
Computer Laboratory 
Adopted from Martin Dahlö martin.dahlo@scilifelab.uu.se 

Software Introduction 

This laboratory will run some of the more popular next generation sequencing 
(NGS) analysis programs on small datasets, to serve as an example when you are 
doing your real analysis on real data sometime in the future. It will cover the more 
general steps of analysis that more or less every project will have to do. 

The lab will cover the following analysis types: 

• Exome and whole genome sequencing (WGS)  
o Alignment with Bowtie or BWA  
o Conversion of file types with Samtools  
o SNP calling with Samtools  
o SNP annotation with wAnnovar  

 
• Transcriptome sequencing  

o Alignment with Tophat  
o Transcript detection and quantification with Cufflinks  
o Differential expression with Cufflinks  

• De novo sequencing  
o Genome assembly with Velvet 

For the impatient, all the commands for each topic is written down in a file in 
each topics subdirectory. The file is called <topic name>-cmds.txt 

Links to program homepages: 

• ���Bowtie: http://bowtie-bio.sourceforge.net 
• BWA: http://bio-bwa.sourceforge.net 
• ���Tophat: http://tophat.cbcb.umd.edu ��� 
• Cufflinks: http://cufflinks.cbcb.umd.edu/ 
• ���Samtools: http://samtools.sourceforge.net ��� 
• Velvet: http://www.ebi.ac.uk/~zerbino/velvet/  
• Annovar: http://www.openbioinformatics.org/annovar/ 
• wAnnovar: http://wannovar.usc.edu  

Preparation 
Get the data 



First, you will have to get the datasets we will be working with. The lab instructor 
will show you how and where to download them. 

Unpack the data 

It will be a .tar.gz archive you will download, so the first thing you will do is to 
unpack the data: 

# downloaded the tutorial files . 

$ wget http://hpc.ilri.cgiar.org/beca/training/ngs-tutorial.zip 

# unpack the file 

$ unzip ngs-tutorial.zip 

# enter the unpacked tutorial directory 

$ cd ngs-tutorial 

Exome and WGS 
The analysis steps for exome and WGS are more or less identical in the beginning 
of the analysis, so we will cover them both in these steps. 

There are many different alignment programs to choose from, and we will cover 
two of them in this tutorial; Bowtie and BWA. They will both end up producing a 
BAM file, and after that the analysis is the same regardless of which aligner you 
used. 

You can do both Bowtie and BWA if you would like to. The datasets are so small 
that it should not take more than 1-2 minutes for each aligner to align them. 

The dataset in this part of the tutorial is a simulated single end 100bp reads WGS 
dataset from the adenovirus type 2 genome. Let's say we are interested in seeing if 
our strain of adenovirus differs from the previously annotated one. 

Alignment with Bowtie 

# Enter the wgs-exome directory 

$ cd wgs-exome 

The first thing you have to do with Bowtie is to index the reference genome you 
want to align to. The indexing allows the aligner to work much faster, and you 
only have to build the index if you do not already have it. 



#first we need to module load the program bowtie 

$ module load bowtie 

# build bowtie index 

$ bowtie-build reference/adenovirus.fasta ../index/adenovirus-bowtie 

This command will build the index for the adenovirus reference genome, which is 
placed in the subdirectory called references. The index will be saved in the index 
directory located in the root of the tutorial directory (ngs-tutorial/index). 

Once the index is finished building, it is time for the alignment step. 

# align reads with bowtie 

$ bowtie -S ../index/adenovirus-bowtie reads/reads.fq > 1bowtie/alignment.sam 

This command will tell Bowtie to output a SAM file (-S), use the index called 
adenovirus-bowtie located in the ../index directory, align the reads in the file 
reads.fq in the reads subdirectory, and save the result to the file alignment.sam in 
the 1bowtie subdirectory. 

Now, the reads are aligned and saved to a SAM file. The SAM format is a human 
readable text file which is very space inefficient compared to compressed binary 
formats. The BAM format is the same as the SAM format, the only difference 
being that it is compressed to save space. 

#first we need to module load the program samtools 

$ module load samtools 

# convert the sam file to a bam file 

$ samtools view -hSb 1bowtie/alignment.sam > 1bowtie/alignment.bam 

This command will tell samtools to open a SAM file (-S), print the SAM header (-
h), output the BAM format (-b), from the file 1bowtie/alignment.sam, and store 
the result in the file 1bowtie/alignment.bam 

To be able to access the BAM file quickly, most programs require the BAM file to 
be sorted and indexed. This is easily done with Samtools. 

# sort the bam file 

$ samtools sort 1bowtie/alignment.bam 1bowtie/alignment.sorted 



# index the bam file 

$ samtools index 1bowtie/alignment.sorted.bam 

# rename the index to the same name as the bam file, but with a .bai extension 

$ mv 1bowtie/alignment.sorted.bam.bai 1bowtie/alignment.sorted.bai 

You have now mapped your reads to the genome successfully with bowtie you can 
view the files by running ls on the 1bowtie folder  

#view the files created 

$ ls 1bowtie 

 

Alignment with BWA 

This section will describe how to align the reads with BWA. If you already have 
aligned the reads with Bowtie and have your 1bowtie/alignment.sorted.bam file, 
this part is not necessary (but still educational!). 

# Ensure you are in the wgs-exome directory 

$ cd wgs-exome 

#We need to load the bwa tool into our environment 

$ module load bwa 

Like with Bowtie, the first thing you have to do is to index the references genome. 
Unfortunately, there is no standard way of indexing genomes, so each alignment 
program does it their own way. 

# build the bwa index 

$ bwa index -p ../index/adenovirus-bwa -a is reference/adenovirus.fasta 

This command will tell BWA to save the index to the folder index in the nsg-
tutorial root and call it adenovirus-bwa, to use the indexing algorithm called is, 
and use the file references/adenovirus.fasta as the references genome. 

There are two different indexing algorithms in BWA; is and bwtsw. There are only 
two rules when choosing which algorithm to use: 



• is can only index genomes smaller than 2 gigabases  

• bwtsw can only index genomes larger than 10 megabases  

Other than that, it should not matter too much which you use.  

The step after indexing is alignment. ��� 

# align the reads using the index file 

 ���$ bwa aln ../index/adenovirus-bwa reads/reads.fq > 1bwa/alignment.sai ��� 

An odd thing with BWA is that it does not create a SAM file directly, instead it 
creates a .sai file which in turn can be used to create a SAM file.  

���# create a sam file from the alignment 

���$ bwa samse ../index/adenovirus-bwa 1bwa/alignment.sai reads/reads.fq > 
1bwa/alignment.sam  

This step will use the index file, .sai file, and the reads file to create a SAM file. 

The SAM file will, just like in the Bowtie alignment, have to be converted to a 
BAM file to allow downstream analysis to be done fast enough. 

# convert the sam to a bam file 

$samtools view -hSb  1bwa/alignment.sam > 1bwa/alignment.bam 
 
# sort the bam file 

$samtools sort 1bwa/alignment.bam 1bwa/alignment.sorted 

# index the bam file 

$samtools index 1bwa/alignment.sorted.bam 

# rename the created bai file to match the bam files name 

mv 1bwa/alignment.sorted.bam.bai 1bwa/alignment.sorted.bai 

 

 



SNP calling 

The next step is to locate all the SNPs in the data, and from this point on the 
analysis of the BAM files produced by either Bowtie or BWA is the same. Select 
one of the alignment.sorted.bam files to continue with. The following examples 
will be using the file from BWA because the name is shorter. 

To search for SNPs faster, Samtools has to index the references genome as well. 

# ensure you are in the right directory 

$cd 

$cd ngs-tutorial/wgs-exome/ 

# index the reference genome 

$ samtools faidx reference/adenovirus.fasta 

When the indexing is done, it is time to pick out all the sites where our sample 
differs from the reference genome. It creates a .fai file 

#module load bcf tools 

$module load bcftools 

# find all snps and send the result to bcftools to convert it to a .bcf file (binary 
format) (–uf uncompressed vcf formart, fasta reference) 

$ samtools mpileup -uf reference/adenovirus.fasta 1bwa/alignment.sorted.bam | 
bcftools view -bvcg - > 2samtools/var-bwa.unfiltered.bcf 

# since some sites might be false positives created by either chemistry or bad 
alignments, we want to avoid sites with abnormally high coverage. A decent value 
for this could be 2x average coverage. 

# the example below uses 100 as the cutoff. To use 523 instead, use -D523 etc. The 
output will be saved in .vcf format (human readable). 

$ bcftools view 2samtools/var-bwa.unfiltered.bcf | vcfutils.pl varFilter -D100 > 
2samtools/var- bwa.filtered.vcf 

 

 



The var-bwa.filtered.vcf file can be opened by any text editor, or imported into 
Excel etc for easy viewing. 

The next step after this would be to try to annotate the SNPs and see if they are 
previously know SNPs, if they are non-synonymous, creates a stop codon etc. A 
program called Annovar / SNPeff can be used for this, but the limited time in our 
tutorial will not allow this. However, there is some sample data in the 3annovar 
folder which you can look at. It is the same as our var-bwa.filtered.vcf file, but 
based on human samples. This can be uploaded to the Annovar web service, 
wAnnovar. (http://wannovar.usc.edu/) if you want to see the kind of information 
you could get from Annovar. 

 

De Novo Assembly 

The program used in this part of the tutorial will be Velvet. It will take all the 
reads you supply it with and try to assemble it to a complete genome. 

Velvet consists of two programs; velveth and velvetg. Velveth will take the files 
with reads you specify and prepare a dataset to be used by velvetg. Apart from the 
name of the read files, it also takes the output path and the hash length as 
arguments. 

The hash length is related to how velveth prepares the dataset, and has a significant 
impact on how good the final assembly by velvetg will be. Therefore it is good to 
try running your assemblies multiple times using different hash lengths. 

The dataset used in this tutorial are simulated dataset of WGS of adenovirus type 
2. There are 3 datasets; one with 10 000 100bp reads, one with 100 000 100bp 
reads, and one with 1000 450bp reads. 

#To start the tutorial, enter the denovo directory and run velveth. 

$cd ~/ngs-tutorial/denovo/ 

$module load velvet 

# run velveth for multiple hash lengths ���# a good coverage with short reads can get 
you a good way 

 $ velveth hash 21,33,2 -short -fastq reads/10000x100bp.fq 

This command will output each hash length in a directory called hash_<hash 
length> (this can be changed to anything really. Ex. $ velvet my_runs 21,33,2 



.....), run with multiple hash lengths (start with 21, stop when reaching 33, just 2 
steps each time, i.e. [21, 23, 25, 27, 29, 31]), and it will use the file 
10000x100bp.fq which is a fastq file containing short reads (I.e not long, 454 
reads). 

The next step is to run velvetg. It has to be run once per directory created by 
velveth, 6 of them in this tutorial (one per hash length). One could go about this by 
running: 

# the boring way of doing it 

$ velvetg hash_21 -exp_cov auto 

$ velvetg hash_23 -exp_cov auto  

$ velvetg hash_25 -exp_cov auto  

$ velvetg hash_27 -exp_cov auto  

$ velvetg hash_29 -exp_cov auto  

$ velvetg hash_31 -exp_cov auto 

Or we could write a single line using the bash for-loop: 

# the smart way of doing it 

$ for((n=21; n<33; n=n+2)); do velvetg hash_"$n" -exp_cov auto; done 

which will do the exact same thing. ���Velvetg has only one mandatory argument, 
which is which directory it can find the dataset prepared by velveth. In this case it 
is the directories name hash_<hash length>. ���There are many different extra 
arguments you can give to velvetg, and the Velvet manual (found on their 
homepage, http://www.ebi.ac.uk/~zerbino/velvet/) has good explanations of them 
all. 

This is where the art of de novo assembly comes in. All genomes are different, and 
every sequencing run is unique, so there are no default settings that will always 
give you the best assembly. You simply have to try different things and see what 
works best. In this tutorial I have added the argument -exp_cov auto which will try 
to approximate the expected average coverage. If you know that your genome 
should be somewhere around 2 gigabases long, and you have 1 000 000 150bp 
reads, your average coverage should be 1 000 000 * 150 / 2 000 000 = 75. Supply 
it if you know it, otherwise set it to auto. 



While running the velvetg command above, the screen will be flooded with 
information about each run. If you only want to know how many nodes (the 
minimum number of contigs that can be created using the reads. Ideally one contig 
per chromosome in the genome, which would be 1 contig for our viral genome.) 
you can use the following command instead: 

# same as above, but will only print out the 'scores' to the screen 

$ for((n=21; n<33; n=n+2)); do velvetg hash_"$n" -exp_cov auto; done | grep 
Final 

This command will take all the output from velvetg and only print the rows that 
contains the word Final. 

To see how the number of nodes can change depending on which dataset you run 
on, please run the reset.sh file to delete all the hash_<hash length> directories: 

# reset the tutorial 

$ sh reset.sh 

Try running the previous steps using the different datasets: 

# too much cover can ruin the assembly 

$ velveth hash 21,33,2 -short -fastq reads/100000x100bp.fq 

# run velvetg for each hash length 

$ for((n=21; n<33; n=n+2)); do velvetg hash_"$n" -exp_cov auto; done | grep 
Final 

This gives you the picture that more reads are not always a good things. If Velvet 
get too many reads, it can be confused and result in a worse assembly. This is also 
something you will have to experiment with and see which coverage suits your 
dataset, but try to keep between 20 and 100 fold coverage. 

To see how good it works only using 454 data: 

# reset the tutorial 

$ sh reset.sh 

# only a few long reads will not get you so far 

$ velveth hash 21,33,2 -long -fastq reads/1000x450bp.fq 



# run velvetg for each hash length 

$ for((n=21; n<33; n=n+2)); do velvetg hash_"$n" -exp_cov auto; done | grep 
Final 

And the best result is when combining short and long reads: 

# reset the tutorial 

$ sh reset.sh 

# a combination of good coverage short reads and a couple of long ones will be 
best 

$ velveth hash 21,33,2 -short -fastq reads/10000x100bp.fq -long -fastq 
reads/1000x450bp.fq 

# run velvetg for each hash length 

$ for((n=21; n<33; n=n+2)); do velvetg hash_"$n" -exp_cov auto; done | grep 
Final 

When you have gotten an assembly you are happy with, you can find the file with 
the assembled sequence in the directory of the most successful hash length, named 
contigs.fa. 

velvetg’ produces a “stats.txt” file that can be examined to look at the k-mer 
coverage across the genome - or, rather, across the nodes in the de Bruijn graph 
that has been constructed. One way to look at this is using a script that was 
contributed to the Velvet distribution - velvet-estimate-exp_cov.pl: 

#run velvet-estimate-exp_cov.pl 

$ /export/apps/velvet/1.2.10-kmer64/contrib/estimate-exp_cov/velvet-estimate-
exp_cov.pl hash_25/stats.txt 

The script gives you a sideways distribution plot, where the vertical axis is k-mer 
coverage, and the horizontal axis is the count of nodes that have that k-mer 
coverage (averaged across all k-mers that make up the node). It also gives you 
suggestions for setting two very important options to the velvetg tool: expected 
coverage (-exp_cov) and coverage cutoff (-cov_cutoff). You must use these two 
options when calling velvetg if you want to use certain simplification routines on 
the graph. In addition, you must supply the insert size of fragments in your paired-
end library (-ins_length) if you want to use paired end-specific routines in velvetg. 
Since we’re pretending that our reads aren’t paired for this first run, we’ll just set 



the -ext_cov and -cov_cutoff parameters as suggested by the Perl script we’ve just 
used, in a more optimized re-run of velvetg: 

$ for((n=21; n<33; n=n+2)); do velvetg hash_"$n" -exp_cov 9 –cov_cutoff 0 ; 
done | grep Final 

 

Transcriptome 
The RNAseq analysis in this tutorial will be Tophat and Cufflinks. Tophat is a 
program that uses the Bowtie aligner to align the reads, but also detect splice 
junctions. The reads covering a splice junction will be thrown away by ordinary 
aligners since there is nowhere in the references genome they fit in. Half the read 
will align to one exon, and the other half to another. Tophat on the other hand can 
find these reads and split them into smaller parts and align each part separately. 

The datasets in this part of the tutorial are two simulated single end 100bp 
RNAseq reads from the human chromosome 21. We can pretend the two datasets 
are samples from two different tissue types, or a medical trial with one treated 
patient and one untreated control, and we are interested to see if the gene 
expression is different between them. 

# like before, bowtie will need to have an indexed reference genome.  

$module load bowtie 

$module load tophat 

$module unload samtools/0.1.19 

$module load cufflinks 

# build bowtie index ��� 

$ bowtie-build reference/chr21.fa ../index/chr21 

When the index is built, align each of the sample to the reference genome. 

# align with tophat (use -p n where n=number of cores in the machine to speed 
things up (Ex: tophat -o tophat/0 -p 8 index/chr21 reads/0.fq)) 

$ tophat -o 1tophat/a ../index/chr21 reads/a.fastq  

$ tophat -o 1tophat/b ../index/chr21 reads/b.fastq 



This will put the output from the alignment of the reads in a.fastq in the directory 
1tophat/a, and the output from the alignment of the read in b.fastq in the directory 
1tophat/b. 

Since the default name of all the aligned reads from Tophat is accepted_hits.bam, 
it will be easy to confuse our two samples. The solution to this is to rename the 
files to something more descriptive. 

# rename files to avoid mixing them 

$ mv 1tophat/a/accepted_hits.bam 1tophat/a/a.bam  

$ mv 1tophat/b/accepted_hits.bam 1tophat/b/b.bam 

Now it is time to let Cufflinks look at the data. Cufflinks is a collection of 
programs, and the first step will take the alignments from Tophat and try to detect 
groups of reads that look like they belong to the same mRNA. It will even try to 
detect different splice forms of the same gene and try to quantify the individual 
splice forms expression. This step is done separately for each sample. 

# assemble transcripts with cufflinks 

$ cufflinks -o 2cufflinks/a 1tophat/a/a.bam  

$ cufflinks -o 2cufflinks/b 1tophat/b/b.bam 

When we have to transcripts from each sample, it is time to merge them info one 
single file which will be like the union of the transcript from the two samples. The 
expression from each sample will be stored separate columns in the file. The 
cuffmerge program takes a text file as input, which should contain the path of the 
files to be merged. 

We could write it manually, but that could be painfully boring if there are many 
files. It is much faster and convenient to get the computer to do it for us. 

# create list of files to merge 

$ find 2cufflinks/ -name transcripts.gtf > 3cuffmerge/merge.txt 

This command will search the directory 2cufflinks/ for files named transcripts.gtf 
and write the path to them. The > operator will take any output from the find 
program (i.e. the paths) and write it to the merged.txt file in the 3cuffmerge 
directory. Now, to run the merging program: 

# merge results from cufflinks 



$ cuffmerge -s reference/chr21.fa -o 3cuffmerge 3cuffmerge/merge.txt 

This will merge all the files specified in merge.txt in the 3cuffmerge directory, and 
include some information about the references genome. 

The next step is optional, but highly recommended. It will take annotations of the 
references genome in gtf format and try to match all detected transcript to it by 
looking at where they are located in the genome. If a match is found, the name of 
the gene will be included in the results. 

# annotate merged.gtf with chr21 refseq annotations (optional step) 

$ cuffcompare -o 4cuffcompare/merged -s reference/chr21.fa -r 
reference/chr21.gtf 3cuffmerge/merged.gtf 

This command will store all its output in 4cuffcompare, using merged as prefix for 
all the files, guided by the fasta reference genome and its gtf annotations, trying to 
assign genes to the transcripts found by the earlier steps. 

The last step in the analysis is to detect differential expression between the 
samples. The program cuffdiff will do that for us. 

# detect differential expression 

$ cuffdiff -o 5cuffdiff/ -T 4cuffcompare/merged.combined.gtf 1tophat/a/a.bam 
1tophat/b/b.bam 

This command will store all output in the 5cuffdiff directory, use the merged and 
annotated transcripts in merged.combined.gtf, and use the expression based on the 
reads in a.bam and b.bam. 

This analysis will produce many files in the 5cuffdiff directory, which you can 
read about in more detail in the programs manual, http://cole-trapnell-
lab.github.io/cufflinks/manual/  

To see the differential expression of all found transcripts, look in gene_exp.diff or 
isoform_exp.diff. They are tab separated text files with one row per found 
gene/transcript, which can easily be imported into Excel etc for further analysis or 
sorting. 

#Sort the *exp.diff files by p-value to bring the DE genes to the top 

$sort -g -k12 5cuffdiff/gene_exp.diff > 5cuffdiff/sorted_gene_exp.diff 

$sort -g -k12 5cuffdiff/isoform_exp.diff > 5cuffdiff/sorted_isoform_exp.diff 



Differential expression with edgeR 
DESeq is a Bioconductor R package for calculating differential expression. In 
addition to performing pairwise comparison (like a vs b), it can also handle multi-
factorial models (see their documentation for more on this). Let’s re-run our a vs b 
analysis with deseq. First we need to generate a table of raw counts. We’ll use the 
python program htseq-count: 
 
#load htseq 
 
$module load htseq 
 
$cd 6htseq 
 
$	
  cp ../1tophat/a/a.bam . 
 
$	
  cp ../1tophat/b/b.bam . 
 
$	
  cp ../4cuffcompare/merged.combined.gtf . 
 
#Run htseq to count how many reads map to each feature in dataset a 
 
$	
  htseq-count -f bam -r pos -s no a.bam merged.combined.gtf > a.counts 
 
#Run htseq to count how many reads map to each feature in dataset b 
 
$	
  htseq-count -f bam -r pos -s no b.bam merged.combined.gtf > b.counts 
 
You can take a look at (with less or head at the counts file) we now need to 
combine them into a table for edgeR 
 
#combine dataset a and b 
 
$	
  echo "id a b" | sed 's/ /\t/g' > raw_counts.txt 
 
$join a.counts b.counts | sed 's/ /\t/g' | grep -v "^_" >> raw_counts.txt 
 
#let us practice on edge R 
 
$module load R 
 
$R  
 



#Install edge R package from biconductor 
 
$source("http://bioconductor.org/biocLite.R") 
 
$biocLite("DESeq") 
 
#load the deseq R package 
 
$library(DESeq) 
 
#read in the count  data and run head to see it 
 
$counts = read.table("raw_counts.txt", header=T, row.names=1) 
 
#load in the experimental design provided in your enviroment 
 
$ expdesign = read.table("expdesign.txt") 
 
# the counts that were loaded as a data.frame are now used to create a new type of 
object: count data set 
 
$cds = newCountDataSet(counts, expdesign$condition) 
 
#Lets estimate the size factor based on the number of aligned reads from each 
sample. 
 
$cds = estimateSizeFactors(cds) 
 
#Estimate dispertion 
 
$cds = estimateDispersions( cds , method="blind", sharingMode="fit-only", 
fitType = "local") 
 
#visualise the dispersion 
 
dispersionFile = "Dispersion.pdf" 
pdf(dispersionFile) 
plotDispEsts( cds ) 
dev.off() 
 
#Finally to perform the negative binomial test on the dataset to identify 
differentially expressed genes. 
 



$res = nbinomTest( cds, "untreated","treated") 
 
#An MA plot allows us to see the fold change vs level of expression. In the plot, the 
red points are for genes that have FDR of 10%. 
 
maFile = "MAplot.pdf" 
pdf(maFile) 
plotMA(res) 
dev.off() 
 
#upregulated genes 
 
$resSigind = res[ which(res$padj < 0.1 & res$log2FoldChange > 1), ] 
 
#downregulated genes 
 
$resSigrep = res[ which(res$padj < 0.1 & res$log2FoldChange < -1), ] 
 
# save results as a table 
 
indoutfile = "Deseq.indresults.txt"  
repoutfile = "Deseq.represults.txt"  
 
write.table(resSigind,  
            indoutfile,  
            sep="\t",  
            col.names=T,  
            row.names=F, 
            quote=F) 
 
write.table(resSigrep,  
            repoutfile,  
            sep="\t",  
            col.names=T,  
            row.names=F, 
            quote=F) 
 
Finished 
 


