
A (very) short
introduction to R

1 Introduction
R is a powerful language and
environment for statistical computing
and graphics. It is a public domain (a so
called “GNU”) project which is similar
to the commercial S language and
environment which was developed at
Bell Laboratories (formerly AT&T, now
Lucent Technologies) by John Chambers
and colleagues. The main advantages of
R are the fact that R is freeware and that
there is a lot of help available online. It
is quite similar to other programming
packages such as MatLab (not freeware),
but user-friendlier than programming
languages such as C++ or Fortran. You
can use R as it is, but for educational
purposes we prefer to use R in
combination with the RStudio interface
(also freeware), which has an organized
layout and several extra options. This
document contains explanations,
examples and exercises, which can also
be understood (hopefully) by people
without any programming experience.
Going through all text and exercises
takes about 1 or 2 hours. Examples of
frequently used commands and error
messages are listed on the last two pages
of this document and can be used as a
reference while programming.

2 Getting started
2.1 Install R
To install R on your computer, go to the
course website and download the version
suitable for your computer then install it
on your machine

http://hpc.ilri.cgiar.org/beca/training/Ad
vancedBFX2015/download.html

2.2 Install RStudio
To install RStudio, go to the course
website and download what is suitable
for your Operating system: Install it
http://hpc.ilri.cgiar.org/beca/training/Ad
vancedBFX2015/download.html

2.3 RStudio layout
The RStudio interface consists of several
windows (see Figure 1on page2).
• Bottom left: console window (also
called command window). Here you can
type simple commands after the “>”
prompt and R will then execute your
command. This is the most important
window, because this is where R
actually does stuff.
 • Top left: editor window (also called
script window). Collections of
commands (scripts) can be edited and
saved. When you don’t get this window,
you can open it with File → New → R
script. Just typing a command in the
editor window is not enough; it has to
get into the command window before R
executes the command. If you want to
run a line from the script window (or the
whole script), you can click Run or press
CTRL+ENTER to send it to the
command window.
 • Top right: workspace / history
window. In the workspace window you
can see which data and values R has in
its memory. You can view and edit the
values by clicking on them. The history
window shows what has been typed
before.
• Bottom right: files / plots / packages /
help window. Here you can open files,
view plots (also previous plots), install
and load packages or use the help
function.

2.4 Working directory
Your working directory is the folder on
your computer in which you are
currently working. When you ask R to
open a certain file, it will look in the
working directory for this file, and when
you tell R to save a data file or figure, it
will save it in the working directory.
Before you start working, please set your
working directory to where all your data
and script files are or should be stored.
Go to session or tools | Set Working
Directory | choose directory. Then
direct it to a folder on you computer

2.5 Libraries
R can do many statistical and data
analyses. They are organized in so-called
packages or libraries. With the standard
installation, most common packages are
installed. To get a list of all installed
packages, go to the packages window or
type library() in the console 2 window.

If the box in front of the package name
is ticked, the package is loaded
(activated) and can be used. There are
many more packages available on the R
website. If you want to install and use a
package (for example, the package
called “geometry”) you should: Install
the package: click install packages in the
packages window and type geometry or
type install.packages("geometry") in
the command window. Load the
package: check box in front of geometry
or type library("geometry") in the
command window.

3 Some first examples of R
commands

3.1 Calculator
R can be used as a calculator you can
just type your equation in the command
window after the “>”:

and R will give the answer

If you use brackets and forget to add the
closing bracket, the “>” on the command
line changes into a “+”. The “+” can also
mean that R is still busy with some
heavy computation. If you want R to quit
what it was doing and give back the “>”,
press ESC.

3.2 Workspace
You can also give numbers a name. By
doing so, they become so-called
variables which can be used later. For
example, you can type in the command
window:

You can see that a appears in the
workspace window, which means that R
now remembers what a is. You can also
ask R what a is (just type and ENTER in
the command window):

Or do calculations with a

If you specify a again, it will forget what
value it had before. You can also assign
a new value to a using the old one.

To remove all variables from R’s
memory, type

or click “clear all” in the workspace
window. You can see that RStudio then
empties the workspace window. If you
only want to remove the variable a, you
can type rm(a).

There other ways to define variables lets
try the below

4 Scalars, vectors and
matrices

Like in many other programs, R
organizes numbers in scalars (a single
number – 0-dimensional), vectors (a row
of numbers, also called arrays – 1-
dimensional) and matrices (like a table –
2- dimensional).

To define a vector with the
numbers 3, 4 and 5, you need the
function c(), which is short for
concatenate (paste together).

>	 10^2	 +	 36

[1]	 136

>a	 =	 4

>a	 	
[4]

>a	 *	 5	
[1]	 20

>a	 =	 a	 +	 10	
>a	
[1]	 14

>rm(list=ls())

>a	 =	 4	
>a	
[1]	 4	
	
>b	 <-‐	 5	
>b	
[1]5	
	
>assign(“c”,	 6)	
>c	
[1]6

>b=c(3,4,5)	
>b	
[1]	 3	 4	 5	

Vectors are the most basic data
structures. It is a sequence of data that
can either be numbers, characters and
also logical.
 Elements of vectors must be of
the same type and mode. “characters
must be enclosed in quotes”. NA
represents missing data. Do the below to
understand vectors more

4.1 Logical vectors
These are vectors with three possible
values TRUE, FALSE, NA. They are
generated by conditions.
List of logical operators:

• <, <=, >, >=,
• == for exact equality
• != for inequality
• & (and)
• | (or)

To retrieve or change the value of an
element in the vector use the index of the
values.

Logical vectors can be used to retrieve
data values

4.2 Factors
Factors are a type of character vector
that has its elements defined by groups.
Use factor() on a character vector to
create a factor

Array: multiply subscripted collections
of data entries
Matrix: is a 2-diemtional array, matrixes
are defined by using the matrix()
function or array function.

>	 v	 =	 c(4,2,3,8,2,2,5)	
>	 v	
[1]	 4	 2	 3	 8	 2	 2	 5	
>	 is(v)	
[1]	 “numeric”	 “vector”	
>	 x	 =	 c(“a”,”b”,”c”,”d”,”e”)	
>	 x	
[1]	 “a”	 “b”	 “c”	 “d”	 “e”	 	
>	 is(x)	
[1]	 “character”	 “vector”	
>	 y	 =	 c(4,2,3,8,2,2,NA,5)	
>	 y	
[1]	 4	 2	 3	 8	 2	 2	 NA	 5	
>y*5	
[1]	 20	 10	 15	 40	 10	 10	 NA	 25	

>x	 =	 1;	 y	 =	 2	
>z	 =	 x	 >	 y	
>z	
[1]	 FALSE	
>x<y	
>x>y	
>x+1	 ==	 y	

>	 v	 =	 c(4,2,3,8,2,2,5)	
>	 v[4]	
[1]	 8	
>	 v[4]=10	
>	 v	
[1]	 4	 2	 3	 10	 2	 2	 5	

>	 z	 =	 v<5	
>	 v[z]	
[1]	 4	 2	 3	 2	 2	

>	 x	 =	 c(“groupA”,	 “groupB”,	 “groupA”,	 “groupC”,	 	
+	 “groupC”,	 “groupB”,	 “groupA”,	 “groupA”)	
>	 x	 =	 factor(x)	
>	 x	
[1]	 groupA	 groupB	 groupA	 groupC	 groupC	
groupB	 groupA	 groupA	
Levels:	 groupA	 groupB	 groupC	
>	 levels(x)	
[1]	 groupA	 groupB	 groupC	 	
>	 table(x)	
x	
groupA	 groupB	 groupC	
	 	 	 4	 	 	 	 2	 	 	 	 2	

The dim() function can be used to
convert a vector to a matrix of data
entries
Matrix: is a 2-diemtional array, matrixes
are defined by using the matrix()
function or array function.
The dim() function can be used to
convert a vector to a matrix

Creating matrices using cbind() and
rbind(). Arguments to cbind must either
be vectors of any length or matrices with
same column size, same no of rows

4.3 Data frames
The drawbacks of matrices is that all the
values have to be the same type. A
dataframe is composed of vectors of the
same length but different modes.
Specific columns can be accessed using
the $ or traditional way of a matrix

• Dataframe$column
• Dataframe[,1]

>mat	 =	
matrix(c(4,12,1,5,21,7,10,7,2,19,24,3),	
nrow=4,	 ncol=3)	
	
>mat	
	 [,1]	 [,2]	 [,3]	
[1,]	 	 4	 	 	 21	 	 	 	 2	
[2,]	 12	 	 	 	 7	 	 	 19	
[3,]	 	 1	 	 	 10	 	 	 24	
[4,]	 	 5	 	 	 	 7	 	 	 	 3	
	
>class(mat)	
[1]	 “matrix”	
	
>mat[2,3]	
[1]	 19	
	
>x	 =	 c(4,12,1,5,21,7,10,7,2,19,24,3)	
	
>dim(x)=c(4,3)	
	

>bp	 =	 c(132,144,151,120,136)	
>ht	 	 =	 c(183,162,181,168,165)	
>wt	 =	 c(192,210,240,187,212)	 	
>mat	 =	 cbind(bp,	 ht,	 wt)	
>mat	
	 	 	 	 	 	 bp	 	 	 ht	 	 	 wt	
[1,]	 132	 	 183	 	 192	
[2,]	 144	 	 162	 	 210	
[3,]	 151	 	 181	 	 240	
[4,]	 120	 	 168	 	 187	
[5,]	 136	 	 165	 	 212	
	

>bp	 =	 c(132,144,151,120,136)	
>ht	 =	 c(183,162,181,168,165)	
>wt	 =	 c(192,210,240,187,212)	
>bg	 =	 c(“O”,”O”,”A”,”B”,”AB”)	
>df	 =	 data.frame(bg,	 bp,	 ht,	 wt)	
>df	
	 	 	 bg	 	 	 bp	 	 	 ht	 	 	 wt	

1 	 O	 	 132	 	 183	 	 192	
2 	 O	 	 144	 	 162	 	 210	
3 	 A	 	 151	 	 181	 	 240	
4 	 B	 	 120	 	 168	 	 187	
5 AB	 	 136	 	 165	 	 212	

	
>names(df)	
[1]	 “bg”	 “bp”	 “ht”	 “wt”	
	
>df$bg	
[1]	 O	 O	 A	 B	 AB	
	
>df$bp[4]	
[1]	 120	 	
	
>df[1,4]	
[1]	 192	
>summary(df)	
	 	 	
>rownames(df)	 =	
c(“p1”,”p2”,”p3”,”p4”,”p5”)	
>df	
	 	 	 bg	 	 	 bp	 	 	 ht	 	 	 wt	
p1	 	 O	 	 132	 	 183	 	 192	
p2	 	 O	 	 144	 	 162	 	 210	
p3	 	 A	 	 151	 	 181	 	 240	
p4	 	 B	 	 120	 	 168	 	 187	
p5	 AB	 	 136	 	 165	 	 212	
	

Lists: is a collection of objects. It can
contain vectors, matrices and data
frames of different length

4.4 Functions
These contain pre-written code that
performs some task; e.g. Sum is a
function that will give the sum, mean,
rnorm generates random numbers

5 Plots

R can make graphs the following is a
simple example

In the first line 100 random numbers are
assigned to variable x, which becomes a
vector for this plot.
In the second line, all these values are
plotted in a scatter plot in the plot
window.
Types of plots;
“p” – points
“l” – lines
“b” – both – lines and points
“c” – lines but not where points are
“o” – non overlapping points and lines
“h” – histogram-like vertical lines
“s” – draw lines as steps
“n” – draw only axes.

Try and change the type of plot severally
and see what you get.
Some more useful graphical arguments
are also
lty – line type (dashed, solid, dotted, etc)
lwd – line width
col – color of the plotted points
pch – style of points (circle, cross, start)
cex – scaling of point size and text
title() – add a title and subtitle
legend() – add a legend
xlab – label for x-axis
ylab – label for the y-axis

>a_list	 =	 list(bp,	 “Swansea	 Hospital”)	
>a_list	
[[1]]	
[1]	 132	 144	 151	 120	 136	
[[2]]	
[1]	 “Swansea	 Hospital”	
	
>a_list[[2]]	
[1]	 “Swansea	 Hospital”	
	
>a_list	 =	 list(bloodgroup=bp,	
bloodpress=bp,	 height=ht,	 weight=wt,	
hospital=“Swansea	 Hospital”,	
doctors=c(“Dr.	 Lewis”,	 “Dr.	 Hill”)	
>a_list	
$bloodgroup	
[1]	 “O”	 “O”	 “A”	 “B”	 “AB”	
$bloodpress	
[1]	 132	 144	 151	 120	 136	
$height	
[1]	 183	 162	 181	 168	 165	
$weight	
[1]	 192	 210	 240	 187	 212	
$hospital	
[1]	 “Swansea	 Hospital”	
$doctors	
[1]	 “Dr	 Lewis”	 “Dr.	 Hill”	

>sum	 (bp)	
[1]	 683	
	
>mean	 (bp)	
[1]	 136.6	
	
>rnorm(8)	
	

>x	 =	 rnorm(100)	
>plot(x)	
	

>plot(rnorm(100),	 type=“l”,	 col=“gold”)	
	

>plot(c(124,118,130,127,103,141,114),	 	
c(75,80,95,77,68,105,84),xlab="systolic",	
ylab="diastolic",	 xlim=c(90,150),	
ylim=c(60,	 110),	 lwd=3,	 col=”blue”,	 cex=4,	
pch=20)	
	

Histogram plot: another very simple
example is the classical histogram plot

Bar charts: draws a bar with height
proportional to the count in a table. Let's
make a barplot of both frequencies and
proportions. First, we use the scan
function to read in the data then we plot.
We will use the table command to create
summarized data, which is then bar

plotted

Pie Charts: the same data can be
studied using pie function

6 More on R packages
	
Bioconductor	 is	 an	 open	 source	 R	
software	 for	 bioinformatics.	 A	 lot	 of	
the	 tools	 needed	 for	 bioinformatics	
are	 available	 at	 within	 bioconductor	
	

6.1 How to install bioconductor
packages

	

	

>hist(rnorm(100))	
	

>y=scan()	
3	 4	 1	 1	 3	 4	 3	 3	 1	 3	 2	 1	 2	 1	 2	 3	 2	 3	 1	 1	 1	 1	 4	 3	 	
	
>barplot(table(y))	
	
>barplot(table(y)/length(y))	
	

>z=(table(y))	
	
>pie(z)	
	
>names(z)	 =	 c(“first”,	 “second”,”third”,”fourth”)	
	
>pie(z)	
	
>pie(z,	 col=c(“purple”,	 “green”,	 ”red”,	 yellow))	
	

>source(“http://bioconductor.org/bioclite.R”)	
>biocLite(“name	 of	 package”)	
	

7 Some useful references
7.1 Functions
This is a subset of the functions
explained in the R reference card.
Data creation
v read.table: read a table from file.

Arguments: header=TRUE: read first
line as titles of the columns; sep=",":
numbers are separated by commas;
skip=n: don’t read the first n lines.

v write.table: write a table to file
v c: paste numbers together to create a

vector
v array: create a vector, Arguments:

dim: length
v matrix: create a matrix, Arguments:

ncol and/or nrow: number of
rows/columns

v data.frame: create a data frame
v list: create a list
v rbind and cbind: combine vectors

into a matrix by row or column

Extracting data
v x[n]: the n th element of a vector
v x[m:n]: the mth to nth element
v x[c(k,m,n)]: specific elements
v x[x>m & x<n]: elements between m

and n
v x$n: element of list or data frame

named n
v [i,j]: element at ith row and jth

column
v [i,]: row i in a matrix

Information on variables
v length: length of a vector
v ncol or nrow: number of columns or

rows in a matrix
v class: class of a variable
v names: names of objects in a list
v print: show variable or character

string on the screen
v is.na: test if variable is NA
v as.numeric or as.character: change

class to number or character string

Statistics
v sum: sum of a vector (or matrix)
v mean: mean of a vector
v sd: standard deviation of a vector
v max or min: largest or smallest

element
v rowSums (or rowMeans, colSums

and colMeans): sums (or means) of
all numbers in each row (or column)
of a matrix. The result is a vector.

v quantile(x,c(0.1,0.5)): sample the
0.1 and 0.5th quantiles of vector x

Data processing
v seq: create a vector with equal steps

between the numbers
v rnorm: create a vector with random

numbers with normal distribution
v sort: sort elements in increasing

order
v t: transpose a matrix
v na.approx: interpolate (in zoo

package). Argument: vector with
NAs. Result: vector without NAs.

v cumsum: cumulative sum. Result is
a vector.

v rollmean: moving average (in the
zoo package)

v paste: paste character strings together
v substr: extract part of a character

string

Plotting
v plot(x): plot x (y-axis) versus index

number (x-axis) in a new window
v plot(x,y): plot y (y-axis) versus x (x-

axis) in a new window
v image(x,y,z): plot z (color scale)

versus x (x-axis) and y (y-axis) in a
new window

v lines or points: add lines or points to
a previous plot

v hist: plot histogram of the numbers
in a vector

v barplot: bar plot of vector or data
frame

v contour(x,y,z): contour plot

v abline: draw line (segment).
Arguments: a,b for intercept a and
slope b; or h=y for horizontal line at
y; or v=x for vertical line at x.

v curve: add function to plot. Needs to
have an x in the expression.
Example: curve(x^2)

v legend: add legend with given
symbols (lty or pch and col) and text
(legend) at location (x="topright")

v axis: add axis. Arguments: side –
1=bottom, 2=left, 3=top, 4=right

v mtext: add text on axis. Arguments:
text (character string) and side

v grid: add grid
v par: plotting parameters to be

specified before the plots.
Arguments: e.g. mfrow=c(1,3)):
number of figures per page (1 row, 3
columns); new=TRUE: draw plot
over previous plot.

Keyboard shortcuts
There are several useful keyboard
shortcuts for RStudio (see Help →
Keyboard Shortcuts):
v CRL+ENTER: send commands

from script window to command
window

v ↑ or ↓ in command window:
previous or next command

v CTRL+1, CTRL+2, etc.: change
between the windows

Not R-specific, but very useful keyboard
shortcuts:

v CTRL+C, CTRL+X and

CTRL+V: copy, cut and paste

v ALT+TAB: change to another
program window

v ↑, ↓, ← or →: move cursor

v HOME or END: move cursor to

begin or end of line

