

Namalwa
RI Hub, Nairobi, Kenya
hub.africabiosciences.org/
alwa@cgiar.org

 7^{th} – 18^{th} September 2015

biosciences

eastern and central afri

What can be learned from gene annotation?

- The genome is an organismal blueprint
- Annotation of protein coding genes provides a "parts list" for an organism
- Analysis of individual genes can be highly informative
 - Predicted molecular function
 - Biological significance of multi copy genes (paralogs)
 - Gene sequence facilitates experimental wet work
 - Gene expression analysis (sex specificity, tissue specificity, stage specificity)
 - Antibody production
 - In vitro protein expression for protein function analysis
 - Gene knockdown
 - Ectopic expression

Why compare genes/genomes?

- Historical record of evolutionary events
- Similarities and differences provide clues to speciation and differences in function
- Differences to watch for
 - Species specific genes
 - Sequence differences between orthologs are informative about
 - evolutionary relationships between species
 - evolutionary rate of a gene family can demonstrate purifying selection or positive selection
 - Functional differences between orthologus protein coding sequences
 - Gene family expansions/contractions (novel paralogs)
 - Gene localization relative to other genes (synteny) can indicate genomic rearrangements
- Correlate genetic differences to morphological, physiological and behavioral traits

How do you compare genes/genomes?

- Compare general features of whole genomes between species
 - Genome size
 - Nucleotide composition A/T to G/C ratios
 - Large scale features such as the presence of repetitive sequences/ transposable elements
 - Number of gene orthologs shared between species
- Focus on genomic features associated with biological function
 - Development
 - Plant Immunity
 - Metabolism
 - Molecular signaling
 - Symbiosis

- Reproduction
- Chemosensation
- Host seeking
- Housekeeping

Comparative Analysis Pipeline

- Choose a gene of interest from Rice, A. thaliana or related characterised organism
- Identify gene homologs/orthologs in other species by homology based BLAST analysis
- Obtain protein and nucleotide sequences for putative gene homologs or orthologs
- Generate alignments to determine similarity and identity between homologous sequences and identify orthologs and paralogs

 Analyse genomic loci to compare gene structure (exon/intron structure), synteny of surrounding genes, correct gene models

noosing a gene of interest

- Choose gene of interest from related characterised organism (Rice, A. thaliana)
- Identify gene homologs/orthologs in other species by homology based BLAST analysis
- Obtain protein and nucleotide sequences for putative gene homologs or orthologs
- Generate alignments to determine similarity and identity between homologous sequences and identify orthologs and paralogs

 Analyse genomic loci to compare gene structure (exon/intron structure), synteny of surrounding genes, correct gene models

- Chosen based on characterized function in an organism as described in the literatur
- Identified by experimental evidence (such as RNA-Seq)

Sequences for genes/proteins of interest can be obtained from a variety of location

The Rice Annotation Project

http://rapdb.dna.affrc.go.jp/
Genomic database for *Oryza sativa*ssp. japonica cv.

Rice Genome Annotation Project

http://rice.plantbiology.msu.edu/
index.shtml

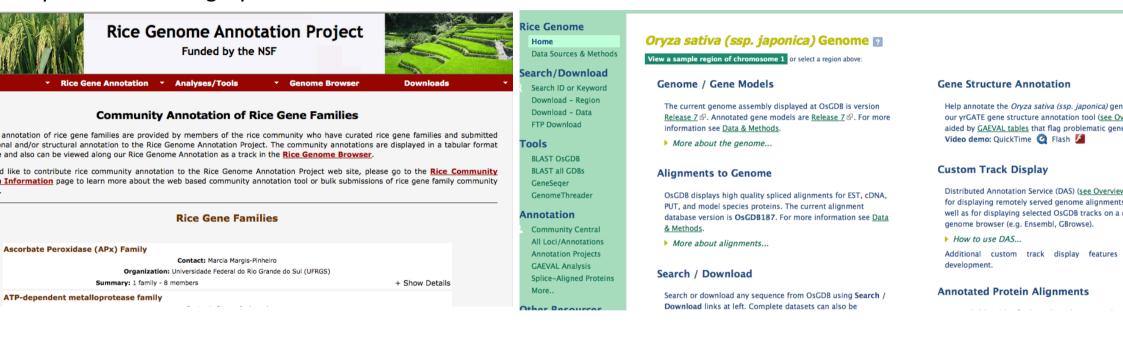
Rice Genome Annotation Project Database and Resource

National Center for Biotechnology Information NCBI

www.ncbi.nlm.nih.gov
US national resource for molecular biology information

Finger Millet gene annotation tables

Annotation Tables


Tables containing the identifiers and annotations for genes annotated in the *Finger Millet* genome.

Uniprot/TrEMBL

Curated protein database at Eurpean Molecular Biology Labs

noosing a gene of interest

ch by Functional category at RGAP

Genome Annotation Project

//rice.plantbiology.msu.edu/ tation_community_families.shtml

base of *Rice* genes and genomes

Gene of interest identified by differential express (RNA-Seq)

mologus/Orthologus Gene Identification

- •Choose gene of interest from related characterised organism (Rice, A. thaliana)
- Identify gene homologs/orthologs in other species by homology based BLAST analysis
- Obtain protein and nucleotide sequences for putative gene homologs or orthologs
- Generate alignments to determine similarity and identity between homologous sequences and identify orthologs and paralogs

 Analyse genomic loci to compare gene structure (exon/intron structure), synteny of surrounding genes, correct gene models Sequences for BLAST analysis can be downloaded from your database of choice suc as RAP-DB, http://rice.plantbiology.msu.edu or obtained from local files (Finger Millet predicted proteome + Finger millet predicted transcriptome)

>my gene of interest pep:NOVEL_protein_coding
MTLLDLVHERNQLTMKLCIIFTVLAVAANITTALRAFAVIKNMLDCHERLGINEEDLMVIQDLSDIKAASEYTPGQQCSIYCQSEAYGFTRRGQ
KWFMRKQPRIAQKYNLDKVFQNCK RYATDTCDGPIHLAQCAQQYPLQAGDRNP

BLAST Results Reveal Multiple Hits Across the *Glossina* Genomes (No significant *Musca* hits)

Ricei	Sorghum Bicolor	A. thaliana
GAUT029311-PA	GBRI010920-PA	GMOY005874-PA GMOY005875-PA
GAUT029310-PA	GBRI010919-PA	
GAUT029308-PA	GBRI010924-PA	GMOY005876-PA
	GBRI010929-PA	

otain Sequences of Interest

- •Choose gene of interest from related characterised organism (Rice, A. thaliana)
- Identify gene homologs/orthologs in other species by homology based BLAST analysis

- Obtain protein and nucleotide sequences for putative gene homologs or orthologs
- Generate alignments to determine similarity and identity between homologous sequences and identify orthologs and paralogs

Sequences can be downloaded from your database of choice such as RAP-DB, http://rice.plantbiology.msu.edu or obtained from local files (Finger Millet predicted proteome + Finger millet predicted transcriptome)

 Analyse genomic loci to compare gene structure (exon/intron structure), synteny of surrounding genes, correct gene models

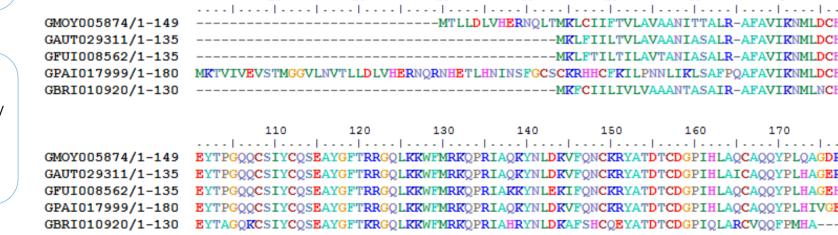
Best hits against RCOY005874

>GMOY005874:GMOY005874-RA peptide: GMOY005874-PA pep:NOVEL_protein_coding MTLLDLVHERNQLTMKLCIIFTVLAVAANITTALRAFAVIKNMLDCHERLGINEEDLMVIQDLSDIKA ASEYTPGQQCSIYCQSEAYGFTRRGQLKKWFMRKQPRIAQKYNLDKVFQNCK RYATDTCDGPIHLAQCAQQYPLQAGDRNP

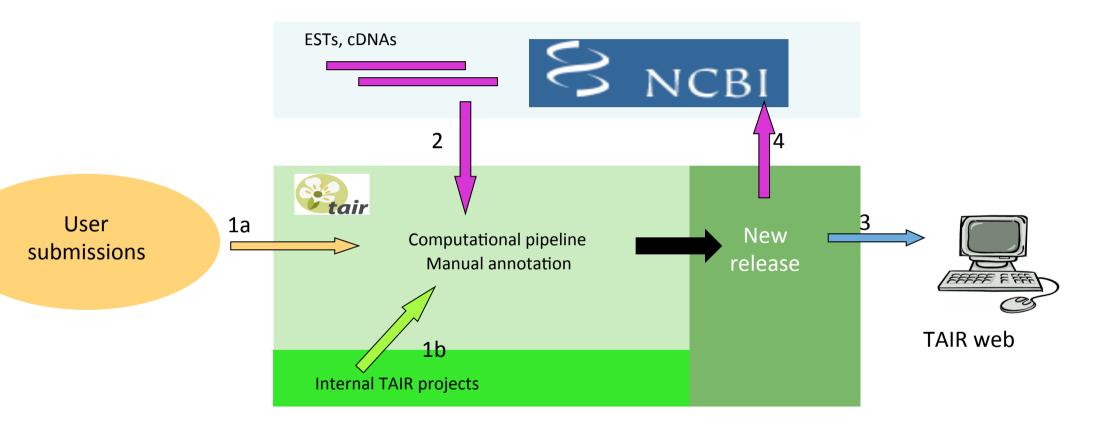
aliana

>GAUT029311:GAUT029311-RA peptide: GAUT029311-PA pep:_protein_coding MKLFIILTVLAVAANIASALRAFAVIKNMLDCHERLGISEEDLMVVQDLSDIKSASEYTP GQQCSIYCQSEAYGFTRRGQLKKWFMRKQPRIAQKYNLDKVFQNCKRYATDTCDGPIHLA ICAQQYPLHAGERNL

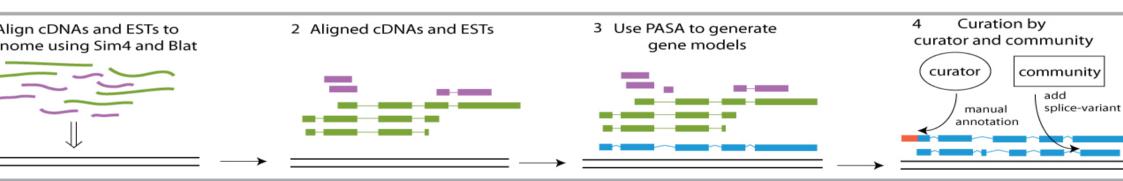
num bicolor

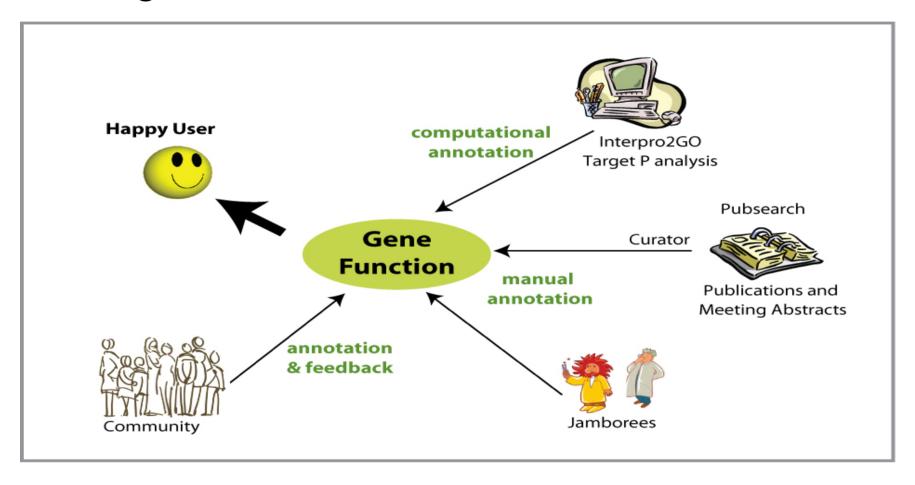

>GBRI010920:GBRI010920-RA peptide: GBRI010920-PA pep:_protein_coding MKFCIILIVLVAAANTASAIRAFAVIKNMLNCHERLGISEDDLTVVQDLSDVKAPSEYTA GQKCSIYCQSEAYGFTKRGQLKKWFMRKQPRIAHRYNLDKAFSHCQEYATDTCDGPIQLA RCVQQFPMHA

- •Choose gene of interest from related characterised organism (Rice, A. thaliana)
- •Identify gene homologs/ orthologs in other species by homology based BLAST analysis


- Obtain protein and nucleotide sequences for putative gene homologs or orthologs
- Generate alignments to determine similarity and identity between homologous sequences and identify orthologs and paralogs

 Analyse genomic loci to compare gene structure (exon/ intron structure), synteny of surrounding genes, correct gene models


Generate Alignments to determine Identity/Similarity


Web server Example: Generating & curating gene models at TAIR

Generating & curating gene models at TAIR

Functional gene annotation

- •Choose gene of interest from related characterised organism (Rice, A. thaliana)
- Identify gene homologs/ orthologs in other species by homology based BLAST analysis

- Obtain protein and nucleotide sequences for putative gene homologs or orthologs
- Generate alignments to determine similarity and identity between homologous sequences and identify orthologs and paralogs

 Analyse genomic loci to compare gene structure (exon/ intron structure), synteny of surrounding genes, correct gene models

Use WebApollo for gene structure analysis and gene model correction

WebApollo Tutorial

The WebApollo instances for the genomes can be accessed from the following links.

Finger Millet

<u>Rice</u>

Maize

A. <u>Thaliana</u>

- WebApollo can be used to examine gene models, exon/intron structure
- Can also be used to edit gene models if they are erroneous

Tools Provided for Local Analysis

- We have provided the installation files for programs that can be used to extract, manipulate and analyze data from the sequence databases
- The installation files can be found here

http://hpc.ilri.cgiar.org/beca/training/FingerMillet2015/

- The programs include
 - Bioedit/UGENE
 - PC based sequence viewing and analysis program
 - Can perform alignments and local BLAST analyses
 - All tsetse data has been provided as BLAST databases
 - Instructions for setting up BioEdit with WINE on a Mac can be found <u>here</u>.
 - Integrated Genome Browser
 - Sequence/Genome viewing software for PC, Mac and Unix
 - Can display large scaffolds with the annotation data from Vectorbase
 - MEGA 6.0
 - Popular alignment and phylogenic analysis software for PC and Mac

nnotation Goals + Groups

- Follow your interests/passion!
- Group up with people interested in the same topic
- Identify, annotate and compare genes of interest
- Summarize and explain interesting findings to the group

Instructions for Metadata Collection Template

Course Website:

http://hpc.ilri.cgiar.org/beca/training/FingerMillet2015/ http://hpc.ilri.cgiar.org/beca/training/FingerMillet2015/ program.html