
Advanced	 Genomics	 -‐	 Bioinforma2cs	 Workshop	

Mark	 Wamalwa	
BecA-‐ILRI	 Hub,	 Nairobi,	 Kenya	
h#p://hub.africabiosciences.org/	
m.wamalwa@cgiar.org	

7th – 18th September 2015

Lecture Overview	

•  What	 is	 R	 and	 why	 use	 it?	
•  Se<ng	 up	 R	 &	 RStudio	 for	 use	
•  Calcula@ons,	 func@ons	 and	 variable	 classes	
•  File	 handling,	 plo<ng	 and	 graphic	 features	
•  Sta@s@cs	
•  Packages	 and	 wri@ng	 func@ons	 	
	

What is ?

•  “R is a freely available language and
environment for statistical computing and
graphics”

•  Much like & , but bette !

4	

	 Overview	
•  R is a comprehensive statistical and graphical

programming language and is a dialect of the
S language:

1988 - S2: RA Becker, JM Chambers, A Wilks
1992 - S3: JM Chambers, TJ Hastie
1998 - S4: JM Chambers

•  R: initially written by Ross Ihaka and Robert
Gentleman at Dep. of Statistics of U of
Auckland, New Zealand during 1990s.

•  Since 1997: international “R-core” team of 15

people with access to common CVS archive.

Why use ?

•  SPSS and Excel users are limited in their
ability to change their environment. The way
they approach a problem is constrained by
how Excel & SPSS were programmed to
approach it

•  The users have to pay money to use the
software

n  R	 users	 can	 rely	 on	 func@ons	 that	 have	 been	
developed	 for	 them	 by	 sta4s4cal	 researchers	 or	
create	 their	 own	
	

n  They	 don’t	 have	 to	 pay	 money	 to	 use	 them	
	

n  Once	 experienced	 enough	 they	 are	 almost	 unlimited	
in	 their	 ability	 to	 change	 their	 environment	

 ‘s Strengths

•  Data management & manipulation
•  Statistics
•  Graphics
•  Programming language
•  Active user community
•  Free

•  Not very user friendly at start
•  No commercial support
•  Substantially slower than programming

languages (e.g. Perl, Java, C++)

 ‘s Weaknesses

Lecture Overview

•  What is R and why use it?
•  Setting up R & RStudio for use
•  Calculations, functions and variable classes
•  File handling, plotting and graphic features
•  Statistics
•  Packages and writing functions

Installing

•  Go to R homepage:
https://www.r-project.org/

Choose	 a	 server	

Installing Rstudio

•  “RStudio is a… integrated development
environment (IDE) for R”

•  Install the “desktop edition” from this link:
http://www.rstudio.org/download/

•  http://hpc.ilri.cgiar.org/beca/training/
AdvancedBFX2015/download.html

Installing Rstudio

Using RStudio

Script	
editor	

View	 help,	
plots	 &	 files;	
manage	
packages	

View	 variables	 in	
workspace	 and	
history	 file	

R	 console	

•  Create your working directory
•  Open a new R script file

Set Up Your Workspace

Lecture Overview

•  What is R and why use it?
•  Setting up R & RStudio for use
•  Calculations, functions and variable classes
•  File handling, plotting and graphic features
•  Statistics
•  Packages and writing functions

•  Operators take values (operands),
operate on them, and produce a new
value

•  Basic calculations (numeric operators):
–  + , - , / , * , ^

•  Let’s try an example. Run this:
– (17*0.35)^(1/3)

Before you do…

 - Basic Calculations

Script	 editor	

R	 console	

Click	 here	 /	
Ctrl+enter	 to	
run	 code	 in	
RStudio	

Use	 “#”	 to	 write	
comments	 (script	
lines	 that	 are	
ignored	 when	

run)	 	

•  All R operations are performed by functions

•  Calling a function:
> function_name(x)

•  For example:
> sqrt(9)
[1] 3

•  Reading a function’s help file:
 > ?sqrt
Also, when in doubt – Google it!

 - Basic Functions

View	 help,	
plots	 &	 files;	
manage	
packages	

17	

Data Types

R has a wide variety of data types
including scalars, vectors
(numerical, character, logical),
matrices, dataframes, and lists.

•  A variable is a symbolic name given to
stored information

•  Variables are assigned using either ”=”
or ”<-”

> x<-12.6
> x
[1] 12.6

 Variables

Vectors
a <- c(1,2,5.3,6,-2,4) # numeric vector
b <- c("one","two","three") # character vector
c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE)

#logical vector
Refer to elements of a vector using subscripts.
a[c(2,4)] # 2nd and 4th elements of vector

•  A vector is the simplest R data structure. A numeric vector is a single
entity consisting of a collection of numbers.

•  It may be created:

–  Using the c() function (concatenate) :

x=c(3,7.6,9,11.1)
> x
[1] 3 7.6 9 11.1

–  Using the rep(what,how_many_times) function (replicate):

x=rep(10.2,3)

–  Using the “:” operator, signifiying a series of integers

x=4:15

 Variables - Numeric Vectors

•  Character strings are always double quoted

•  Vectors made of character strings:
> y=c("I","want","to","go","home")
> y
[1] "I" "want" "to" "go" "home"

•  Using rep():
> rep("bye",2)
[1] "bye" "bye"

•  Notice the difference using paste() (1 element):
> paste("I","want","to","go","home")
[1] "I want to go home"

 Variables - Character Vectors

•  Logical; either FALSE or TRUE

•  > 5>3
[1] TRUE

•  > x=1:5
> x
[1] 1 2 3 4 5
> x<3
[1] TRUE TRUE FALSE FALSE FALSE
z=x<3

 Variables - Boolean Vectors

RStudio – Workspace &
History

•  Let’s review the ‘workspace’ and
‘history’ tabs in RStudio

View	 variables	 in	
workspace	 and	
history	 file	

•  Our vector: x=c(101,102,103,104)

•  [] are used to access elements in x

•  Extract 2nd element in x
> x[2]
[1] 102

•  Extract 3rd and 4th elements in x
> x[3:4] # or x[c(3,4)]
[1] 103 104

Manipulation of Vectors

•  > x
[1] 101 102 103 104

•  Add 1 to all elements in x:
> x+1
[1] 102 103 104 105

•  Multiply all elements in x by 2:
> x*2
[1] 202 204 206 208

Manipulation of Vectors

More Operators

•  Comparison operators:
– Equal ==
– Not equal !=
– Less / greater than < / >
– Less / greater than or equal <= / >=

•  Boolean (either FALSE or TRUE)

– And &
– Or |
– Not !

•  Our vector: x=100:150

•  Elements of x higher than 145
> x[x>145]
[1] 146 147 148 149 150

•  Elements of x higher than 135 and lower than
140
> x[x>135 & x<140]
[1] 136 137 138 139

Manipulation of Vectors

•  Our vector:
 > x=c("I","want","to","go","home")

•  Elements of x that do not equal “want”:
> x[x != "want"]
[1] "I" "to" "go" "home"

•  Elements of x that equal “want” and “home”:
> x[x %in% c("want","home")]
[1] "want" "home"

Manipulation of Vectors

Note:	 use	 “==”	 for	 1	 element	 and	 “%in%”	 for	 several	 elements	

 Variables – Matrices

All columns in a matrix must have the same mode(numeric,
character, etc.) and the same length.

General format
mymatrix <- matrix(vector, nrow=r, ncol=c,

byrow=FALSE,dimnames=list(char_vector_rownames,
char_vector_colnames))

byrow=TRUE indicates that the matrix should be filled by
rows. byrow=FALSE indicates that the matrix should be
filled by columns (the default). dimnames provides optional
labels for the columns and rows.

•  A matrix is a table of a different class

•  Each column must be of the same class
(e.g. numeric, character, etc.)

•  The number of elements in each
 row must be identical

 Variables – Matrices

n  Accessing	 elements	 in	 matrices:	

¨ x[row,column]
¨ The	 ‘Height’	 column:	
> x[,”Height”] # or:
> x[,2]

¨ Note:	 you	 cannot	 use	 “$”	
> x$Weight	 	
	

 Variables – Matrices
generate a 5 x 4 numeric matrix

y<-matrix(1:20, nrow=5,ncol=4)
 rnames <- c("R1", "R2","R3","R4","R5")
 cnames <- c("C1", "C2","C3","C4")
 y<-matrix(1:20, nrow=5,ncol=4,
byrow=TRUE,dimnames=list(rnames, cnames))

another example
cells <- c(1,26,24,68)
rnames <- c("R1", "R2")
cnames <- c("C1", "C2")
mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,
dimnames=list(rnames, cnames))

#Identify rows, columns or elements using subscripts.
y[,4] # 4th column of matrix

y[3,] # 3rd row of matrix
y[2:4,1:3] # rows 2,3,4 of columns 1,2,3

•  A data frame is simply a table

•  Each column may be of a different class
(e.g. numeric, character, etc.)

•  The number of elements in each
 row must be identical

 Variables – Data Frames
d <- c(1,2,3,4)
e <- c("red", "white", "red", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)
mydata <- data.frame(d,e,f)
names(mydata) <- c("ID","Color","Passed")

#variable names
There are a variety of ways to identify the elements of a

dataframe .

myframe[3:5] # columns 3,4,5 of dataframe
myframe[c("ID","Age")] # columns ID and Age from dataframe

myframe$X1 # variable x1 in the dataframe

•  A data frame is simply a table

•  Each column may be of a different class
(e.g. numeric, character, etc.)

•  The number of elements in each
 row must be identical

 Variables – Data Frames

age gender disease
50 M TRUE
43 M FALSE
25 F TRUE
18 M TRUE
72 F FALSE
65 M FALSE
45 F TRUE

n  Accessing	 elements	 in	 data	 frame:	

¨ x[row,column]
¨ The	 ‘age’	 column:	
> x$age # or:
> x[,”age”] # or:
> x[,1]

¨ All	 male	 rows:	
> x[x$gender==“M”,]	 	
	

Lists
An ordered collection of objects (components). A list

allows you to gather a variety of (possibly unrelated)
objects under one name.

example of a list with 4 components -
a string, a numeric vector, a matrix, and a scaler
w <- list(name="Fred", mynumbers=a, mymatrix=y,
age=5.3)

example of a list containing two lists
v <- c(list1,list2)

Exercise
•  Construct the character vector ‘pplNames’

containing 5 names: “Srulik”, “Esti”,
”Shimshon”, “Shifra”, “Ezra”

•  Construct the numeric vector ‘ages’ that
includes the following numbers: 21, 12 (twice),
35 (twice)

•  Use the data.frame() function to construct
the ‘pplAges’ table out of ‘pplNames’ &
‘ages’

•  Access the ‘pplAges’ rows with ‘ages’ values
greater than 19

Lecture Overview

•  What is R and why use it?
•  Setting up R & RStudio for use
•  Calculations, functions and variable classes
•  File handling, plotting and graphic features
•  Statistics
•  Packages and writing functions

•  For example: analysis of a gene expression file

•  Workflow:

–  Save file in workspace directory
–  Read / load file to R
–  Analyze the gene expression table

•  305 gene expression reads in 48 tissues (log10 values

compared to a mixed tissue pool)

–  Values >0 à over-expressed genes
–  Values <0 à under-expressed genes

•  File includes 306 rows X 49 columns

Wo king With a File

•  Read file to R

–  Use the read.table() function

–  Note: each function receives input (‘arguments’) and produces

output (‘return value’)

–  The function returns a data frame

–  Run:
> geneExprss = read.table(file = "geneExprss.txt",
sep = "\t",header = T)

–  Check table:
> dim(geneExprss) # table dimentions
> geneExprss[1,] # 1st line
> class(geneExprss) # check variable class

–  Or double click on variable name in workspace tab

File Handling - ead File

Plotting - Pie Chart

•  What fraction of lung genes
are over-expressed?

•  What about the under-
expressed genes?

•  A pie chart can illustrate our
findings

1

2

34

5

6

7

8 9

10

Using the pie() Function

•  Let’s regard values > 0.2 as over-
expressed

•  Let’s regard values < (-0.2) as under-
expressed

•  Let’s use Length() à retrieves the
number of elements in a vector

> up = length (geneExprss$Lung [geneExprss$Lung>0.2])
> down = length (geneExprss$Lung [geneExprss$Lung<(-0.2)])
> mid = length (geneExprss$Lung [geneExprss$Lung<=0.2 &

geneExprss$Lung>=(-0.2)])
> pie (c(up,down,mid) ,labels = c("up","down","mid"))

n  More	 on	 saving	 plots	 to	 files	 in	 a	 few	 slides…	

Plotting - Scatter Plot

•  How similar is the gene
expression profile of the
Hippocampus (brain) to
that of that of the Thalamus
(brain)?

•  A scatter plot is ideal for the
visualization of the
correlation between two
variables

Using the plot() Function

•  Plot the gene expression profile of
Hippocampus.brain against that of
Thalamus.brain

•  > plot (geneExprss
$Hippocampus.brain, geneExprss
$Thalamus.brain, xlab="Hippocampus",
ylab="Thalamus")

Plotting – Bar Plot

•  How does the
expression profile of
“NOVA1” differ across
several tissues?

•  A bar plot can be used to
compare two or more
categories

Using the barplot() Function

•  Compare “NOVA1” expression in Spinalcord, Kidney,
Heart and Skeletal.muscle by plotting a bar plot

•  Sort the data before plotting using the sort() function

•  barplot() works on a variable of a matrix class

•  > tissues = c ("Spinalcord", "Kidney",
"Skeletal.muscle", "Heart")
>barplot(as.matrix(geneExprss[143,tissues]
))",tissues]))

More Graphic Functions to Keep in
Mind

•  hist()

•  boxplot()

•  plotmeans()

•  scatterplot()

Save Plot to File - RStudio

•  Create a .PNG file
n  Create	 a	 .PDF	 file	 	

•  Before running the visualizing function, redirect
all plots to a file of a certain type

– jpeg(filename)
– png(filename)
– pdf(filename)
– postscript(filename)

•  After running the visualization function, close
graphic device using dev.off() or
graphcis.off()

Save Plot to File in

n  For	 example:	
	

> geneExprss = read.table(file = "geneExprss.txt", sep =
"\t",header = T)

> tissues = c ("Spinalcord", "Kidney",

"Skeletal.muscle", "Heart")

> pdf("Nova1BarPlot.PDF")
> barplot(as.matrix(geneExprss[143,tissues]))
> graphics.off()

Lecture Overview

•  What is R and why use it?
•  Setting up R & RStudio for use
•  Calculations, functions and variable classes
•  File handling, plotting and graphic features
•  Statistics
•  Packages and writing functions

 Statistics – cor.test()

•  A few slides back we compared the expression
profiles of the Hippocampus.brain and the
Thalamus.brain

•  But is that correlation statistically significant?

•  R can help with this sort of question as well

•  To answer that specific question we’ll use the
cor.test() function

> geneExprss = read.table (file =
"geneExprss.txt", sep = "\t", header
= T)

> cor.test (geneExprss
$Hippocampus.brain, geneExprss
$Thalamus.brain, method = "pearson")

> cor.test (geneExprss
$Hippocampus.brain, geneExprss
$Thalamus.brain, method =
"spearman")

•  t.test() # Student t test

•  wilcox.test() # Mann-Whitney test

•  kruskal.test() # Kruskal-Wallis rank sum test

•  chisq.test() # chi squared test

•  cor.test() # pearson / spearman correlations

•  lm(), glm() # linear and generalized linear models

•  p.adjust() # adjustment of P-values for multiple

testing (multiple testing correction) using FDR,
bonferroni, etc.

 Statistics – More Testing

•  Use the summary() function

•  > geneExprss = read.table (file =
"geneExprss.txt", sep = "\t", header = T)

•  > summary(geneExprss$Liver)
•  Min. -1.84400
1st Qu. -0.17290
Median -0.05145
Mean -0.08091
3rd Qu. 0.05299
Max. 0.63950

 Statistics – Examine the
Distribution of Your Data

•  mean()

•  median()

•  var()

•  min()

•  max()

•  When using most of these functions remember to use
argument na.rm=T

 Statistics – More Distribution
Functions

Lecture Overview

•  What is R and why use it?
•  Setting up R & RStudio for use
•  Calculations, functions and variable classes
•  File handling, plotting and graphic features
•  Statistics
•  Packages and writing functions

•  All operations are performed by functions

•  All R functions are stored in packages

•  Base packages are installed along with R

•  Packages including additional functions can by
downloaded by user

•  Functions can also be written by user

 Functions & Packages

Install & Load Packages -
RStudio

Check	 to	 load	
package	

Install & Load Packages

•  Use the functions:

– Install.packages("package_name”)

– update.packages(“package_name”)

– library(package_name) # Load a
package

•  Reading the functions’ help file
(> ?function_name)
–  Run the help file examples

•  Use http://www.rseek.org/

•  Google what you’re looking for

•  Post on the R forum webpage

•  And most importantly – play with it, get the hang of it,
and do NOT despair J

Final Tips

Acknowledgement	

Dror Hollander
Gil Ast Lab

Jeremy Baxter, Rhodes University

