

because the EnsEMBLinterface requires to send individual queries for each gene separately. The full

installation can thus take several hours. This is not a big issue, since installing a genome is not a daily

task, but it is worth knowing that the whole process requires a continuous connection during several

hours.

Install the genome sequences for a selected organism

install-ensembl-genome -v 2 -species Saccharomyces_cerevisiae

The download time depends on genome size, on the speed of your internet connection, and on the

number of genes.

98

19.2.2 Installing genomes from Ensembl genomes

The historical EnsEMBLproject 1 was focused on vertebrate genomes + a few model organisms (Sac-

charomyces cerevisiae, Drosophila melanogaster, . . .).

A more recent project called EnsemblGenomes2 extends the EnsEMBLproject to a wider taxonomic

space.

The program install-ensembl-genome supports the installation of genomes from EnsEMBLas well

as EnsemblGenomes. By default, it opens a connection to the historical EnsEMBLdatabase, but the

option -ensembl_genomes enables to install genomes from the new project EnsemblGenomes.

Get the list of available species from the extended project

EnsemblGenomes

install-ensembl-genome -v 2 -available_species -ensembl_genomes \

-o available_species_at_EnsemblGenome.txt

You can then locate your genome of interest in the file available_species_at_EnsemblGenome.txt,

and start the installation (don’t forget the option -ensembl_genomes.

Install Escherichia coli (strain K12 MG1665) from EnsemblGenomes

install-ensembl-genome -v 2 -ensembl_genomes \

-species Escherichia_coli_str_k_12_substr_mg1655

19.2.3 Downloading variations

The program download-ensembl-variations downloads variations from the EnsEMBLWeb site, and

installs it on the local RSATsite.

This program relies on wget , which must be installed beforehand on your computer.

Retrieve the list of supported species in the EnsEMBL variation database

download-ensembl-variations -v 1 -available_species

We can now download all the variations available for the yeast.

Download all variations for a selected organism on your server

download-ensembl-variations -v 1 -species Saccharomyces_cerevisiae

19.3 Importing genomes from NCBI BioProject

Tne BioProject database hosts the results of genome sequencing and transcriptome projects.

1. Open a connection to the Bioproject Web site

http://www.ncbi.nlm.nih.gov/bioproject

2. Enter a query to select the organism of interest. E.g. ostreococcus+tauri[orgn]

1http://www.ensembl.org/
2http://ensemblgenomes.org/

99

http://www.ncbi.nlm.nih.gov/bioproject
http://www.ensembl.org/
http://ensemblgenomes.org/

3. If the organism genome has been sequenced, you should see a title “Genome Sequencing Projects”

in the record. Find the relevant project and open the link.

For example, for Ostreococcus tauri, the most relevant project is PRJNA51609

http://www.ncbi.nlm.nih.gov/bioproject/51609

4. Take note of the Accesssion of this genome project: since a same organism might have been

sequenced several times, it will be useful to include this Accession in the suffix of the name of

the file fo be downloaded.

5. On the left side of the page, under Related information, click the link “Nucleotide

genomic data”. This will display a list of Genbank entries (one per contig).

6. Important: we recommend to create one separate directory per organism, and to name this di-

rectory according to the organism name followed by the genome project Accession number. For

example, for Ostreococcus tauri, the folder name would be Ostreococcus_tauri_PRJNA51609.

This convention will facilitate the further steps of installation, in particular the parsing of genbank-

formatted files with the program parse-genbank.pl .

7. In the top corner of the page, click on the Send to link and activate the following options.

Send to > File > Genbank full > Create file

Save the file in the organism-specific directory described in the previous step.

8. You can now parse the genome with the program parse-genbank.pl . Note that parse-genbank.pl

expects files with extension .gbk or .gbk.gz (as in the NCBI genome repository), whereas the

BioProject genome appends the extension .gb. You should thus use the option -ext gb.

parse-genbank.pl -v 2 -i Ostreococcus_tauri_PRJNA51609 -ext gb

After parsing, run the program install-organism with the following parameters (adapt organism

name).

install-organism -v 2 -org Ostreococcus_tauri_PRJNA51609 \

-task config,phylogeny,start_stop,allup,seq_len_distrib \

-task genome_segments,upstream_freq,oligos,dyads,protein_freq

19.4 Importing multi-genome alignment files from

UCSC

19.4.1 Warning: disk space requirement

The UCSC multi-genome alignment files occupy a huge disk space. The alignments of 30 vertebrates

onto the mouse genome (mm9 multiz30) requires 70Gb. If you intend to offer support for multi-genome

alignments, it might be safe to acquire a separate hard drive for this data.

The complete data set available at UCSC in April 2012 occupies 1Tb in compressed form, and

probably 7 times more once uncompressed. For efficiency reasons, it is necessary to uncompress these

files for using them with the indexing system of peak-footprints .

100

http://www.ncbi.nlm.nih.gov/bioproject/51609

19.4.2 Checking supported genomes at UCSC

As a first step, we will check the list of supported genomes at the UCSC Genome Browser.

supported-organisms-ucsc

Each genome is assocaited with a short identifier, followed by a description. For example, several

versions of the mouse genome are currently available.

mm10 Mouse Dec. 2011 (GRCm38/mm10) Genome at UCSC

mm9 Mouse July 2007 (NCBI37/mm9) Genome at UCSC

mm8 Mouse Feb. 2006 (NCBI36/mm8) Genome at UCSC

mm7 Mouse Aug. 2005 (NCBI35/mm7) Genome at UCSC

19.4.3 Downloading multiz files from UCSC

Multi-genome alignments at UCSC are generated with the program multiz , which produces files in a

custom text format called maf for Multi-Alignment file.

We show hereafter the command to download the mm9 version of the mouse genome, and install it

in the proper directory for peak-footprints ($RSAT/data/UCSC_multiz).

download-ucsc-multiz -v 1 -org mm9

Beware: the download of all the multi-species alignments can take several hours for one genome.

The program will create the sub-directory for the mm9 genome, download the coresponding com-

pressed multiz files (files with extension .maf.gz), uncompress them, and call peak-footprint with

specific options in order to create a position index, which will be further used for fast retrieval of the

conserved regions under peaks.

19.5 Installing genomes from NCBI/Genbank files

In the section 18, we saw that the genomes installed on the main RSATserver can easily be installed on

your local site. In some cases, you would like to install additional genomes, which are not published

yet, or which are not supported on the main RSATserver.

If your genomes are available in Genbank (files .gbk) or EMBL (files .embl) format, this can be done

without too much effort, using the installation tools of RSAT.

The parsing of genomes from their original data sources is however more tricky than the synchro-

nization from the RSATserver, so this procedure should be used only if you need to install a genome

that is not yet supported.

If this is not your case, you can skip the rest of this section.

19.5.1 Organization of the genome files

In order for a genome to be supported, RSATneeds to find at least the following files.

1. organism description

2. genome sequences

101

3. feature tables (CDS, mRNA, . . .)

4. lists of names/synonyms

From these files, a set of additional installation steps will be done by RSATprograms in order to

compute the frequencies of oligonucleotides and dyads in upstream sequences.

If you installed RSATas specified above, you can have a look at the organization of a supported

genome, for example the yeast Saccharomyces cerevisiae.

cd ${RSAT}/public_html/data/genomes/Saccharomyces_cerevisiae/genome

ls -l

As you see, the folder genome contains the sequence files and the tables describing the organism and

its features (CDSs, mRNAs, . . .). The RSATparser exports tables for all the feature types found in the

original genbank file. There are thus a lot of distinct files, but you should not worry too much, for the

two following reasons:

1. RSATonly requires a subset of these files (basically, those describing organisms, CDSs, mRNAs,

rRNAs and tRNAs).

2. All these files can be generated automatically by RSATparsers.

Organism description

The description of the organism is given in two separate files.

cd ${RSAT}/public_html/data/genomes/Saccharomyces_cerevisiae/genome

ls -l organism*.tab

more organism.tab

more organism_names.tab

1. organism.tab specifies the ID of the organism and its taxonomy. The ID of an organism is the

TAXID defined by the NCBI taxonomical database, and its taxonomy is usually parsed from the

.gbk files (but yo may need to specify it yourself in case it would be missing in your own data

files).

2. organism_name.tab indicates the name of the organism.

Genome sequence

A genome sequence is composed of one or more contigs. A contig is a contigous sequence, resulting

from the assembly of short sequence fragments obtained during the sequencing. When a genome is

completely sequenced and assembled, each chomosome comes as a single contig.

In RSAT, the genome sequence is specified as one separate file per contig (chromosome) sequence.

Each sequence file must be in raw format (i.e. a text file containing the sequence without any space or

carriage return).

In addition, the genome directory contains one file indicating the list of the contig (chromosome)

files.

102

cd $RSAT/data/genomes/Saccharomyces_cerevisiae/genome/

The list of sequence files

cat contigs.txt

The sequence files

ls -l *.raw

Feature table

The genome directory also contains a set of feature tables giving the basic information about gene

locations. Several feature types (CDS, mRNA, tRNA, rRNA) can be specified in separate files (cds.tab,

mrna.tab, trna.tab, rrna.tab).

Each feature table is a tab-delimited text file, with one row per feature (cds, mrna, . . .) and one

column per parameter. The following information is expected to be found.

1. Identifier

2. Feature type (e.g. ORF, tRNA, ...)

3. Name

4. Chromosome. This must correspond to one of the sequence identifiers from the fasta file.

5. Left limit

6. Right limit

7. Strand (D for direct, R for reverse complemet)

8. Description. A one-sentence description of the gene function.

The feature table

head -30 cds.tab

Feature names/synonyms

Some genes can have several names (synonyms), which are specified in separate tables.

1. ID. This must be one identifier found in the feature table

2. Synonym

3. Name priority (primary or alternate)

View the first row of the file specifying gene names/synonyms

head -30 cds_names.tab

Multiple synonyms can be given for a gene, by adding several lines with the same ID in the first

column.

An example of yeast genes with multiple names

grep YFL021W cds_names.tab

103

19.5.2 Downloading genomes from NCBI/Genbank

The normal way to install an organism in RSATis to download the complete genome files from the

NCBI 3, and to parse it with the program parse-genbank.pl .

However, rather than downloading genomes directly from the NCBI site, we will obtain them from

a mirror 4 which presents two advantages?

• Genome files are compressed (gzipped), which strongly reduces the transfer and storage volume.

• This mirror can be queried by rsync , which facilitates the updates (with the appropriate options,

rsync will only download the files which are newer on the server than on your computer).

RSATincludes a makefile to download genomes from different sources. We provide hereafter a

protocol to create a download directory in your account, and download genomes in this directory.

Beware, genomes require a lot of disk space, especially for those of higher organisms. To avoid filling

up your hard drive, we illustrate the protocol with the smallest procaryote genome to date: Mycoplasma

genitamlium.

Creating a directory for downloading genomes in your home account

cd $RSAT

mkdir -p downloads

cd downloads

Creating a link to the makefile which allows you to dowload genomes

ln -s $RSAT/makefiles/downloads.mk ./makefile

We will now download a small genome from NCBI/Genbank.

Downloading one directory from NCBI Genbank

cd $RSAT/downloads/

make one_genbank_dir NCBI_DIR=Bacteria/Mycoplasma_genitalium

We can now check the list of files that have been downloaded.

Downloading one directory from NCBI Genbank

cd $RSAT/downloads/

ls -l ftp.ncbi.nih.gov/genomes/Bacteria/Mycoplasma_genitalium/

RSATparsers only use the files with extension .gbk.gz.

You can also adapt the commande to download (for example) all the Fungal genomes in a single run.

Downloading one directory from NCBI Genbank

cd $RSAT/downloads/

make one_ncbi_dir NCBI_DIR=Fungi

You can do the same for Bacteria, of for the whole NCBI genome repository, but this requires sveral

Gb of free disck space.

3ftp://ftp.ncbi.nih.gov/genomes/
4bio-mirror.net/biomirror/ncbigenomes/

104

ftp://ftp.ncbi.nih.gov/genomes/
bio-mirror.net/biomirror/ncbigenomes/

19.5.3 Parsing a genome from NCBI/Genbank

The program parse-genbank.pl extract genome information (sequence, gene location, ...) from Gen-

bank flat files, and exports the result in a set of tab-delimited files.

parse-genbank.pl -v 1 \

-i $RSAT/downloads/ftp.ncbi.nih.gov/genomes/Bacteria/Mycoplasma_genitalium

19.5.4 Parsing a genome from the Broad institute (MIT)

The website http://www.broad.mit.edu/ offers a large collection of genomes that are not

available on the NCBI website. We wrote a specific parser for the Broad files.

To this, download the following files for the organism of interest : the supercontig file, the protein

sequences and the annotation file in the GTF format.

These files contain sometimes too much information that shoud be removed.
This is an example of the beginning of the fasta file containing the protein traduction. In this file, we

should remove everything that follows the protein name.

>LELG_00001 | Lodderomyces elongisporus hypothetical protein (translation) (1085 aa)

MKYDTAAQLSLINPQTLKGLPIKPFPLSQPVFVQGVNNDTKAITQGVFLDVTVHFISLPA

ILYLHEQIPVGQVLLGLPFQDAHKLSIGFTDDGDKRELRFRANGNIHKFPIRYDGDSNYH

IDSFPTVQVSQTVVIPPLSEMLRPAFTGSRASEDDIRYFVDQCAEVSDVFYIKGGDPGRL

This is an example of the beginning of the fasta file containing the contigs. In this file, we should
remove everything that follows the name of the contig.

>supercontig_1.1 of Lodderomyces elongisporus

AAGAGCATCGGGCAAATGATGTTTTTCAGTCCATCAATGTGATGGATCTGATAGTTGAAG

GTCCTGATGAAGTTCAACCATTTGTAAACCCGATTTACAAAGTGTGAATTATCGAGTGGT

TTATTCATCACAAGGACAAGAGCTTTGTTGGTTGACAGAGATGTTTTGCAGAAAGCCCTT

AAGGATGGTATTGCCTTGTTCAAGAAGAAACCAGTTGTTACTGAAGTAAATCTGACGACC

This is an example of the beginning of the GTF file containing the contigs annotation. We should
rename the contig name so that it corresponds to the fasta file of contig. To this, we will remove the
text in the name of the contig (only keep the supercontig number) and add a prefix.

supercont1.1%20of%20Lodderomyces%20elongisporus LE1_FINAL_GENECALL start_codon

322 324 . + 0 gene_id "LELG_00001"; transcript_id "LELT_00001";

supercont1.1%20of%20Lodderomyces%20elongisporus LE1_FINAL_GENECALL stop_codon

3574 3576 . + 0 gene_id "LELG_00001"; transcript_id "LELT_00001";

supercont1.1%20of%20Lodderomyces%20elongisporus LE1_FINAL_GENECALL exon 322

3576 . + . gene_id "LELG_00001"; transcript_id "LELT_00001";

supercont1.1%20of%20Lodderomyces%20elongisporus LE1_FINAL_GENECALL CDS 322 3573

. + 0 gene_id "LELG_00001"; transcript_id "LELT_00001";

We use the parse parse-broad-mit .

parse-broad-mit.pl -taxid 36914 -org Lodderomyces_elongisporus \

-nuc_seq lodderomyces_elongisporus_1_supercontigs.fasta \

-gtf lodderomyces_elongisporus_1_transcripts.gtf \

-gtf_remove ’supercont’ \

-gtf_remove ’%20of%20Lodderomyces%20elongisporus’ \

-contig_prefix LELG_ -nuc_remove supercontig_ \

-nuc_remove ’ of Lodderomyces elongisporus’ \

-aa lodderomyces_elongisporus_1_proteins.fasta -aa_remove ’ .*’

This will create the raw files, the feature files and the protein sequence file.

105

http://www.broad.mit.edu/

19.5.5 Updating the configuration file

After having parsed the genome, you need to perform one additional operation in order for RSATto be

aware of the new organism: update the configuration file.

install-organism -v 1 -org Mycoplasma_genitalium -task config

Check the last lines of the configuration file

tail -15 $RSAT/data/supported_organisms.pl

From now on, the genome is considered as supported on your local RSATsite. You can check this

with the command supported-organisms .

19.5.6 Checking the start and stop codon composition

Once the organism is found in your configuration, you need to check whether sequences are retrieved

properly. A good test for this is to retrieve all the start codons, and check whether they are made of the

expected codons (mainly ATG, plus some alternative start codons like GTG or TTG for bacteria).

The script install-organism allows you to perform some additional steps for checking the confor-

mity of the newly installed genome. For example, we will compute the frequencies of all the start and

stop codons, i order to check that gene locations were corectly parsed.

install-organism -v 1 -org Mycoplasma_genitalium -task start_stop

ls -l $RSAT/data/genomes/Mycoplasma_genitalium/genome/*start*

ls -l $RSAT/data/genomes/Mycoplasma_genitalium/genome/*stop*

The stop codons should be TAA, TAG or TGA, for any organism. For eucaryotes, all start codons

should be ATG. For some procaryotes, alternative start codons (GTG, TGG) are found with some

genome-specific frequency.

cd $RSAT/data/genomes/Mycoplasma_genitalium/genome/

A file containing all the start codons

more Mycoplasma_genitalium_start_codons.wc

A file with trinucleotide frequencies in all start codons

more Mycoplasma_genitalium_start_codon_frequencies

A file containing all the stop codons

more Mycoplasma_genitalium_stop_codons.wc

A file with trinucleotide frequencies in all stop codons

more Mycoplasma_genitalium_stop_codon_frequencies

19.5.7 Calibrating oligonucleotide and dyad frequencies with

install-organisms

The programs oligo-analysis and dyad-analysis require calibrated frequencies for the background

models. These frequencies are calculated automatically with install-organism .

106

install-organism -v 1 -org Debaryomyces_hansenii \

-task allup,oligos,dyads,upstream_freq,protein_freq

Warning: this task may require several hours of computation, depending on the genome size. For

the RSATserver, we use a PC cluster to regularly install and update genomes. As the task allup, is a

prerequisite for the computation of all oligonucleotide and dyad frequencies, it should be run directly

on the main server before computing oligo and dyad frequencies on the nodes of the cluster. We will

thus proceed in two steps. Note that this requires a PC cluster and a proper configuration of the batch

management program.

Retrieve all upstream sequences

Executed directly on the server

install-organism -v 1 -org Debaryomyces_hansenii \

-task allup

Launch a batch queue for computing all oligo and dyad frequencies

Executed on the nodes of a cluster

install-organism -v 1 -org Debaryomyces_hansenii \

-task oligos,dyads,upstream_freq,protein_freq -batch

19.5.8 Installing a genome in your own account

In some cases, you might want to install a genome in your own account rather than in the RSATfolder,

in order to be able to analyze this genome before putting it in public access.

In this chapter, we explain how to add support for an organism on your local configuration of RSAT.

This assumes that you have the complete sequence of a genome, and a table describing the predicted

location of genes.

First, prepare a directory where you will store the data for your organism. For example:

mkdir -p $HOME/rsat-add/data/Mygenus_myspecies/

One you have this information, start the program install-organism . You will be asked to enter the

information needed for genome installation.

Updating your local configuration

• Modify the local config file

• You need to define an environment variable called RSA_LOCAL_CONFIG, containing the full

path of the local config file.

19.6 Installing genomes from EMBL files

RSATalso includes a script parse-embl.pl to parse genomes from EMBL files. However, for practicaly

reasons we generally parse genomes from the NCBI genome repository. Thus, unless you have a

specific reason to parse EMBL files, you can skip this section.

The program parse-embl.pl reads flat files in EMBL format, and exports genome sequences and

features (CDS, tRNA, ...) in different files.

107

As an example, we can parse a yeast genome sequenced by the “Genolevures” project 5.

Let us assume that you want to parse the genome of the species Debaryomyces hansenii.

Before parsing, you need to download the files in your account,

• Create a directory for storing the EMBL files. The last level of the directory should be the name

of the organism, where spaces are replaced by underscores. Let us assume that you store them

in the directory $RSAT/downloads/Debaryomyces_hansenii.

• Download all the EMBL file for the selected organism. Save each name under its original name

(the contig ID), followed by the extension .embl)

We will check the content of this directory.

ls -1 $RSAT/downloads/Debaryomyces_hansenii

On my computer, it gives the following result

CR382133.embl

CR382134.embl

CR382135.embl

CR382136.embl

CR382137.embl

CR382138.embl

CR382139.embl

The following instruction will parse this genome.

parse-embl.pl -v 1 -i $RSAT/downloads/Debaryomyces_hansenii

If you do not specify the output directory, a directory is automatically created by combining the

current date and the organism name. The verbose messages will indicate you the path of this directory,

something like $HOME/parsed_data/embl/20050309/Debaryomyces_hanseni.

You can now perform all the steps above (updating the config file, installing oligo- and dyad fre-

quencies, . . .) as for genomes parsed from NCBI.

Installing a genome in the main RSAT directory

Once the genome has been parsed, the simplest way to make it available for all the users is to install it

in the RSATgenome directory. You can already check the genomes installed in this directory.

ls -1 $RSAT/data/genomes/

There is one subdirectory per organism. For example, the yeast data is in $RSAT/data/genomes/Sac-

charomyces_cerevisiae/. This directory is further subdivided in folders: genome and oligo-frequencies.

We will now create a directory to store data about Debaryomyces_hansenii, and transfer the newly

parsed genome in this directory.

5http://natchaug.labri.u-bordeaux.fr/Genolevures/download.php

108

http://natchaug.labri.u-bordeaux.fr/Genolevures/download.php

Create the directory

mkdir -p $RSAT/data/genomes/Debaryomyces_hansenii/genome

Transfer the data in this directory

mv $HOME/parsed_data/embl/20050309/Debaryomyces_hanseni/* \

$RSAT/data/genomes/Debaryomyces_hansenii/genome

Check the transfer

ls -ltr $RSAT/data/genomes/Debaryomyces_hansenii/genome

109

20 Regulatory variations (rSNPs and

insertion/deletions)

Jérémy Delerce and Jacques van Helden

This chapter presents a series of tools to analyze the impact of genetic polymorphism (inter-individual

variations) on the binding of transcription factors.

It combines a series of tools to

1. download and install genomes, features, and variations from the EnsEMBLdatabase to RSAT;

2. obtain the sequences of variations;

3. scan variant sequences with position-specific scoring matrices (PSSM) in order to detect varia-

tions that may affect transcription factor binding sites.

20.1 Requirements

The functionalities described below require a connection to the EnsEMBLdatabase, via their Perl API1.

In principle, the Ensembl Perl modules should have been installed together with RSAT(see RSATinstallation

guide for details).

20.2 Detecting regulatory variations

20.2.1 Scanning a selected variation with selected matrices

TO BE WRITTEN

20.2.2 Obtaining a list of disease-associated variation IDs

In order to test the retrieval of multiple variations, we will first select a realistic case, by getting a list

of Human variations associated to some disease (for instance diabetes).

Open a connection to the dbSNP database 2, and paste the following test in the query box:

("Homo sapiens"[ORG]) AND (diabetes[Text Word]) AND ("false"[Not Reference Assembly])

TO BE WRITTEN

1API: application programmatic interface
2http://www.ncbi.nlm.nih.gov/SNP/

110

http://www.ncbi.nlm.nih.gov/SNP/

20.2.3 Scanning a list of selected variations with a list of matrices

TO BE WRITTEN

20.2.4 Scanning all variations with a selected matrix

TO BE WRITTEN

111

21 Exercises

As an exercise, we will now combine the different tools described above to analyse the full set of

promoters from Arabidopsis thaliana. We define ourselves the following goals :

1. Discover motifs which are over-represented in the complete set of upstream sequences for the

selected organism.

2. Try different parameters for this pattern discovery, and compare the results.

3. Use these over-represented patterns to scan full chromosomes with a sliding window, in order

to evaluate if we can predict promoter locations on the sole basis of pattern occurrences. Find

optimal parameters for the prediction of promoter locations.

21.1 Some hints

21.1.1 Sequence retrieval

The first step will be to retrieve the full complement of upstream sequences. Since we have no precise

idea about the best sequence size, we will try several reasonable ranges, each roughly corresponding to

a given functionality.

from -1 to -200 this regions is likey to contain mostly 5’UTR.

from -1 to -400 this region is likely to contain the 5’ UTR and the proximal promoter.

from -1 to -1000 this region is likely to include the 5’UTR, as well as the proxima and distal pro-

moters.

from -1 to -2000 an even larger range, which probably contains most of the upstream cis-acting ele-

ments in A. thaliana.

In all cases, we will clip upstream ORFs, because they would bias the oligonucleotide composition.

Write the commands which will retrieve all upstream sequences over the specified range. Beware,

the sequence files may occupy a large space on the disk, it is probably wise to directly compress them

by adding the extension .gz to the output file.

21.1.2 Detection of over-represented motifs

In a first step, we will restrict our analysis to hexanucleotides. Once all the subsequent steps (full chro-

mosome scanning) will be accomplished, we will redo the complete analysis with different oligonu-

cleotide lengths, and compare the efficiency of promoter prediction.

Detect over-represented oligo-nucleotides with different estimators of expected frequencies: Markov

chains of different orders, non-coding frequencies.

Do not forget to prevent counting self-overlapping matches.

112

22 Using RSAT Web Services

Note: in complement of the following instructions, we recommend to run the protocol for using

RSATWeb services [?].

22.1 Introduction

RSATfacilities can be used as Web Services (WS), i.e. external developers (you) can integrate RSATmethods

in their own code. An important advantage of Web Services is that they are using a standard commu-

nication interface between client and server (e.g. WSDL/SOAP), for which libraries exist in various

languages (Perl, Python, java).

We explain below how to implement WS clients in Perl, Java and Python for RSATprograms.

22.2 Examples of WS clients in Perl with SOAP::WSDL

2.00 (or above)

22.2.1 Requirements

Before using such WS clients, You need to install the Module::Build::Compat and the SOAP::WSDL

Perl modules. These Perl modules can be installed with the program cpan . When required, you will

be prompted to install dependency modules for SOAP::WSDL . For all this you need root privileges.

If this is not your case, please ask your system administrator to install them for you.

The other thing you need is the RSATWS library that you can download from the following website:

http://rsat.ulb.ac.be/rsat/web_services/RSATWS.tar.gz

Place it in the same directory as your clients, then uncompress if with the following command.

tar -xpzf RSATWS.tar.gz

22.2.2 Retrieving sequences from RSATWS

The following example is a script to retrieve the start codons of three Escherichia coli genes. It uses

retrieve-seq to do so. The various parameters are passed as a hash table to the method. If there is an

error, it will be displayed, otherwise the result is displayed, toghether with the full command generated

on the server and the name of the temporary file created on the server to hold the result localy. This

file is useful when one wants to feed another program with that output, whithout paying the cost of a

useless data transport back and forth between the server and the client.

#!/usr/bin/perl -w

retrieve-seq_client_soap-wsdl.pl - Client retrieve-seq using the SOAP::WSDL

#module

113

http://rsat.ulb.ac.be/rsat/web_services/RSATWS.tar.gz

##

##

This script runs a simple demo of the web service inerface to the

RSAT tool retrieve-seq. It sends a request to the server for

obtaining the start codons of 3 E.coli genes.

##

##

use strict;

use SOAP::WSDL;

use lib ’RSATWS’;

use MyInterfaces::RSATWebServices::RSATWSPortType;

warn ‘‘\nThis demo script retrieves the start codons for a set of query

genes\n\n’’;

WSDL location

my $server = ’http://rsat.ulb.ac.be/rsat/web_services’;

Service call

my $soap=MyInterfaces::RSATWebServices::RSATWSPortType->new();

Output option

my $output_choice = ’both’; ## Accepted values: ’server’, ’client’, ’both’

Retrieve-seq parameters

my $organism = ’Escherichia_coli_K12’; ## Name of the query organism

my @gene = (‘‘metA’’, ‘‘metB’’, ‘‘metC’’); ## List of query genes

my $all = 0; ## the -all option (other accepted value = 1). This option is

incompatible with the query list @gene (above)

my $noorf = 1; ## Clip sequences to avoid upstream ORFs

my $from = 0; ## Start position of the sequence

my $to = 2; ## End position of the sequence

my $feattype = ’’; ## The -feattype option value is not specified, the

default is used

my $type = ’’; ## The -type option value; other example:’-type downstream’

my $format = ’’; ## The -format option value. We use the default (fasta), but

other formats could be specified, for example ’multi’

my $lw = 0; ## Line width. 0 means all on one line

my $label = ’id,name’; ## Choice of label for the retrieved sequence(s)

my $label_sep = ’’; ## Choice of separator for the label(s) of the retrieved

sequence(s)

my $nocom = 0; ## Other possible value = 1, to get sequence(s) whithout

comments

my $repeat = 0; ## Other possible value = 1, to have annotated repeat

regions masked

my $imp_pos = 0; ## Admit imprecise position (value = 1 to do so)

my %args = (

’output’ => $output_choice,

’organism’ => $organism,

114

’query’ => \@gene, ## An array in a hash has to be referenced

(always?)

’noorf’ => $noorf,

’from’ => $from,

’to’ => $to,

’feattype’ => $feattype,

’type’ => $type,

’format’ => $format,

’lw’ => $lw,

’label’ => $label,

’label_sep’ => $label_sep,

’nocom’ => $nocom,

’repeat’ => $repeat,

’imp_pos’ => $imp_pos

);

Send the request to the server

print ‘‘Sending request to the server $server\n’’;

my $som = $soap->retrieve_seq({’request’ => \%args});

Get the result

unless ($som) {

printf ‘‘A fault (%s) occured: %s\n’’, $som->get_faultcode(),

%$som->get_faultstring();

} else {

my $results = $som->get_response();

Report the remote command

my $command = $results -> get_command();

print ‘‘Command used on the server: ‘‘.$command, ‘‘\n’’;

Report the result

if ($output_choice eq ’server’) {

my $server_file = $results -> get_server();

print ‘‘Result file on the server: ‘‘.$server_file;

} elsif ($output_choice eq ’client’) {

my $result = $results -> get_client();

print ‘‘Retrieved sequence(s): \n’’.$result;

} elsif ($output_choice eq ’both’) {

my $server_file = $results -> get_server();

my $result = $results -> get_client();

print ‘‘Result file on the server: ‘‘.$server_file.’’\n’’;

print ‘‘Retrieved sequence(s): \n’’.$result;

}

}

115

22.3 Examples of WS clients in Perl with SOAP::WSDL

1.27 (or below)

Some of you are maybe already using perl WS clients with an older version of SOAP::WSDL and

would like to stick to it. We show hereafter some simple examples of clients written in perl and using

such version of the module. The presented code as well as other can be downloaded from

http://rsat.ulb.ac.be/rsat/web_services.html

22.3.1 Requirements

• SOAP::Lite

• SOAP::WSDL , version 1.27 or below.

These Perl modules can be installed with the program cpan , but for this you need root privileges. If

this is not your case, please ask your system administrator to install them for you.

22.3.2 Getting gene-info from RSATWS

The following script allows to get information about three Escherichia coli genes from RSAT. The

client script passes through the web service to run the gene-info on the server. A list of genes is

provided to the server, which returns the information about those genes.

#!/usr/bin/perl -w

gene-info_client_minimal_soap-wsdl.pl - Client gene-info using the SOAP::WSDL module.

##

##

This script runs a simple demo of the web service interface to the

RSAT tool gene-info. It sends a list of 3 gene names to the server,

in order to obtain the information about these genes.

##

##

use strict;

use SOAP::WSDL;

Service location

my $server = ’http://rsat.ulb.ac.be/rsat/web_services’;

my $WSDL = $server.’/RSATWS.wsdl’;

my $proxy = $server.’/RSATWS.cgi’;

Call the service

my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy);

$soap->wsdlinit;

Gene-info parameters

my $organism = ’Escherichia_coli_K12’; ## Name of the query organism

my @gene = ("metA", "metB", "metC"); ## List of query genes

my $full = 1; ## Looking for full match, not substring match.

116

http://rsat.ulb.ac.be/rsat/web_services.html

my %args = (’organism’ => $organism,

’query’ => \@gene,

’full’ => $full);

Send the request to the server

warn "Sending request to the server $server\n";

my $call = $soap->call(’gene_info’ => ’request’ => \%args);

Get the result

if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $call->faultstring;

} else {

my $results_ref = $call->result; ## A reference to the result hash table

my %results = %$results_ref; ## Dereference the result hash table

Report the remote command

my $command = $results{’command’};

print "Command used on the server: ".$command, "\n";

Report the result

my $result = $results{’client’};

print "Gene(s) info(s): \n".$result;

}

We can now use additional parameters of the gene-info program. For example, we could use regular

expressions to ask the server for all the yeast genes whose name starts with ’MET’, followed by one or

several numbers.

... (same as above)

Gene-info parameters

my $organism = ’Saccharomyces_cerevisiae’; ## Name of the query organism

my @queries = (’MET\d+’); ## This query is a regular expression

my $full = 1; ## Looking for full match, not substring match.

my %args = (’organism’ => $organism,

’query’ => \@queries,

’full’ => $full);

... (same as above)

We can also extend the search to match the query strings against gene descriptions (by default, they

are only matched against gene names).

... (same as above)

Gene-info parameters

my $organism = ’Escherichia_coli_K12’; ## Name of the query organism

my @queries = ("methionine", "purine"); ## List of queries

my $full = 0;

117

my $descr = 1; ## Search also in description field of genes

my %args = (’organism’ => $organism,

’query’ => \@queries,

’full’ => $full,

’descr’ => $descr);

... (same as above)

22.3.3 Documentation

We saw above that the command

gene-info

can be called with various options. The description of the available options can be found in the docu-

mentation of the RSATWS web services at the following URL.

http://rsat.ulb.ac.be/rsat/web_services/RSATWS_documentation.xml

22.3.4 Retrieving sequences from RSATWS

The following example is a script to retrieve the start codons of three Escherichia coli genes. It uses

retrieve-seq to do so. The various parameters are passed as a hash table to the method. If there is an

error, it will be displayed, otherwise the result is displayed, toghether with the full command generated

on the server and the name of the temporary file created on the server to hold the result localy. This

file is useful when one wants to feed another program with that output, whithout paying the cost of a

useless data transport back and forth between the server and the client.

#!/usr/bin/perl -w

retrieve-seq_client_soap-wsdl.pl - Client retrieve-seq using the SOAP::WSDL module

##

##

This script runs a simple demo of the web service interface to the

RSAT tool retrieve-seq. It sends a request to the server for

obtaining the start codons of 3 E.coli genes.

##

##

use strict;

use SOAP::WSDL;

warn "\nThis demo script retrieves the start codons for a set of query genes\n\n";

WSDL location

my $server = ’http://rsat.ulb.ac.be/rsat/web_services’;

my $WSDL = $server.’/RSATWS.wsdl’;

my $proxy = $server.’/RSATWS.cgi’;

Service call

my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy);

$soap->wsdlinit;

118

http://rsat.ulb.ac.be/rsat/web_services/RSATWS_documentation.xml

Output option

my $output_choice = ’both’; ## Accepted values: ’server’, ’client’, ’both’

Retrieve-seq parameters

my $organism = ’Escherichia_coli_K12’; ## Name of the query organism

my @gene = ("metA", "metB", "metC"); ## List of query genes

my $noorf = 1; ## Clip sequences to avoid upstream ORFs

my $from = 0; ## Start position of the sequence

my $to = 2; ## End position of the sequence

my $lw = 0; ## Line width. 0 means all the sequence on one line

my $label = ’id,name’; ## Choice of label for the retrieved sequence(s)

my %args = (

’output’ => $output_choice,

’organism’ => $organism,

’query’ => \@gene,

’noorf’ => $noorf,

’from’ => $from,

’to’ => $to,

’lw’ => $lw,

’label’ => $label,

);

Send the request to the server

print "Sending request to the server $server\n";

my $call = $soap->call(’retrieve_seq’ => ’request’ => \%args);

Get the result

if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $call->faultstring;

} else {

my $results_ref = $call->result; ## A reference to the result hash table

my %results = %$results_ref; ## Dereference the result hash table

Report the remote command

my $command = $results{’command’};

print "Command used on the server: ".$command, "\n";

Report the result

if ($output_choice eq ’server’) {

my $server_file = $results{’server’};

print "Result file on the server: ".$server_file;

} elsif ($output_choice eq ’client’) {

my $result = $results{’client’};

print "Retrieved sequence(s): \n".$result;

} elsif ($output_choice eq ’both’) {

my $server_file = $results{’server’};

my $result = $results{’client’};

print "Result file on the server: ".$server_file;

print "Retrieved sequence(s): \n".$result;

}

119

}

22.3.5 Work flow using RSATWS

The following example is the script of a typical workflow of RSA Tools programs. First, the upstream

sequences of five Saccharomyces cerevisiae genes are retrieved with retrieve-seq . Then, purge-

sequence is applyed to remove any redundancy in the set of sequences. Finally, oligo-analysis is

applied to discover over-represented six letters words. The result of step 1 and 2 are stored on the

server, so that the file name can be sent to the following step as input and only the final result needs to

be transported from the server to the client.

#!/usr/bin/perl -w

retrieve_purge_oligos_client_soap-wsdl.pl - Client retrieve-seq + oligo-analysis

##

##

This script runs a simple demo of the web service interface to the

RSAT tools retrieve-seq, purge-sequence and oligo-analysis linked in a workflow.

It sends a request to the server for discovering 6 letter words

in upstream sequences of 5 yeast genes. The sequences are first

retrieved and purged for repeated segments

##

##

use strict;

use SOAP::WSDL;

warn "\nThis demo script illustrates a work flow combining three requests to the RSAT web

Service location

my $server = ’http://rsat.ulb.ac.be/rsat/web_services’;

my $WSDL = $server.’/RSATWS.wsdl’;

my $proxy = $server.’/RSATWS.cgi’;

Service call

my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy);

$soap->wsdlinit;

###

Retrieve-seq part

Output option

my $output_choice = ’server’; ## The result will stay in a file on the server

Parameters

my $organism = ’Saccharomyces_cerevisiae’; ## Name of the query organism

my @gene = ("PHO5", "PHO8", "PHO11", "PHO81", "PHO84"); ## List of query genes

my $noorf = 1; ## Clip sequences to avoid upstream ORFs

my $from; ## Start position of the sequence. Default is used (-800).

my $to; ## End position of te sequence. Default is used (-1).

120

my $feattype; ## -feattype option value is not defined, default is used (CDS).

my $type; ## -type option value; other example:’-type downstream’

my $format = ’fasta’; ## the format of the retrieved sequence(s)

my $label; ## Choice of label for the retrieved sequence(s). Default is used.

my $label_sep; ## Choice of separator for the label(s) of the retrieved sequence(s). Default

my %args = (’output’ => $output_choice,

’organism’ => $organism,

’query’ => \@gene, ## An array in a hash has to be referenced

’noorf’ => $noorf,

’from’ => $from,

’to’ => $to,

’feattype’ => $feattype,

’type’ => $type,

’format’ => $format,

’label’ => $label,

’label_sep’ => $label_sep

);

Send request to the server

print "\nRetrieve-seq: sending request to the server\t", $server, "\n";

my $call = $soap->call(’retrieve_seq’ => ’request’ => \%args);

Get the result

my $server_file; ## That variable needs to be declared outside the if..else block to be

if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $call->faultstring;

} else {

my $results_ref = $call->result; ## A reference to the result hash table

my %results = %$results_ref; ## Dereference the result hash table

Report the remote command

my $command = $results{’command’};

print "Command used on the server:\n\t".$command, "\n";

Report the result file name on the server

$server_file = $results{’server’};

print "Result file on the server:\n\t".$server_file;

}

###

Purge-sequence part

Define hash of parameters

%args = (’output’ => $output_choice, ## Same ’server’ output option

’tmp_infile’ => $server_file); ## Output from retrieve-seq part is used as input here

Send the request to the server

print "\nPurge-sequence: sending request to the server\t", $server, "\n";

$call = $soap -> call(’purge_seq’ => ’request’ => \%args);

Get the result

121

if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $call->faultstring;

} else {

my $results_ref = $call->result; ## A reference to the result hash table

my %results = %$results_ref; ## Dereference the result hash table

Report the remote command

my $command = $results{’command’};

print "Command used on the server: \n\t".$command, "\n";

Report the result file name on the server

$server_file = $results{’server’};

print "Result file on the server: \n\t".$server_file;

}

###

Oligo-analysis part

Output option

$output_choice = ’both’; ## We want to get the result on the client side, as well as the

Parameters

my $format = ’fasta’; ## The format of input sequences

my $length = 6; ## Length of patterns to be discovered

my $background = ’upstream-noorf’; ## Type of background used

my $stats = ’occ,proba,rank’; ## Returned statistics

my $noov = 1; ## Do not allow overlapping patterns

my $str = 2; ## Search on both strands

my $sort = 1; ## Sort the result according to score

my $lth = ’occ_sig 0’; ## Lower limit to score is 0, less significant patterns are not

%args = (’output’ => $output_choice,

’tmp_infile’ => $server_file,

’format’ => $format,

’length’ => $length,

’organism’ => $organism,

’background’ => $background,

’stats’ => $stats,

’noov’ => $noov,

’str’ => $str,

’sort’ => $sort,

’lth’ => $lth);

Send request to the server

print "\nOligo-analysis: sending request to the server\t", $server, "\n";

$call = $soap->call(’oligo_analysis’ => ’request’ => \%args);

Get the result

if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $call->faultstring;

} else {

my $results_ref = $call->result;

my %results = %$results_ref;

122

Report remote commande

my $command = $results{’command’};

print "Command used on the server: ".$command, "\n";

Report the result

if ($output_choice eq ’server’) {

$server_file = $results{’server’};

print "Result file on the server: \n\t".$server_file;

} elsif ($output_choice eq ’client’) {

my $result = $results{’client’};

print "Discovered oligo(s): \n".$result;

} elsif ($output_choice eq ’both’) {

$server_file = $results{’server’};

my $result = $results{’client’};

print "Result file on the server: \n\t".$server_file;

print "Discovered oligo(s): \n".$result;

}

}

22.3.6 Discover patterns with RSATWS

You can, of course, use directly the program oligo-analysis , providing your own sequences. In the

following script, the upstream sequences of five yeast genes are sent as input to oligo-analysis. Over-

represented hexanucleotides are returned.

#!/usr/bin/perl -w

oligos_client_soap-wsdl.pl - Client oligo-analysis using the SOAP::WSDL module

##

##

This script runs a simple demo of the web service interface to the

RSAT tool oligo-analysis. It sends a request to the server for

discovering 6 letter words in the upstream sequences of 5 yeast genes.

##

##

use strict;

use SOAP::WSDL;

warn "\nINFO: This demo script sends a set of sequences to the RSAT web service, and runs

WSDL location

my $server = ’http://rsat.ulb.ac.be/rsat/web_services’;

my $WSDL = $server.’/RSATWS.wsdl’;

my $proxy = $server.’/RSATWS.cgi’;

my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy);

$soap->wsdlinit;

Output option

123

my $output_choice = ’both’; ## Accepted values: ’server’, ’client’, ’both’

Oligo-analysis parameters

my $sequence = ’>NP_009651.1 PHO5; upstream from -800 to -1; size: 800; location: NC_001134.7

TTTTACACATCGGACTGATAAGTTACTACTGCACATTGGCATTAGCTAGGAGGGCATCCAAGTAATAATTGCGAGAAACGTGACCCAACTTTGTTGTAGGTCCGCTCCTTCTAATAATCGCTTGTATCTCTACA

>NP_010769.1 PHO8; upstream from -180 to -1; size: 180; location: NC_001136.8 1420243

CAGCATTGACGATAGCGATAAGCTTCGCGCGTAGAGGAAAAGTAAAGGGATTTTAGTATATAAAGAAAGAAGTGTATCTAAACGTTTATATTTTTTCGTGCTCCACATTTTGCCAGCAAGTGGCTACATAAACA

>NP_009434.1 PHO11; upstream from -800 to -1; size: 800; location: NC_001133.6 224651

GCAGCCTCTACCATGTTGCAAGTGCGAACCATACTGTGGCCACATAGATTACAAAAAAAGTCCAGGATATCTTGCAAACCTAGCTTGTTTTGTAAACGACATTGAAAAAAGCGTATTAAGGTGAAACAATCAAG

>NP_011749.1 PHO81; upstream from -800 to -1; size: 800; location: NC_001139.7 958214

AAACGAGCATGAGGGTTACAAAGAACTTCCGTTTCAAAAATGAATATAATCGTACGTTTACCTTGTGGCAGCACTAGCTAACGCTACGTGGAATGAACGTACCGTGCCCTATTATTCTTGCTTGTGCTATCTCA

>NP_013583.1 PHO84; upstream from -800 to -1; size: 800; location: NC_001145.2 25802

AAAAAAAAAGATTCAATAAAAAAAGAAATGAGATCAAAAAAAAAAAAAATTAAAAAAAAAAAGAAACTAATTTATCAGCCGCTCGTTTATCAACCGTTATTACCAAATTATGAATAAAAAAACCATATTATTAT

my $format = ’fasta’; ## The format of input sequences

my $length = 6; ## Length of patterns to be discovered

my $organism = ’Saccharomyces_cerevisiae’; ## Name of the query organism

my $background = ’upstream-noorf’; ## Type of background used

my $stats = ’occ,proba,rank’; ## Returned statistics

my $noov = 1; ## Do not allow overlapping patterns

my $str = 2; ## Search on both strands

my $sort = 1; ## Sort the result according to score

my $lth = ’occ_sig 0’; ## Lower limit to score is 0, less significant patterns are not

my %args = (’output’ => $output_choice,

’sequence’ => $sequence,

’format’ => $format,

’length’ => $length,

’organism’ => $organism,

’background’ => $background,

’stats’ => $stats,

’noov’ => $noov,

’str’ => $str,

’sort’ => $sort,

’lth’ => $lth);

Send request to the server

print "Sending request to the server $server\n";

my $call = $soap->call(’oligo_analysis’ => ’request’ => \%args);

Get the result

if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $call->faultstring;

} else {

my $results_ref = $call->result; ## A reference to the result hash table

my %results = %$results_ref; ## Dereference the result hash table

##Report the remote command

my $command = $results{’command’};

print "Command used on the server: ".$command, "\n";

Report the result

124

if ($output_choice eq ’server’) {

my $server_file = $results{’server’};

print "Result file on the server: ".$server_file;

} elsif ($output_choice eq ’client’) {

my $result = $results{’client’};

print "Discovered oligo(s): \n".$result;

} elsif ($output_choice eq ’both’) {

my $server_file = $results{’server’};

my $result = $results{’client’};

print "Result file on the server: ".$server_file;

print "Discovered oligo(s): \n".$result;

}

}

22.3.7 Example of clients using property files

We have also made clients using an alternative approach. Instead of writing the parameters values in

the client code itself, these are read from a property file. Here is the client for retrieve-seq:

#!/usr/bin/perl -w

retrieve-seq_client.pl - Client retrieve-seq using the SOAP::WSDL module

and a property file

##

##

This script runs a simple demo of the web service inerface to the

RSAT tool retrieve-seq. It sends a request to the server for

obtaining the start codons of 3 E.coli genes.

##

##

use strict;

use SOAP::WSDL;

use Util::Properties;

WSDL location

my $server = ’http://rsat.ulb.ac.be/rsat/web_services’;

my $WSDL = $server.’/RSATWS.wsdl’;

my $proxy = $server.’/RSATWS.cgi’;

my $property_file = shift @ARGV;

die "\tYou must specify the property file as first argument\n"

unless $property_file;

Service call

my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy);

$soap->wsdlinit;

my $prop = Util::Properties->new();

$prop->file_name($property_file);

$prop->load();

my %args = $prop->prop_list();

125

Convert the query string into a list

my @queries = split(",", $args{query});

$args{query} = \@queries;

my $output_choice = $args{output_choice} || ’both’;

warn "\nThis demo script retrieves upstream sequences for a set of query genes\n\n";

Send the request to the server

print "Sending request to the server $server\n";

my $som = $soap->call(’retrieve_seq’ => ’request’ => \%args);

Get the result

if ($som->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $som->faultcode, $som->faultstring;

} else {

my $results_ref = $som->result; ## A reference to the result hash table

my %results = %$results_ref; ## Dereference the result hash table

Report the remote command

my $command = $results{’command’};

print "Command used on the server: ".$command, "\n";

Report the result

if ($output_choice eq ’server’) {

my $server_file = $results{’server’};

print "Result file on the server: ".$server_file;

} elsif ($output_choice eq ’client’) {

my $result = $results{’client’};

print "Retrieved sequence(s): \n".$result;

} elsif ($output_choice eq ’both’) {

my $server_file = $results{’server’};

my $result = $results{’client’};

print "Result file on the server: ".$server_file;

print "Retrieved sequence(s): \n".$result;

}

}

The property file looks like this:

output=both

organism=Escherichia_coli_K12

query=metA,metB

all=0

noorf=1

from=0

to=2

feattype=CDS

type=upstream

format=fasta

lw=0

label=id,name

label_sep=

126

nocom=0

repeat= 0

imp_pos=0

To run the client, give the path of the property file as argument.

In the downloadable clients, the ones with a name like *_client.pl use a property file. Examples of

property files are in the sub-directory ’property_files’. When the property file contains the path to a

file, make sure you edit it according to your system.

22.3.8 Other tools in RSATWS

Following the examples above or using the code that is available for download1, you can easily access

the other RSA Tools for which Web Services have been implemented. You will find all you need to

know about the tools (parameters, etc.) in the documentation2.

22.4 Examples of WS client in java

First, you need to generate the libraries. There are tools, like Axis, which do it from the WSDL

document. These usually take the URL of that document as one of their parameters. In our case, it is

there:

http://rsat.ulb.ac.be/rsat/web_services/RSATWS.wsdl

Then you write a simple client like the one in the following example.

22.4.1 Same workflow as above with RSATWS

import RSATWS.OligoAnalysisRequest;

import RSATWS.OligoAnalysisResponse;

import RSATWS.PurgeSequenceRequest;

import RSATWS.PurgeSequenceResponse;

import RSATWS.RSATWSPortType;

import RSATWS.RSATWebServicesLocator;

import RSATWS.RetrieveSequenceRequest;

import RSATWS.RetrieveSequenceResponse;

public class RSATRetrievePurgeOligoClient {

/**

* This script runs a simple demo of the web service interface to the

* RSAT tools retrieve-seq, purge-sequence and oligo-analysis linked in a workflow.

* It sends a request to the server for discovering 6 letter words

* in upstream sequences of 5 yeast genes. The sequences are first

* retrieved and purged for repeated segments

*/

public static void main(String[] args) {

try

1http://rsat.ulb.ac.be/rsat/web_services.html
2http://rsat.ulb.ac.be/rsat/web_services/RSATWS_documentation.xml

127

http://rsat.ulb.ac.be/rsat/web_services/RSATWS.wsdl
http://rsat.ulb.ac.be/rsat/web_services.html
http://rsat.ulb.ac.be/rsat/web_services/RSATWS_documentation.xml

{

System.out.println("This demo script illustrates a work flow combining three requests to

String organism = "Saccharomyces_cerevisiae";

/* Get the location of the service */

RSATWebServicesLocator service = new RSATWebServicesLocator();

RSATWSPortType proxy = service.getRSATWSPortType();

/** Retrieve-seq part **/

/* prepare the parameters */

RetrieveSequenceRequest retrieveSeqParams = new RetrieveSequenceRequest();

//Name of the query organism

retrieveSeqParams.setOrganism(organism);

//List of query genes

String[] q= { "PHO5", "PHO8", "PHO11", "PHO81", "PHO84" };

retrieveSeqParams.setQuery(q);

// Clip sequences to avoid upstream ORFs

retrieveSeqParams.setNoorf(1);

retrieveSeqParams.setNocom(0);

// The result will stay in a file on the server

retrieveSeqParams.setOutput("server");

/* Call the service */

System.out.println("Retrieve-seq: sending request to the server...");

RetrieveSequenceResponse res = proxy.retrieve_seq(retrieveSeqParams);

/* Process results */

//Report the remote command

System.out.println("Command used on the server:"+ res.getCommand());

//Report the server file location

String retrieveSeqFileServer = res.getServer();

System.out.println("Result file on the server::\n"+ res.getServer());

/** Purge-sequence part **/

/* prepare the parameters */

PurgeSequenceRequest purgeSeqParams = new PurgeSequenceRequest();

// The result will stay in a file on the server

purgeSeqParams.setOutput("server");

// Output from retrieve-seq part is used as input here

purgeSeqParams.setTmp_infile(retrieveSeqFileServer);

/* Call the service */

System.out.println("Purge-sequence: sending request to the server...");

PurgeSequenceResponse res2 = proxy.purge_seq(purgeSeqParams);

/* Process results */

//Report the remote command

128

System.out.println("Command used on the server:"+ res2.getCommand());

//Report the server file location

String purgeSeqFileServer = res2.getServer();

System.out.println("Result file on the server::\n"+ res2.getServer());

/** Oligo-analysis part **/

/* prepare the parameters */

OligoAnalysisRequest oligoParams = new OligoAnalysisRequest();

// Output from purge-seq part is used as input here

oligoParams.setTmp_infile(purgeSeqFileServer);

oligoParams.setOrganism(organism);

// Length of patterns to be discovered

oligoParams.setLength(6);

// Type of background used

oligoParams.setBackground("upstream-noorf");

// Returned statistics

oligoParams.setStats("occ,proba,rank");

// Do not allow overlapping patterns

oligoParams.setNoov(1);

// Search on both strands

oligoParams.setStr(2);

// Sort the result according to score

oligoParams.setSort(1);

// Lower limit to score is 0, less significant patterns are not displayed

oligoParams.setLth("occ_sig 0");

/* Call the service */

System.out.println("Oligo-analysis: sending request to the server...");

OligoAnalysisResponse res3 = proxy.oligo_analysis(oligoParams);

/* Process results */

//Report the remote command

System.out.println("Command used on the server:"+ res3.getCommand());

//Report the result

System.out.println("Discovered oligo(s):\n"+ res3.getClient());

//Report the server file location

System.out.println("Result file on the server::\n"+ res3.getServer());

}

catch(Exception e) { System.out.println(e.toString());

}

}

}

22.5 Examples of WS client in python

22.5.1 Get infos on genes having methionine or purine in their

description, as above in perl

#! /usr/bin/python

129

class GeneInfoRequest:

def __init__(self):

self.organism = None

self.query = None

self.noquery = None

self.desrc = None

self.full = None

self.feattype = None

if __name__ == ’__main__’:

import os, sys, SOAPpy

if os.environ.has_key("http_proxy"):

my_http_proxy=os.environ["http_proxy"].replace("http://","")

else:

my_http_proxy=None

organism = "Escherichia_coli_K12"

query = ["methionine", "purine"]

full = 0

noquery = 0

descr = 0

feattype = "CDS"

url = "http://rsat.ulb.ac.be/rsat/web_services/RSATWS.wsdl"

server = SOAPpy.WSDL.Proxy(url, http_proxy = my_http_proxy)

server.soapproxy.config.dumpSoapOutput = 1

server.soapproxy.config.dumpSoapInput = 1

server.soapproxy.config.debug = 0

req = GeneInfoRequest()

req.organism = organism

req.query = query

req.full = 0

req.descr = 1

res = server.gene_info(req)

print res.command

print res.client

22.6 Full documentation of the RSATWS interface

The full documentation can be found there:

http://rsat.ulb.ac.be/rsat/web_services/RSATWS_documentation.pdf

Please refer to the documentation of each RSAT application for further detail on each program.

130

http://rsat.ulb.ac.be/rsat/web_services/RSATWS_documentation.pdf

23 Graph analysis

23.1 Introduction

23.1.1 Definition

Informally speaking, a graph is a set of objects called points, nodes, or vertices connected by links

called lines or edges.

More formally, a graph or undirected graph G is an ordered pair G = (V,E) that is subject to the

following conditions :

• V is a set, whose elements are called vertices or nodes

• E is a set of pairs (unordered) of distinct vertices, called edges or lines.

The vertices belonging to an edge are called the ends, endpoints, or end vertices of the edge. V (and

hence E) are taken to be finite sets.

The degree of a vertex is the number of other vertices it is connected to by edges. As graphs are

used to model all kinds of problems and situation (networks, maps, pathways, ...), nodes and vertex

may present attributes (color, weight, label, ...).

23.1.2 Some types of graphs

Undirected graph

An edge between vertex A and vertex B corresponds to an edge between B and A.

Directed graph (digraph)

An edge between vertex A and vertex B does not correspond to a vertex between B and A. In that case,

edges are said to be arcs.

Weighted graph

A weight can be placed either on the nodes or on the edges of the graph. A weight on the edge may for

example represent a distance between two nodes or the strength an interaction.

Bipartite graphs

A bipartite graph is a special graph where there are two types of nodes : A and B and where each node

of type A is only connected to nodes of type B and vice-versa.

131

23.1.3 Graph files formats

List of edges

This format is the more intuitive way to encode a graph. It consists in a list of edges between the nodes.

The names of the nodes are separated using some field separator, in RSAT, a tabulation. Some attributes

of the edges can be placed in the following columns (weight, label, color).
n1 n2 3.2

n1 n2 1.4

n2 n3 4

n3 n4 6

GML format

Among other, GML format allows to specify the location, the color, the label and the width of the nodes

and of the edges. A GML file is made up of pairs of a key and a value. Example for keys are graphs,

node and edges. You can then add any specific information for each key. GML format can be used by

most graph editors (like cytoscape and yEd).

For more information on the GML format, see http://www.infosun.fim.uni-passau.de/Graphlet/GML/

DOT format

DOT is a plain text graph description language. The DOT files are generally used by the programs

composing the GraphViz suite (dot, neato, dotty, ...). It is a simple way of describing graphs that

both humans and computer programs can use. DOT graphs are typically files that end with the .dot

extension. Like GML, with DOT you can specify a lot of feature for the nodes (color, width, label).

23.2 RSAT Graph tools

23.2.1 convert-graph

This program converts a graph encoded in some format (gml, tab) to some other (gml, tab, dot). The

source node are in the first column of this file, target nodes in the second column and the edge weights

are in the third one. By default, column 1 contains the source node, column 2 the target nodes and there

is no weight.

convert-graph -i demo_graph.tab -o demo_graph.gml -from tab -to gml -scol 1 -tcol 2 -wcol

convert-graph also allows to randomize a graph using -random option, each node keeping the same

number of neighbours (degree). You can specify the number of required random graphs.

convert-graph -i demo_graph.tab -o random_graph -random 100 -from tab -to tab

This command will create 100 different random graph from the file demo_graph.tab.

132

http://www.infosun.fim.uni-passau.de/Graphlet/GML/

23.2.2 graph-node-degree

Calculate the node degree of each node (or of a selection of nodes) and specifies if this node is a seed

or a target node.

graph-node-degree -all -i demo_graph.tab

23.2.3 graph-neighbours

Extracts the neighbourhood from a graph (the number of steps may be specified) of all or of a set of

seed nodes.

graph-neighbours -i demo_graph.tab -steps 1 -seed n2 -self

With this command, graph-neighbours will retrieve all the first neighbours of node n2 , n2 being

included. To also get the neighbours of the neighbours of n2, we should use the option -steps 2.

The output file may then be used with compare-classes program to compare groups of neighbours to

annotated groups of nodes. A file containing a list of seed nodes can be given to graph-neighbours

using -seedf option.

Using the -stats option with a weighted graph will return one line for each seed node (-steps must

then be equal to 1).

23.2.4 compare-graphs

Computes the intersection, union or difference of two graphs (a reference graph and a query graph).

The format of each input graph may be specified so that you can compare a gml encoded graph to a

edge-list format graph.

compare-graphs -Q query_graph.tab -R reference_graph2.gml \

-return union -out_format tab -outweight Q::R \

-in_format_R gml -wcol_Q 3

With this command, you will compare query_graph.tab and reference_graph2.gml. The output will

be an edge list format file. For each edge, it will specify if the edge belongs to the reference graph, to

the query graph or to both of them and colour the edges accordingly.

23.2.5 graph-get-clusters

Extract from a graph a subgraph specified by a set of clusters of nodes. It returns the nodes belonging

to the clusters and the intra-cluster arcs, and ignore the inter-cluster arcs.

graph-get-clusters -i demo_graph_cl.tab -clusters demo_graph_clusters.tab \

-out_format gml -o demo_graph_clusters_ex.gml

Using the -distinct option, nodes belonging to more than one cluster are duplicated. This option

should be used for visualisation purpose only.

Using the -inducted option, you can extract a subgraph containing all the nodes specified in the

cluster file. In that case, you don’t specially need a two-column file.

133

23.2.6 compare-graph-clusters

With the -return table option, this program counts the number (or the sum of the weights) of intra

cluster (or class) edges in a graph according to some clustering (classification) file and the number of

edges in each cluster.

compare-graph-clusters -i demo_graph_cl.tab \

-clusters demo_graph_clusters.tab -v 1 -return table

With the -return graph option, this program returns some cluster characteristics for each edge, i.e.,

the number of time the source node and the target node were found within the same cluster, the number

of time the source node was found without the target node, ...

134

24 Pathway extraction tools

24.1 Using pathway extraction tools

24.1.1 Listing tools and getting help

You can list available tools by typing:

java graphtools.util.ListTools

All tools provide a -h option to display help.

24.1.2 Abbreviating tool names

The command line tool names may be simplified by setting aliases. For example, in the bash shell:

alias Pathfinder="java graphtools.algorithms.Pathfinder"

allows to type:

Pathfinder -h

instead of:

java graphtools.algorithms.Pathfinder -h

24.1.3 Increasing JVM memory

For large graphs, you may need to increase the memory allocated to the java virtual machine. You can

do so by specifying the -Xmx option.

Example:

java -Xmx800m graphtools.algorithms.Pathfinder -h

24.2 Obtaining metabolic networks

24.2.1 Downloading MetaCyc and KEGG generic metabolic

networks from the NeAT web server

Metabolic networks can be downloaded from the NeAT web server. Go to the menu entry “Path finding

and pathway extraction”, open the “Pathway extraction” page and click on “More networks can be

downloaded here.” This will open a table with tab-delimited generic MetaCyc and KEGG networks.

135

24.2.2 Building KEGG generic metabolic networks

Reaction network

To build the directed reaction network, type:

java -Xmx800m graphtools.parser.KeggLigandDataManager -m

The network is stored in the current directory.

The execution of this command takes quite long, because it fetches the reaction and compound files

from KEGG’s ftp repository at ftp.genome.jp. To get these files, the KeggLigandDataManager

requires wget to be installed and in your path. wget is freely available from http://www.gnu.org/software/wget/

Alternatively, you may first download the reaction and compound files yourself from the KEGG ftp

server. Type in your browser (or in your favourite ftp client):

ftp://anonymous@ftp.genome.jp/pub/kegg/ligand/compound/compound

and save the compound file into $RSAT/data/KEGG/KEGG_LIGAND. Do the same for the reaction file

at

ftp://anonymous@ftp.genome.jp/pub/kegg/ligand/reaction/reaction.

Then you can run the command above to generate the reaction network.

RPAIR network

To construct the undirected RPAIR network, type:

java -Xmx800m graphtools.parser.KeggLigandDataManager -s -u

Creating the RPAIR network will also create the rpairs.tab file, which can be placed in the KEGG

directory for later use by typing:

cp $RSAT/data/KEGG/KEGG_LIGAND/rpairs.tab $RSAT/data/KEGG/rpairs.tab

An older version of this file is also available from the NeATweb server in the data/KEGG directory.

Reaction-specific RPAIR network

For the reaction-specific undirected RPAIR network, type:

java -Xmx800m graphtools.parser.KeggLigandDataManager -t -u

24.2.3 Building KEGG organism-specific metabolic networks

The MetabolicGraphProvider tool allows you to merge KEGG KGML files into a metabolic network

specific to a set of organisms.

Prerequisites

You may first create the list of available KEGG organisms:

java -Xmx800m graphtools.parser.MetabolicGraphProvider -O

This command will create the file Kegg_organisms_list.txt in the current directory. Since this file is

needed by the MetabolicGraphProvider , you may copy it to its default location:

cp Kegg_organisms_list.txt \$RSAT/data/KEGG/Kegg_organisms_list.txt

136

ftp.genome.jp
http://www.gnu.org/software/wget/
ftp://anonymous@ftp.genome.jp/pub/kegg/ligand/compound/compound
ftp://anonymous@ftp.genome.jp/pub/kegg/ligand/reaction/reaction

Alternatively, you may obtain an older version of this file from the NeATweb server in the data/KEGG

directory.

Creating an organism-specific reaction network for E. coli

The command below builds the E. coli-specific metabolic reaction network from its KGML files:

java -Xmx800m graphtools.util.MetabolicGraphProvider -i eco -o ecoNetwork.tab

The KGML files are automatically obtained from the current KEGG database (which may take very

long). Alternatively, they can be downloaded manually from http://www.genome.jp/kegg/xml/.

If downloaded manually, all organism-specific KGML files have to be placed in a folder named with

the organism’s KEGG abbreviation (e.g.eco for E. coli). The folder should be located in the $RSAT/-

data/KEGG directory.

We can also merge the KGML files of several organisms into one network and apply some filtering

as follows (in one line):

java -Xmx800m graphtools.util.MetabolicGraphProvider -i ecv/eco -o

eco_ecv_Network.tab -c C00001/C000002/C00003/C00004/C00005/C00006/C00007/C00008

This command will construct a merged metabolic network from two E. coli strains (Escherichia

coli K-12 MG1655 and Escherichia coli O1 (APEC)) and in addition filter out some highly connected

compounds (water, ATP, NAD+, NADH, NADPH, NADP+, oxygen and ADP).

24.2.4 Building metabolic networks from biopax files

Several metabolic databases store their data in biopax format (http://www.biopax.org/), e.g.

BioCyc and Reactome. You can create a metabolic network from a biopax file using the GDLCon-

verter .

For instance, you may download the lysine biosynthesis I pathway from http://metacyc.org/

in biopax format and save it into a file named lysine_pwy1.xml. You can then obtain a tab-delimited

metabolic network from this file using the command below (in one line). Note that the metabolic

network preserves the reaction directions indicated in the biopax file, that is irreversible reactions are

kept.

java graphtools.util.GDLConverter -i lysine_pwy1.xml

-o lysine.txt -O tab -I biopax -b -d

Option -O indicates the output format (tab-delimited), -I specifies the input format (biopax in this

case), -b flags that attributes required for the metabolic format should be set and -d tells the program

to construct a directed network.

The GDLConverter may be applied in general to interconvert networks in different formats.

24.3 Finding k-shortest paths

Pathways may be extracted from metabolic networks by enumerating the k-shortest paths between a set

of source compounds/reactions and a set of target compounds/reactions.

In metabolic networks, some compounds such as ATP or NADPH are involved in a large number of

reactions, thus acting as shortcuts for the path finding algorithm. However, paths crossing these highly

connected compounds are not biochemical relevant. In order to prevent the path finding algorithm to

traverse these compounds, the metabolic network should be weighted.

137

http://www.genome.jp/kegg/xml/
http://www.biopax.org/
http://metacyc.org/

For example, assume you have generated (24.2.2) or downloaded (24.2.1) a KEGG RPAIR network

stored in the file KEGG_RPAIR_undirected.txt. Given this network, we can list the three highest-ranked

lightest paths between aspartate (KEGG identifier: C00049) and lysine (KEGG identifier: C00047)

with the command below (in one line):

java -Xmx800m graphtools.algorithms.Pathfinder -g KEGG_RPAIR_undirected.txt

-s C00049 -t C00047 -y con -b -r 3 -f tab

where option -s specifies the source node (more than one can be given), -t the target node (as for

the source, more than one target can be specified),-f indicates the format of the input network (tab-

delimited), -r indicates the rank, option-y gives the weight policy to be applied (con sets the weight

of compounds to their degree and the weight of reactions to one) and -b flags that the input network is

metabolic.

This command will yield the following output (with KEGG RPAIR version 49.0):

INFO: Pathfinder took 5014 ms to perform its task.

; Experiment exp_0

; Pathfinding results

; Date=Fri Apr 30 16:34:27 CEST 2010

; ===============================

; INPUT

; Source=[C00049]

; Target=[C00047]

; Graph=KEGG_RPAIR_undirected.txt

; Directed=false

; Metabolic=true

; RPAIR graph=true

; CONFIGURATION

; Algorithm=rea

; Weight Policy=con

; Maximal weight=2147483647

; Exclusion attribute=ExclusionAttribute

; Rank=3

; REA timeout in minutes=5

; EXPLANATION OF COLUMNS

; Start node=given start node identifier

; End node=given end node identifier

; Path=path index

; Rank=rank of path (paths having same weight have

the same rank, though their step number might differ)

; Weight=weight of path (sum of edge weights)

; Steps=number of nodes in path

; Path=sequence of nodes from start to end node that forms the path

; ===============================

#start end path rank weight steps path

C00049 C00047 1 1 122.0 15 C00049->RP00932->C03082

->RP02107->C00441->RP02109->C03340->RP00740->C03972->RP03970->C03871

->RP02474->C00680->RP00907->C00047

C00049 C00047 2 2 126.0 15 C00049->RP00932->C03082

->RP02107->C00441->RP02109->C03340->RP00740->C03972->RP11205->C00666

->RP02449->C00680->RP00907->C00047

C00049 C00047 3 3 134.0 11 C00049->RP00116->C00152

->RP06538->C00151->RP01393->C00405->RP07206->C00739->RP00911->C00047

138

C00049 C00047 4 4 143.0 13 C00049->RP03035->C04540

->RP01395->C00152->RP06538->C00151->RP01393->C00405->RP07206->C00739

->RP00911->C00047

The format of the output can be changed to output the path list as a network. This network can then

be visualized using the PathwayDisplayer as explained in section 24.5.4.

To output the path list as a network in gml format, run the following command (in one line):

java -Xmx800m graphtools.algorithms.Pathfinder -g KEGG_RPAIR_undirected.txt

-s C00049 -t C00047 -y con -b -r 3 -f tab -T pathsUnion -O gml

-o asp_lys_paths.gml

The file asp_lys_paths.gml created in the current directory contains the network in gml format.

24.4 Linking genes to reactions

The main application of pathway extraction is to interpret a set of associated enzyme-coding genes. An

association can for example be co-expression in a microarray, co-regulation in an operon or regulon or

co-occurrence in a phylogenetic profile.

In this section, we will see how to link enzyme-coding genes to their reactions. This is not a straight-

forward task, as an N:N relationship exists between genes, EC numbers, reactions and reactant pairs.

24.4.1 Prerequisites

In order to link genes to reactions, the metabolic database needs to be installed. The installation of this

database is described in chapter “Metabolic Pathfinder and Pathway extraction" in the NeATweb server

install guide, which is available from the NeATweb server download section.

24.4.2 Linking genes of the isoleucine-valine operon to reactions

The isoleucine-valine operon (RegulonDB identifier: ilvLG_1G_2MEDA) in Escherichia coli is known

to contain enzymes of the isoleucine and valine biosynthesis pathway.

It consists of the following genes:

ilvL ilvG_1 ilvG_2 ilvM ilvE ilvD ilvA

These genes can be linked to KEGG reactant pairs using the command below (in one line):

java graphtools.util.SeedConverter -i ilvL/ilvG_1/ilvG_2/ilvM/ilvE/ilvD/ilvA

-I string -O eco -o ilv_operon_seeds.txt -r

Option -r flags that genes should be mapped to (main) reactant pairs, -O specifies the source or-

ganism of the genes, -i lists the genes and -I specifies the input format.

24.5 Predicting metabolic pathways

Given a set of seeds (compounds or reactions/reactant pairs) and a metabolic network, the task of the

pathway extraction tool is to extract a metabolic pathway that connects these seeds in the metabolic

network. The tool is quite generic and can be applied to any network and seed node set. However, it

has been tailored to metabolic pathway prediction.

139

24.5.1 Predicting a metabolic pathway for the isoleucine-valine

operon

Assume you have generated the seed input file from section 24.4.2 and the KEGG RPAIR graph as

described in section 24.2.2. The KEGG RPAIR graph is assumed to be stored in a tab-delimited file

named KEGG_RPAIR_undirected.txt. Then we can predict the pathway for the genes in the isoleucine-

valine operon with the following command (in one line):

java -Xmx800m graphtools.algorithms.Pathwayinference -g

KEGG_RPAIR_undirected.txt -i ilv_operon_seeds.txt -b -f tab

-y con -E Result -a takahashihybrid -U -o ilv_predicted_pathway.tab

where option -b specifies that the network is a metabolic network, -f indicates the input network

format (tab-delimited), -a specifies the algorithm to be used and -y indicates the weight policy to be

applied (con stands for connectivity, which means that compound nodes receive a weight corresponding

to their degree). Option -E is used to indicate the name of the folder where results are stored. This is

especially useful when several predictions are carried out in a row, because the output file in this case

reports the merged pathway. In the example above, the result folder serves to store the properties of the

predicted pathway (obtained with option -U).

A variant of the pathway extraction exploits the fact that we work with the KEGG RPAIR graph,

which allows us to link adjacent main reactant pairs (i.e. reactant pairs sharing a compound). This is

done in a preprocessing step (option -P):

java -Xmx800m graphtools.algorithms.Pathwayinference -g

KEGG_RPAIR_undirected.txt -i ilv_operon_seeds.txt -b -f tab -y con -P

-a takahashihybrid -o ilv_predicted_pathway_preprocessed.tab

24.5.2 Mapping reference pathways onto the predicted pathway

The predicted metabolic pathway can be mapped to reference pathways stored in the metabolic database.

This can be done as follows:

java graphtools.util.MetabolicPathwayProvider -i ilv_predicted_pathway.tab

-I tab -D KEGG -o ilv_predicted_pathway_mapped.tab

where option -D indicates that reference pathways should be taken from KEGG and -I indicates the

input format of the pathway. In the output pathway, nodes mapping to reference pathways are annotated

with a color and the name of the corresponding reference pathway. The program also outputs the color-

code of mapping reference pathways:

INFO: Legend

BurlyWood: Valine,_leucine_and_isoleucine_biosynthesis

orange: no match to any reference pathway

24.5.3 Annotating the predicted pathway

The nodes of a predicted metabolic pathway can be labeled with names (compounds), EC numbers

(reactions) and genes (reactions). The requires the metabolic database to be installed (see 24.4.1).

The command below annotates the metabolic pathway named ilv_predicted_pathway.tab and colors

its seed nodes (stored in the seed node file ilv_operon_seeds.txt) in blue:

140

java graphtools.util.GraphAnnotator -i ilv_predicted_pathway.tab -I tab

-o ilv_predicted_pathway_annotated.tab -O tab -k -b

-F ilv_operon_seeds.txt

Option -k tells GraphAnnotator to associate EC numbers to KEGG genes using the current KEGG

database, -b indicates that the pathway is a metabolic pathway, -I specifies the input format of the

pathway to be annotated (tab-delimited) and -F indicates the location of the seed node file.

24.5.4 Visualizing the predicted pathway

The visualization of a pathway requires graphviz to be installed, which is available here http://www.graphviz.org/

With graphviz installed, the pathway can be visualized as follows:

java graphtools.util.PathwayDisplayer -i ilv_predicted_pathway_annotated.tab

-I tab -p

Option -p tells PathwayDisplayer to generate the image with graphviz , -I indicates the input

format of the pathway to be displayed (tab-delimited).

141

http://www.graphviz.org/

25 References

1. van Helden, J., Andre, B. & Collado-Vides, J. (1998). Extracting regulatory sites from the

upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol

Biol 281(5), 827-42.

2. van Helden, J., André, B. & Collado-Vides, J. (2000). A web site for the computational analysis

of yeast regulatory sequences. Yeast 16(2), 177-187.

3. van Helden, J., Olmo, M. & Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic

downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res 28(4), 1000-

1010.

4. van Helden, J., Rios, A. F. & Collado-Vides, J. (2000). Discovering regulatory elements in

non-coding sequences by analysis of spaced dyads. Nucleic Acids Res. 28(8):1808-18.

5. van Helden, J., Gilbert, D., Wernisch, L., Schroeder, M. & Wodak, S. (2001). Applications

of regulatory sequence analysis and metabolic network analysis to the interpretation of gene

expression data. Lecture Notes in Computer Sciences 2066: 155-172.

6. van Helden, J. 2003. Prediction of transcriptional regulation by analysis of the non-coding

genome. Current Genomics 4: 217-224.

7. van Helden, J. 2003. Regulatory sequence analysis tools. Nucleic Acids Res 31: 3593-3596.

8. van Helden, J. 2004. Metrics for comparing regulatory sequences on the basis of pattern counts.

Bioinformatics 20: 399-406.

9. Simonis, N., J. van Helden, G.N. Cohen, and S.J. Wodak. 2004. Transcriptional regulation of

protein complexes in yeast. Genome Biol 5: R33.

10. Simonis, N., S.J. Wodak, G.N. Cohen, and J. van Helden. 2004. Combining pattern discovery

and discriminant analysis to predict gene co-regulation. Bioinformatics.

142

	Introduction
	Prerequisites
	Creating a directory for this tutorial
	Warning
	Configuring RSAT
	Adding RSATto your path

	Getting help
	Retrieving sequences
	Retrieving a single upstream sequence
	Combining upstream and coding sequence
	Retrieving a few upstream sequences
	Retrieving a larger list of upstream sequences
	Preventing the inclusion of upstream ORFs
	Getting information about genes
	Getting gene location, names and description
	Selecting gene by name or description
	Selecting genes by their description
	Adding selected fields to a list of gene

	Retrieving sequences of a random selection of genes
	Retrieving all upstream sequences
	Retrieving downstream sequences
	Inferring operons
	Inferring operon from a list of query genes
	Selecting custom return fields
	Operons with non-CDS genes
	Inferring all operons for a given organism
	Retrieving operon leader genes and inferred operon promoters
	Collecting all upstream regions from the query gene up to the leader gene
	Automatic inference

	Purging sequences

	Pattern discovery
	Requirements

	String-based pattern discovery
	Requirements
	oligo-analysis
	Counting word occurrences and frequencies
	Pattern discovery in yeast upstream regions
	Answers
	Assembling the patterns
	Alternative background models

	Genome-scale pattern discovery
	Detection of over-represented words in all the yeast upstream sequences
	Detection of under-represented words in bacterial genomes

	dyad-analysis

	String-based pattern matching
	dna-pattern
	Matching a single pattern
	Matching on both strands
	Allowing substitutions
	Extracting flanking sequences
	Changing the origin
	Matching degenerate patterns
	Matching regular expressions
	Matching several patterns
	Counting pattern matches
	Getting a count table

	Drawing graphs
	feature-map
	Converting dna-pattern matches into features
	Basic feature maps
	Refining the feature map
	Map orientation
	Export formats
	HTML maps
	Other options
	Feature converters

	XYgraph
	Exercise: drawing features from patser

	Markov models
	Transition frequency tables
	Oligonucleotide frequency tables
	Converting oligonucleotide frequencies into transition frequencies
	Bernoulli models

	Matrix-based Pattern discovery
	consensus (program developed by Jerry Hertz)
	Getting help
	Sequence conversion
	Running consensus

	Random expectation

	Matrix-based pattern matching
	Prerequisite
	patser (program developed by by Jerry Hertz)
	Getting help
	Extracting the matrix from the consensus result file
	Getting information about a matrix
	Detecting Pho4p sites in the PHO genes
	Detecting Pho4p sites in all upstream regions
	Interpretation of the P-value returned by patser
	Score distributions in promoter sequences

	Scanning sequences with matrix-scan
	Bernoulli background models
	Higher order (Markov) background models
	P-values
	Observed distribution of scores and site enrichment
	Scanning sequences with multiple matrices
	Detecting Cis-Regulatory element Enriched Regions (CRER)

	Computing the theoretical score distribution of a PSSM
	Estimating the quality of a PSSM

	Evaluating the quality of position-specific scoring matrices
	Prerequisite
	Why is important to estimate the quality of a matrix?
	How to estimate the theoretical distribution of a matrix?
	How to compare the theoretical distribution with the scores of the known binding sites?
	Distribution in full collections of promoters
	Negative control with random sequences
	Negative controls with permuted matrices
	ROC curves indicate the trade-off between sensitivity and false positive rate

	Generating random sequences
	Sequences with identically and independently distributed (IID) nucleotides
	Sequences with nucleotide-specific frequencies
	Markov chain-based random sequences

	Pattern comparisons
	Comparing patterns with patterns
	Comparing discovered patterns wirth a library of TF-binding consensus

	Comparing classes, sets and clusters
	Comparative genomics
	Genome-wise comparison of protein sequences
	Applying genome-blast between two genomes
	Applying genome-blast between a genome and a taxon

	Getting putative homologs, orthologs and paralogs
	Getting genes by similarities
	Obtaining information on the BLAST hits
	Selecting bidirectional best hits
	Selecting hits with more stringent criteria

	Retrieving sequences for multiple organisms
	Detection of phylogenetic footprints
	Phylogenetic profiles
	Detecting pairs of genes with similar phylogenetic profiles
	Comparing binary profiles with compare-profiles
	Comparing binary profiles with compare-classes

	Automated analysis of multiple gene clusters
	Input format
	Example of utilization
	Loading the results in a relational database
	Comparing programs
	The negative control: analyzing random gene selections
	Analyzing a large set of regulons

	Utilities
	gene-info
	On-the-fly compression/uncompression

	Downloading genomes
	Original data sources
	Requirement : wget
	Importing organisms from the RSATmain server
	Obtaining the list of organisms supported on the RSATserver
	Importing a single organism
	Importing a few selected organisms
	Importing all the organisms from a given taxon

	Installing additional genomes on your machine
	Adding support for Ensembl genomes
	Handling genomes from Ensembl

	Installing genomes and variations from EnsEMBL
	install-ensembl-genome
	Installing genomes from Ensembl genomes
	Downloading variations

	Importing genomes from NCBI BioProject
	Importing multi-genome alignment files from UCSC
	Warning: disk space requirement
	Checking supported genomes at UCSC
	Downloading multiz files from UCSC

	Installing genomes from NCBI/Genbank files
	Organization of the genome files
	Downloading genomes from NCBI/Genbank
	Parsing a genome from NCBI/Genbank
	Parsing a genome from the Broad institute (MIT)
	Updating the configuration file
	Checking the start and stop codon composition
	Calibrating oligonucleotide and dyad frequencies with install-organisms
	Installing a genome in your own account

	Installing genomes from EMBL files

	Regulatory variations (rSNPs and insertion/deletions)
	Requirements
	Detecting regulatory variations
	Scanning a selected variation with selected matrices
	Obtaining a list of disease-associated variation IDs
	Scanning a list of selected variations with a list of matrices
	Scanning all variations with a selected matrix

	Exercises
	Some hints
	Sequence retrieval
	Detection of over-represented motifs

	Using RSAT Web Services
	Introduction
	Examples of WS clients in Perl with SOAP::WSDL 2.00 (or above)
	Requirements
	Retrieving sequences from RSATWS

	Examples of WS clients in Perl with SOAP::WSDL 1.27 (or below)
	Requirements
	Getting gene-info from RSATWS
	Documentation
	Retrieving sequences from RSATWS
	Work flow using RSATWS
	Discover patterns with RSATWS
	Example of clients using property files
	Other tools in RSATWS

	Examples of WS client in java
	Same workflow as above with RSATWS

	Examples of WS client in python
	Get infos on genes having methionine or purine in their description, as above in perl

	Full documentation of the RSATWS interface

	Graph analysis
	Introduction
	Definition
	Some types of graphs
	Graph files formats

	RSAT Graph tools
	convert-graph
	graph-node-degree
	graph-neighbours
	compare-graphs
	graph-get-clusters
	compare-graph-clusters

	Pathway extraction tools
	Using pathway extraction tools
	Listing tools and getting help
	Abbreviating tool names
	Increasing JVM memory

	Obtaining metabolic networks
	Downloading MetaCyc and KEGG generic metabolic networks from the NeAT web server
	Building KEGG generic metabolic networks
	Building KEGG organism-specific metabolic networks
	Building metabolic networks from biopax files

	Finding k-shortest paths
	Linking genes to reactions
	Prerequisites
	Linking genes of the isoleucine-valine operon to reactions

	Predicting metabolic pathways
	Predicting a metabolic pathway for the isoleucine-valine operon
	Mapping reference pathways onto the predicted pathway
	Annotating the predicted pathway
	Visualizing the predicted pathway

	References

