RNA-Seq Analysis

Hadrien Gourlé - SLU

Introduction to RNA-Seq

- What can I do with RNA-Seq?
 - Differential expression
 - Discover new genes and isoforms
 - New Transcriptomes

Microarrays?

- Rna-Seq has:
 - a better detection range
 - Can detect new genes and isoforms
 - But the data is voluminous and hard to analyse

Some things to take into account

- Non uniform coverage
 - Biases in library construction
 - Uniqueness of genomic regions (repeats)
- Longer transcripts give more counts

Alignment to the genome

- Goal is to find where a read originated from
- Mapping to:
 - transcriptome (gene count)
 - genome (finding new transcripts)
- If organisms have introns: Spliced alignment!
 - tens of aligners available. We'll use tophat

Quantitation

- Cufflinks
- HT-Seq

 Given a BAM file and a list of genomic features (e.g. genes), counts how many reads map to each feature.