
What can we find out about the 
horse gut metagenome? 
Background 

In order to elucidate the bacterial (and fungal) composition, structure and function of selected 
agro-ecosystems and/or environmental samples, a 16S rRNA gene metagenomics analysis 
can be undertaken. 

The overall strategy is summarized below: 

• Genomic DNA is extracted from the samples. 
• The 16S rRNA gene for bacterial and the 18S rRNA gene (or the ITS regions) for 

fungal detection are then amplified using general and specific primers targeting the 
selected regions. 

• The obtained amplicons are then sequenced using high-throughput sequencing 
facilities.   

Computational analysis 

Mothur is a tool, or set of tools, to analyse 16S rDNA sequencing data. SRA has some data 
from 16S sequencing of the horse guts here: 
http://www.ncbi.nlm.nih.gov/sra/?term=SRX333666 

Let’s get the data and split it out into fastq using the NCBI toolkit: 

#This step has been done for you 

wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByRun/sra/SRR/SRR952/SRR952153/SRR952153.sra fastq-dump --split-spot --
split-files SRR952153.sra 
 
#Download fastq input files from the course website 
 
wget  http://hpc.ilri.cgiar.org/beca/training/AdvancedBFX2015/metagenomics/data.zip 

This gives us two paired fastq files.  We’ll follow the Mothur MiSeq SOP to analyse the data. 

We start by creating a file, which details how the fastq files relate to one another.  We only 
have one group here, so this should be easy.  I created horse.files such that it contains: 

nano horse.file 

#Paste the following lines into horse.file 

SRR952153       SRR952153_1.fastq       SRR952153_2.fastq 

From there we can merge these using Mothur’s make.contigs command: 

module load mothur 

mothur "#make.contigs(file=horse.files, processors=2)" 



This outputs a lot to STDOUT, and this is the useful information: 

 

# You should see a number of output files:  

ls 

SRR952153_1.contigs.groups, SRR952153_1.contigs.report, 
SRR952153_1.scrap.contigs.fasta,	  SRR952153_1.trim.contigs.fasta, 
mothur.1442307697.logfile 

We can summarise the results like this: 

mothur "#summary.seqs(fasta=SRR952153_1.trim.contigs.fasta, processors=2)"                   
 

 

This step produces a “.summary” file which details the length of each read/contig. There are 
definitely some outliers here – we have 2x150bp reads, and whilst the majority of our data 
appear to be between 253-and 255, we also have one that is 155bp and another that is 300.   

We can remove these outliers: 

mothur "#screen.seqs(fasta=SRR952153_1.trim.contigs.fasta, 
group=SRR952153_1.contigs.groups, maxambig=0, minlength=250, maxlength=260)" 

At this point you may note some things: 

1. Mothur decides the output file names 
2. A logfile is output every time Mothur is run 
3. This can get confusing 

#We can clear up the log files safely I think: 



#rm *.logfile 

Let’s try and figure out what all of the files are: 

$> grep ">" SRR952153_1.trim.contigs.fasta | wc -l  
165749 
$> wc -l SRR952153_1.contigs.groups  
165749 SRR952153_1.contigs.groups 
$> grep ">" SRR952153_1.trim.contigs.good.fasta | wc -l   
127306 
$> wc -l SRR952153_1.contigs.good.groups  
127306 SRR952153_1.contigs.good.groups 

So we started off with 165749 merged reads, and the groups they belong to is listed in 
SRR952153_1.contigs.groups.  In this very simple example, there is only one group/dataset, 
but we will keep the groups file for now.  After removing contigs with ambiguous bases (N) 
and of a dubious length, we end up with 127306 reads and 
SRR952153_1.contigs.good.groups is the groups file for these contigs. 

At this stage, we can do a bit of clean up: 

rm SRR952153_1.scrap.contigs.fasta SRR952153_1.contigs.report\ 
SRR952153_1.contigs.groups SRR952153_1.trim.contigs.fasta \ 
SRR952153_1.trim.contigs.summary \SRR952153_1.trim.contigs.bad.accnos  
 
mv SRR952153_1.trim.contigs.good.fasta horse.m.s.fasta  
mv SRR952153_1.contigs.good.groups horse.m.s.groups  

What we’ve done is remove all previous files, as we probably won’t use them, and renamed 
those that are left.  So we have horse.m.s.fasta full of sequences and horse.m.s.groups which 
details which experimental groups the sequences belong to (still just one!).  The m stands for 
merged and the s for screened. 

The next stage is to get a list of unique sequences.  If we have 1000s of sequences that are 
identical in our dataset, it makes no sense to analyse them all individually.  It is best to 
analyse the unique sequence once, and keep a record of how many times it occurs and in 
which experimental groups. We do this like so: 

mothur "#unique.seqs(fasta=horse.m.s.fasta)" 

NOTE: This produces two files: horse.m.s.names and horse.m.s.unique.fasta. The fasta file is 
a fasta file of unique sequences. The “.names” file details which of the original reads are in 
the unique reads. The “.names” file has a row for each unique sequence. The first column is 
an ID chosen to represent that unique sequence, and the second column is a list of all read 
identifiers that are a member of that unique sequence. 

We can now run a command to keep a track of how often each unique sequence occurs in 
each experimental group: 

mothur "#count.seqs(name=horse.m.s.names, group=horse.m.s.groups)" 

This produces a single file, horse.m.s.count_table, which shows the counts across all 
groups.  We only have one group, so we only have that column in the file, alongside the total 
and the unique read identifier. 

We can clean up again, by deleting the logfiles and the files from the previous step, and 
renaming the unique file: 



rm horse.m.s.fasta horse.m.s.groups *.logfile  
mv horse.m.s.unique.fasta horse.m.s.u.fasta 

We can take a look at how many total and unique sequences we have, and some summary 
statistics: 

mothur "#summary.seqs(fasta=horse.m.s.u.fasta, count=horse.m.s.count_table)"                   
 

 

 

 

So we still have 127306 sequences, but we are working only with the 46214 unique ones. 

At this point in the Schloss SOP, they use the tool pcr.seqs to make a custom version of the 
SILVA database that includes only the region they know the reads should map to.  At this 
point, I don’t know this information, so I am going to skip that step and align to the whole 
SILVA database.  We do this by running: 

wget http://www.mothur.org/w/images/9/98/Silva.bacteria.zip 

gzip –d Silva.bacteria.zip 

mothur "#align.seqs(fasta=horse.m.s.u.fasta, reference=./silva.bacteria/silva.bacteria.fasta, 
processors=8)" 

When the command has finished, I have an error message: 

Some of the sequences generated alignments that eliminated too many bases, a list is 
provided in horse.m.s.u.flip.accnos. If you set the flip parameter to true mothur will try aligning 
the reverse compliment as well. 

Looking at horse.m.s.u.flip.accnos you can see that there are only 21 of these in the dataset.   

This thread also details the problem, but for now, I have no explanation for this.  When re-
running the align.seqs command with flip=TRUE, some of the reads had a better flipped 
alignment, and some of them had no good alignment at all.  We actually don’t want either in 
our dataset, so we carry on with the original command. 

So we have three files: horse.m.s.u.align, horse.m.s.u.align.report, horse.m.s.u.flip.accnos.   



The ‘.align’ file is the actual alignment, the .report file is a report of the reads and their hit, and 
the ‘.accnos’ file is a list of those reads that produced no good alignment.   

We can summarise what we have found from the alignment: 

mothur "#summary.seqs(fasta=horse.m.s.u.align, count=horse.m.s.count_table, 
processors=8)"  

 

So the vast majority of the reads align between 13862 and 23446. We could go back and 
create a custom version of the SILVA database using these co-ordinates, but we won’t.  We 
can also see that we have outliers, and we want to screen these out. 

First off, another quick clean up: 

rm *.logfile 

Then screen out sequences we don’t like: 

mothur "#screen.seqs(fasta=horse.m.s.u.align, count=horse.m.s.count_table, 
summary=horse.m.s.u.summary, start=13862, end=23446, maxhomop=8, processors=8)" 

This removes unwanted sequences from the ‘. align’, ‘.summary’ and the ‘.count_table’ files. 
We have a new pre-prefix in all of these filenames now: “good”.   

So let’s take a minute and clean up: 

rm *.logfile horse.m.s.u.align horse.m.s.u.align.report horse.m.s.u.flip.accnos \ 
horse.m.s.u.summary horse.m.s.count_table  
 
rename good g *good*  

You might want to keep the list of reads that were removed, but I don’t, so: 

rm horse.m.s.u.bad.accnos 

We now are left with .align, .summary and .count_table files and these are what we’ll work 
with.  At this stage, much of the alignment is spurious (as we aligned to the ENTIRE SILVA 
database), so we can trim it 

mothur "#filter.seqs(fasta=horse.m.s.u.g.align, vertical=T, trump=., processors=8)" 



From this we end up with horse.m.s.u.g.filter.fasta, which is an aligned fasta file of our 
sequences after being filtered (all 46013 of them).  We will now pre-cluster the reads to 
merge those that are similar to one another: 

mothur "#pre.cluster(fasta=horse.m.s.u.g.filter.fasta, count=horse.m.s.g.count_table)" 

This basically takes the current set of unique reads and collapses those that are similar to 
one another.  We end up with three files: horse.m.s.u.g.filter.precluster.fasta, 
horse.m.s.u.g.filter.precluster.count_table, horse.m.s.u.g.filter.precluster.SRR952153.map.  

The fasta and count_table files you will be familiar with.  The .map file describes the 
clustering, in a format I don’t entirely understand :-) 

We can do a quick clean up: 

rm *.logfile  
rm horse.m.s.u.g.filter.fasta horse.filter  
 
rename filter.precluster f.p *filter.precluster* 

The next stage is to use uchime to remove potential chimeras, and we need to find these and 
remove them from the .fasta file and the .count_table file: 

#Step takes long to run 
mothur "#chimera.uchime(fasta=horse.m.s.u.g.f.p.fasta, count=horse.m.s.u.g.f.p.count_table, 
dereplicate=t)" 

The above command finds the actual chimeras, and because we have given it the count file, it 
will remove the sequences from the count file – but somewhat confusingly, the chimeric 
sequences are still in the fasta file.  We need to run an extra command to remove them from 
the fasta file: 

mothur "#remove.seqs(fasta=horse.m.s.u.g.f.p.fasta, 
accnos=horse.m.s.u.g.f.p.uchime.accnos)" 

This produces horse.m.s.u.g.f.p.pick.fasta.  You may be interested in 
horse.m.s.u.g.f.p.uchime.accnos and horse.m.s.u.g.f.p.uchime.chimeras which relate to the 
chimeric sequences themselves, but that’s not for this post.  It’s now time for another cleanup: 

rm *.logfile  
rm  horse.m.s.u.g.f.p.fasta horse.m.s.u.g.f.p.count_table horse.m.s.u.g.f.p.count_table \ 
horse.m.s.u.g.f.p.uchime.chimeras horse.m.s.u.g.f.p.uchime.accnos  
 
mv horse.m.s.u.g.f.p.uchime.pick.count_table horse.m.s.u.g.f.p.u.count_table  
 
mv horse.m.s.u.g.f.p.pick.fasta horse.m.s.u.g.f.p.u.fasta  

We can have a brief look at what we have left: 

mothur "#summary.seqs(fasta=horse.m.s.u.g.f.p.u.fasta, 
count=horse.m.s.u.g.f.p.u.count_table)"   

Finally, we are ready to classfiy the sequences. We do this with the classift.seqs command: 

 
wget -N http://mothur.org/w/images/5/59/Trainset9_032012.pds.zip 
unzip -o Trainset9_032012.pds.zip 



mothur "#classify.seqs(fasta=horse.m.s.u.g.f.p.u.fasta, count=horse.m.s.u.g.f.p.u.count_table, 
reference=trainset9_032012.pds.fasta, taxonomy=trainset9_032012.pds.tax, cutoff=80, 
processors=8)"  

Now that everything is classified we want to remove our undesirables.   This assumes that the 
point of our experiment is to look at Bacteria, and given we are working with 16S data, we can 
probably assume this is the case.  So to remove Chloroplast, Mitochondria, unknown, 
Archaea and Eukaryota. Use the remove.lineage command: 

mothur "#remove.lineage(fasta=horse.m.s.u.g.f.p.u.fasta, 
count=horse.m.s.u.g.f.p.u.count_table, taxonomy=horse.m.s.u.g.f.p.u.pds.wang.taxonomy, 
taxon=Chloroplast-Mitochondria-unknown-Archaea-Eukaryota)"  

You will note that we now have a lot more files. All we really need are the latest taxonomy, 
fasta and count_table files. So let’s do another cleanup! 

rm *.logfile  
 
mv horse.m.s.u.g.f.p.u.pds.wang.pick.taxonomy horse.m.s.u.g.f.p.u.l.taxonomy  
 
mv horse.m.s.u.g.f.p.u.pick.fasta horse.m.s.u.g.f.p.u.l.fasta  
 
mv horse.m.s.u.g.f.p.u.pick.count_table horse.m.s.u.g.f.p.u.l.count_table  
 
rm *.pds.tree* *.pds.train* *.pds.wang*  

OTU Clustering 

Now we have the files we need, we can cluster them into OTUs. For this we will use the 
cluster.split command which will save on resources: 

mothur "#cluster.split(fasta=horse.m.s.u.g.f.p.u.l.fasta, 
count=horse.m.s.u.g.f.p.u.l.count_table, taxonomy=horse.m.s.u.g.f.p.u.l.taxonomy, 
splitmethod=classify, taxlevel=4, cutoff=0.15, processors=8)" 

This produces a single file: horse.m.s.u.g.f.p.u.l.an.unique_list.list – again, the format I do not 
entirely understand, but we use it in downstream analyses anyway.  If we had multiple 
groups, we would now make a summary table (called a “shared file”). We only have one 
group, but we will do this anyway: 

mothur "#make.shared(list=horse.m.s.u.g.f.p.u.l.an.unique_list.list, 
count=horse.m.s.u.g.f.p.u.l.count_table, label=0.03)" 

We probably also want to know the taxonomy for each of our OTUs. We can get the 
consensus taxonomy for each OTU using the classify.otu command: 

mothur "#classify.otu(list=horse.m.s.u.g.f.p.u.l.an.unique_list.list, 
count=horse.m.s.u.g.f.p.u.l.count_table, taxonomy=horse.m.s.u.g.f.p.u.l.taxonomy, 
label=0.03)" 

We can do some final clean up before looking at the results: 

rm *.logfile horse.m.s.u.g.f.p.u.l.an.unique_list.SRR952153.rabund  
 
rename an.unique_list otu *an.unique_list*  

The files we’re interested in are: 



head horse.m.s.u.g.f.p.u.l.otu.0.03.cons.taxonomy   
 
OTU     Size    Taxonomy Otu0001 45883   
Bacteria(100);Firmicutes(100);Bacilli(100);Lactobacillales(100);Streptococcaceae(100);Strept
ococcus(100); Otu0002 16301   
Bacteria(100);"Proteobacteria"(100);Gammaproteobacteria(100);"Enterobacteriales"(100);Ent
erobacteriaceae(100);unclassified(91); Otu0003 2752    
Bacteria(100);unclassified(100);unclassified(100);unclassified(100);unclassified(100);unclassi
fied(100); Otu0004 1525  
………. 

This tells you the OTU name, the size of it (i.e. how many times it occurred) and the 
taxonomic classification. As we only have one group, this is useful information for plotting and 
summarisation. 

head horse.m.s.u.g.f.p.u.l.otu.0.03.cons.tax.summary   
 
taxlevel         rankID  taxon   daughterlevels  total  SRR952153 0       0       Root    1       7314    
7314 1       0.1     Bacteria        15      7314    7314 2       0.1.1   "Actinobacteria"        1       75      
75 3       0.1.1.1 Actinobacteria  3       75      75 4       0.1.1.1.1       Actinomycetales 9       29      
29 5       0.1.1.1.1.1     Actinomycetaceae        2       14      14 6       0.1.1.1.1.1.1   
Actinomyces     0       2       2 6       0.1.1.1.1.1.2   Arcanobacterium 0       12      12 5       
0.1.1.1.1.2     Corynebacteriaceae      1       1       1  

 

This is more of a structured view of the taxonomy present, and how often each node occurs in 
each group. 

Finally, the shared file horse.m.s.u.g.f.p.u.l.otu.shared has one column for each OTU and one 
row for each group. This is hard to see in Linux, so we will manipulate it in R: 

$> R   
$> tax<-read.table(file=”	  horse.m.s.u.g.f.p.u.l.otu.shared”,	  sep=”\t”,header=T) 
$> tax <- par(mar=c(4,50,4,2))  
 
> barplot(tax$Size[50:1], horiz=TRUE, names=tax$Taxonomy[50:1], las=2)  

 



 

Some interesting stuff here – Firmicutes dominate, followed by Proteobacteria.  Third largest 
OTU is a bunch of bacteria that are essentially unclassified.  Then comes Verrucomicrobia, 
which have been previously described in soil, water and human faeces.  Then come the 
Bacteroides – personally I would have expected far more Bacteroides than are reported here 
as they are well known to be present in Equine faeces.  Further investigation is required! 


