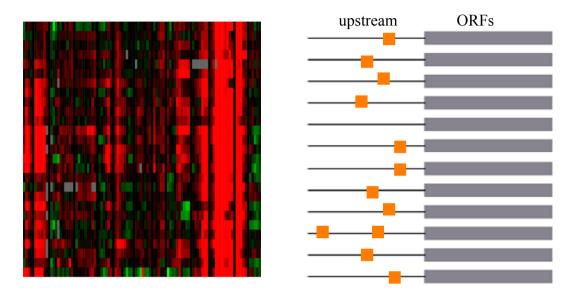

Mark Wamalwa BecA-ILRI Hub, Nairobi, Kenya http://hub.africabiosciences.org/ m.wamalwa@cgiar.org

7th – 18th September 2015 biosciences

eastern and central africa

Evolution and constraint on *cis*-regulatory motifs (focusing on TF binding sites)

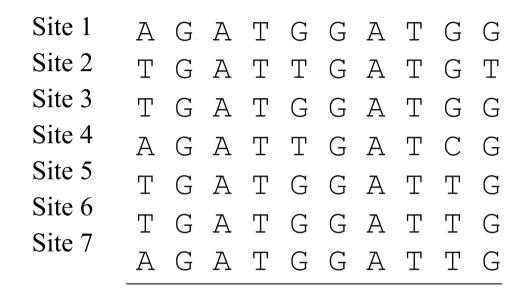


Many DNA binding proteins recognize specific (often short) DNA sequences.

Often bind 'degenerate' sequences, since some bases more important for contact.

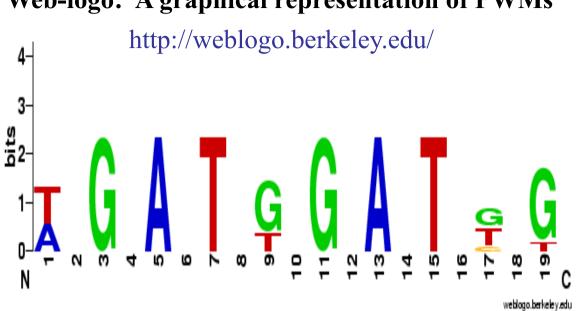
Many work cooperatively with other factors to bind.

Representing the set of TF binding sites *within* a genome

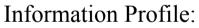


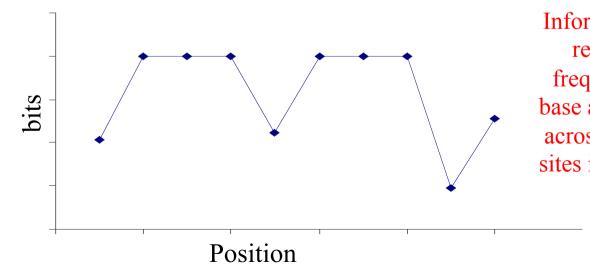
Site 1	А	G	А	Т	G	G	А	Т	G	G
Site 2	Т	G	А	Т	Т	G	А	Т	G	Т
Site 3	Т	G	А	Т	G	G	А	Т	G	G
Site 4	А	G	А	Т	Т	G	А	Т	С	G
Site 5	Т	G	А	Т	G	G	А	Т	Т	G
Site 6 Site 7	Т	G	А	Т	G	G	А	Т	Т	G
Sile /	А	G	А	Τ	G	G	А	Τ	Τ	G

IPUAC consensus:


WGATGGATNG

Position-weight matrices are a better representation

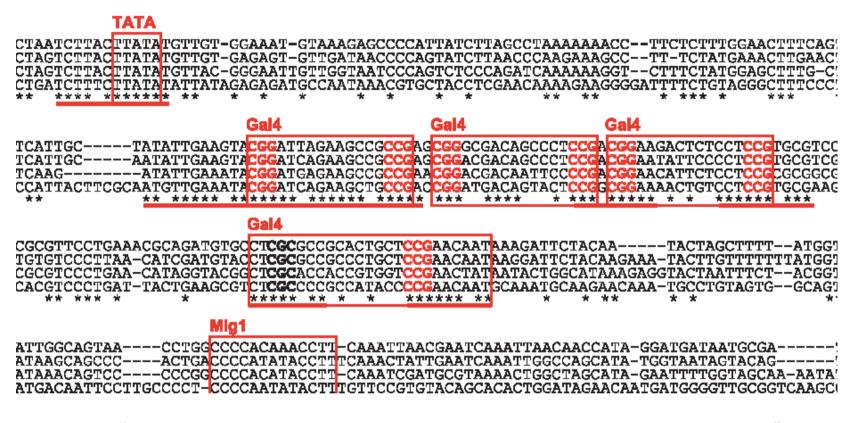



PWM represents frequencies of each base at each position in the motif

G	0	1.0	0	0	0.7	1.0	0	0	0.4	0.8
А	0.4	0	1.0	0	0	0	1.0	0	0	0
Т	0.6	0	0	1.0	0.3	0	0	1.0	0.4	0.2
С	0	0	0	0	0	0	0	0	0.2	0

Web-logo: A graphical representation of PWMs

Information content represents the frequency of each base at each position across ALL binding sites in an individual


To study the evolution of cis regulatory elements, we first need to identify them in genomes

Identification of *cis*-regulatory elements

Computational predictions:

- 1. Scan genome for matches to known matrix/consensus *problem is that there are many nonfunctional in the genome poor predictor of function*
- 2. Phylogenetic footprinting: overly-conserved sequences in multiple alignments *Variation within element is typically lower than surrounding 'nonfunctional' DNA*

Simplest case: stretches of very highly conserved sequence

Kellis *et al.* 2003 "Sequencing and comparison of yeast species to identify genes and regulatory elements" Sequenced 4 closely related *Saccharomyces* genomes & identified conserved sequences in multiple alignments of orthologous sequences from the four species.

Need species close enough to get reliable DNA alignment

Position of elements has to be conserved for detection (keep this in mind when we get to stabilizing selection at the end ...)

Identification of cis-regulatory elements

Computational predictions:

- 1. Scan genome for matches to known matrix/consensus problem is that there are many nonfunctional in the genome - poor predictor of function
- 2. Phylogenetic footprinting: overly-conserved sequences in multiple alignments Variation within element is typically lower than surrounding 'nonfunctional' DNA
- 3. Network/module approach: Focus on groups of co-regulated genes to increase statistical power Look for statistically significant enrichment of sequences in the group of upstream regions from a group of co-regulated genes

S. cerevisiae GENE GROUP	CONSENSUS SEQUENCE	S. cerevisiae BINDING FACTOR	S. cerevisiae	S. paradoxus	S. mikatae	S. kudriavzevii	S. bayanus	S. castellii	S. kluyveri	K. waltii	4. gossypii	C. albicans	M. grisea	N. crassa	A. nidulans	S. pombe
G1-phase cell cycle	ACGCG	MCB									È	Ě			È	
Amino acid biosynthesis		Gen4p														
Nitrogen source	GATAA	GATA factors														
Repressed stress	AAAAWTTTT	?														
Repressed stress	GCGATGAG	?														
Induced stress	CCCCT	Msn2/4p														
Proteasome	GGTGGCAAAA	Rpn4p														
Methionine biosynthesis	TCACGTG	Cbflp														
Methionine biosynthesis	TGTGGC	Met31/32p														
Sterol biosynthesis	TCGTWWWW U															
Oxidative stress defense	TTAGTMA	Yaplp														
Mitochondrial proteins	WTATWTACADG (3'															
Purine biosynthesis	TGACTC	Baslp														
Fkh2p targets	RTAAACAWW	Fkh1/2p														
Protein chaperones	TTCNNGAA	Hsflp														
G1-phase cell-cycle	CRCGAAA	SBF														
Late sporulation	GNCRCAAAW	Ndt80p							1							
Ribosomal proteins	ACACCCAYACAY	Raplp														
Respiration	CCAAT	Hap2/3/4p														
Phospholipid synthesis	CATGTGAAAT	Ino2/4p							1							
Mating	TGAAACA	Ste12p														
Early sporulation	TRGSCGSCKA	Imelp														
Fhl1p targets	TCCGTACA	?														
Respiration	CGGN{5}CGG	Haplp														
Puf4p targets	GTAYAHTA (3' UTR)															
	GTAAYADTA (3' UTF															
Leucine biosynthesis	GCCGN{4}CGGC	Leu3p														_
Iron-responsive	YRCACCCR	Aft1p											1			
M/G1-phase cell cycle	RRCCAGCR	Swi5p/Ace2p											1			
Proline biosynthesis	CGGN{10}CCG	Put3p														
Carbon response	CCCCR	Miglp														
	RTCRNNNNNACG								1							
Galactose biosynthesis	CGGN{11}CCG	Gal4p								1						
Mcm1p targets	CCNNNWWRGG	Mcm1p							1							
M/G1-phase cell cycle	CTAWWWWTAG	Rlm1p														
Reb1p targets	RTTACCCGG	Reblp														
Phosphate metabolism	CACGTG	Pho4p								1						
Zinc metabolism	CCYTNARGG	Zaplp						1								
Calcium-induced	TGGCTGCC	Crzlp														
Carbon response	CGGCGGCG	?														
RNA Pol subunits	TTGAAAA	?														
Skn7p targets	TGGCCCGG	?														
				p p	< 2e < 0.0							o > 0 <4 or	.01 thole	ogs as	ssign	ed

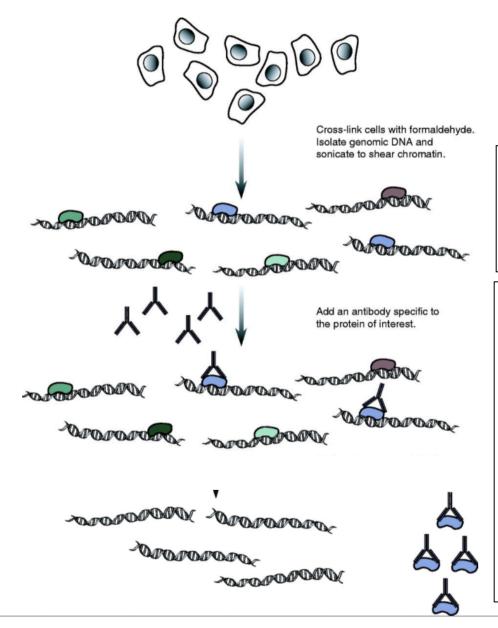
"Conservation and evolution of *cis*-regulatory systems in ascomycete fungi" Gasch *et al.* 2004 PLoS Biol

Results:

* Many conserved elements are connected to similar gene groups over 100's of millions of years.

* Some gene groups show show evidence of conserved co-regulation but evolved elements

* One example of co-evolved TF binding specificity and upstream sequence elements


Identification of cis-regulatory elements

Computational predictions:

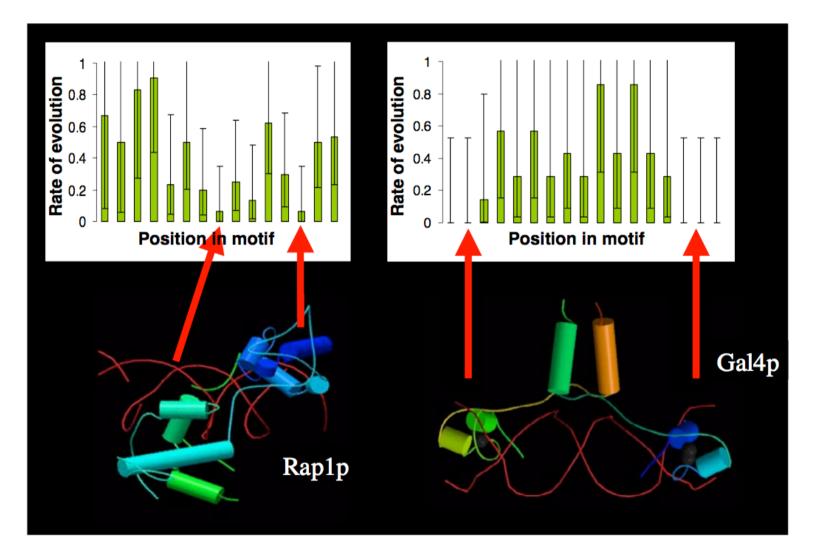
- 1. Scan genome for matches to known matrix/consensus *problem is that there are many nonfunctional in the genome poor predictor of function*
- 2. Phylogenetic footprinting: overly-conserved sequences in multiple alignments Variation within element is typically lower than surrounding 'nonfunctional' DNA
- 3. Network/module approach: Focus on groups of co-regulated genes to increase statistical power Look for statistically significant enrichment of sequences in the group of upstream regions from a group of co-regulated genes

Experimental:

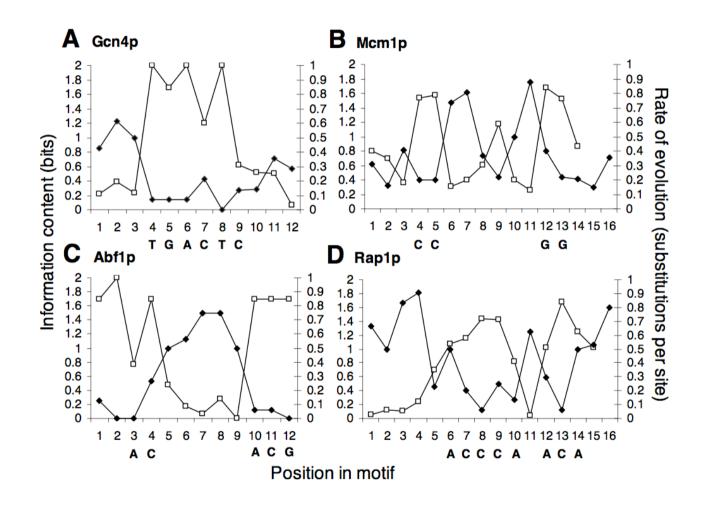
4. Chromatin immunoprecipitation (ChIP-chip or ChIP-seq) to identify binding loci genomewide can do ChIP analysis across species or in one species then compare computationally

Chromatin-immunoprecipitation coupled to deep sequencing:

ChIP-Seq:


- 1. Add crosslinker to cells
- 2. Lyse & shear DNA
- 3. IP protein of interest with antibody
- 4. Process recovered DNA & sequence

Lessons from ChIP


- Best/most DNA recovery usually means highest TF-DNA affinity
- Often TFs bind DNA despite no recognizable 'binding site' in the region (note ChIP identifies a region bound, not a site)
- Many "low-occupancy" (e.g. weakly recovered) sites may be real binding that is non-functional

1. Productive contact between protein-DNA (constraint on sequence of binding site)

Sites of contact evolve slower (under more constraint)

Variation within a site across species parallels variation across sites within a genome

Open symbols: Information content

Closed symbols: Substitutions per site

- 1. Productive contact between protein-DNA (constraint on *sequence* of binding site)
- 2. Distance from transcription start site (constraint on *position* of the binding site) *also may be restricted by placement of nucleosome-depleted regions*

- 1. Productive contact between protein-DNA (constraint on *sequence* of binding site)
- 2. Distance from transcription start site (constraint on *position* of the binding site) *also may be restricted by placement of nucleosome-depleted regions*
- 3. Spacing between elements if cooperative TF interactions (constraint of *position*)

- 1. Productive contact between protein-DNA (constraint on *sequence* of binding site)
- 2. Distance from transcription start site (constraint on *position* of the binding site) *also may be restricted by placement of nucleosome-depleted regions*
- 3. Spacing between elements if cooperative TF interactions (constraint of *position*)

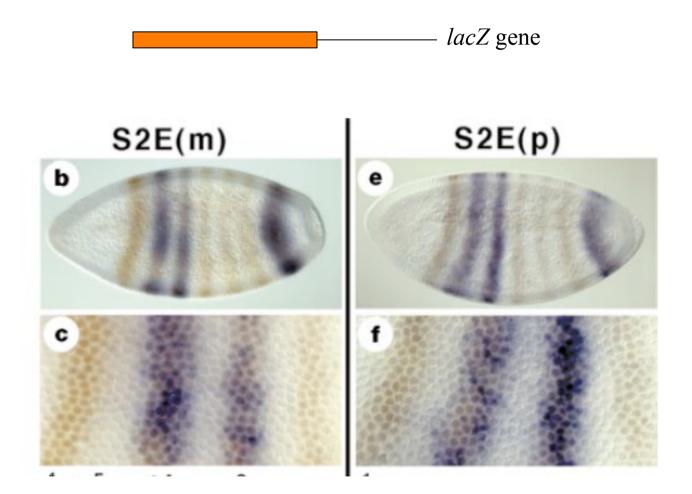
How do Regulatory Regions evolve?

- 1. Conserved regulation but evolution of regulatory regions (stabilizing selection)
 - Binding-site turnover: non-conserved sites but conserved regulation
 Seems to be very prevalent across many organisms

Ludwig et al. Nature. 2000

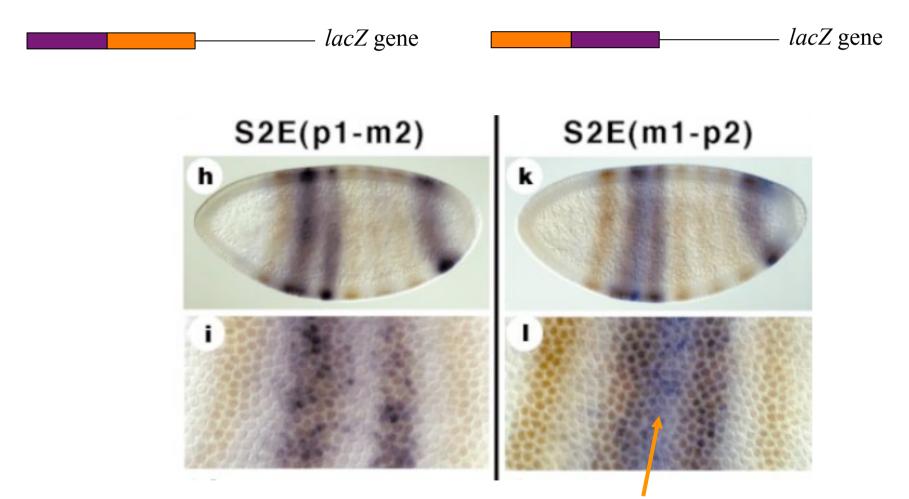
a

Four TFs act combinatorially To determine Eve2 patterns

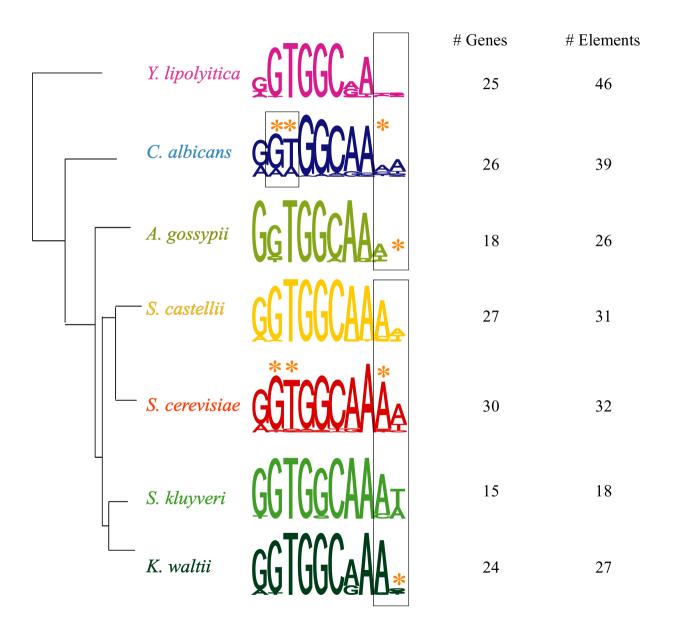

Eve stripe 2 expression highly conserved across species.

None of 16 binding sites in stripe 2 enhancers is perfectly conserved across 13 species

1	TGCATAACAATGGAACCCGAACCGTAACTGGGACAGATCGAAAA	mel pse
	***** =BC-5	pse
	KR-5 GCTGGCCTGGTTTCTCGCTGTGTGTGCCGTGTTAATCCGTTTGCCA	mel
	CTTGACGGTTCCTTGAC.GGTTCCCTGTGTGCTCTCTGCTCTG	pse
	_BC-4 GT-3	
	TCAGCGAGATTATTAGTCAATTGCAGTTGCAGCGTTTCGCTT	mel
	TCAGCAAGATTATTAGTCAATTTTCATATTTCCAGTCGAGTCGCAGTTTTGGTTTCACTT	pse
	TCGTCCTCGTTTCACTT	mel
	TCCTCCTTTGCCACTTCTTGCCTTGCCTCATGTGGATGCCGATGCCGATGCCGTTGCCGT	pse
	GT-2	mel
		pse
	TGCCGTTGCCGTTGCCGACCGACGAGTTAGATTTTATTGCAGCATCTTGAACAATCAACT	psc
	CA. GTTTGGTAACACGCTGTGCCATACTTTC	mel
	GGAATTTGGTAACATGCTGCGCGGCCTAACCCTGGAGATTGCTCTACTTTCGCCTCAATT	pse
	BLOCK-1 BC-3 KR-4	
	ATTTAGACGGAAT.CGAGGGACCCTGGACTATAATCGCACAACGAGACCGG	mel
	GAATCGGAGTTAGGCGGAAGACGGCGGACCCTTGCGACCAAGG	pse
	KR-4- * ** ** ** ** **	
	GTTGCGAAGTCAGGGCATTCCGCCGATCTAGCCATCGCCATCTTCTGCGGGCGTT	mel
	GTTGTCTCCTGGCCTCAGGAGTTTCCACAGTCAACGCTTTCGCTGGTTTGTTTATT	pse
	TGTTTGTTTGTTT, GCTGGGATTAGCCA, AGGGCTTGACTTGGAATCCAATCCTGATCC	mel
	TGTTTGTTTGTTTTAGCCAGGATTAGCCCGAGGGCTTGACTTGGAACCCGA.CCAAAGCC	pse
	СТАGCCCGATCCCAATCCCAATC	mel
	AAGGGCTTTAGGGCATGCTCAAGAGATCCCTATATCCCTATCCCTGTCGCGATCCCTAAA	pse
		BC-1=
	- GT-1 HB-3 =	KR-3.
	CCAATCCC.TTGTCCT.TTTCATTAGAAAGTCATAAAA.ACACATAATAATGATGTCG	mel
	CCGATCCCATTTGGCAATTTCATTAGAAAGTCATAAAACACACAC	pse
	-BC-1 KR-3	
	AAGGGATTAGGGGCGCGCAGGTCCAGGCAACGCAATTAACGGACTA 504	mel
	AAGGGATTAAGATTAAGGGACGCACACACAGGCAGCAGGATCATTAACGGACTA 691	


Ludwig *et al.* Nature. 2000 Evidence for stabilizing selection in a eukaryotic enhancer element.

Native D. pseudoobscura enhancer works well in D. melanogaster


Ludwig *et al.* Nature. 2000 Evidence for stabilizing selection in a eukaryotic enhancer element.

But hybrid enhancers (mel-pseudo or pseudo-mel from 5' to 3') are defective

They argue for stabilizing selection and binding-site turnover across the enhancer 20

Co-evolution of Rpn4 sites upstream proteosome genes & Rpn4 binding specificity

- 1. Productive contact between protein-DNA (constraint on *sequence* of binding site)
- 2. Distance from transcription start site (constraint on *position* of the binding site) *also may be restricted by placement of nucleosome-depleted regions*
- 3. Spacing between elements if cooperative TF interactions (constraint of *position*)

How do Regulatory Regions evolve?

- 1. Conserved regulation but evolution of regulatory regions (stabilizing selection)
 - Binding-site turnover: non-conserved sites but conserved regulation
 Seems to be very prevalent across many organisms
 - Co-evolution between binding site and TF specificity