

Mark Wamalwa BecA-ILRI Hub, Nairobi, Kenya http://hub.africabiosciences.org/ m.wamalwa@cgiar.org

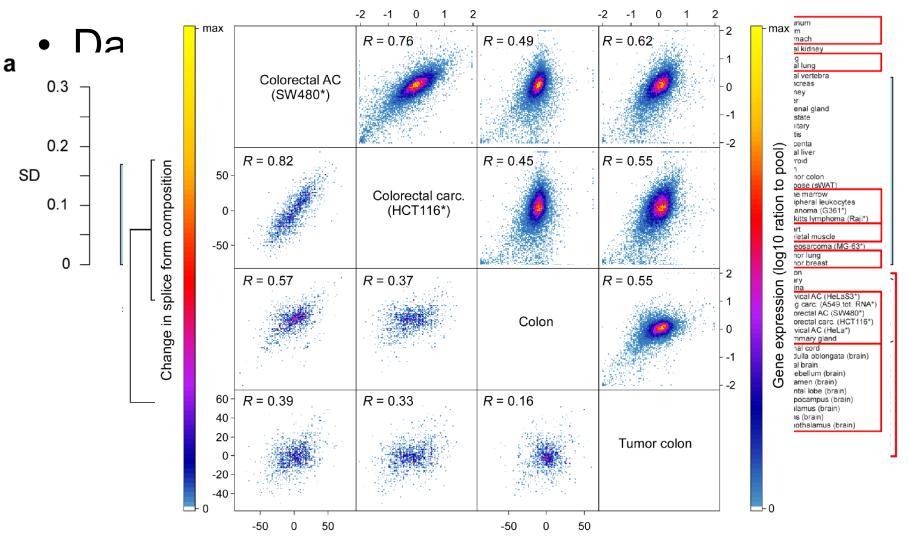
eastern and central africa

Lecture Overview

- What is R and why use it?
- Setting up R & RStudio for use
- Calculations, functions and variable classes
- File handling, plotting and graphic features
- Statistics
- Packages and writing functions

- "R is a freely available language and environment for statistical computing and graphics"
- Much like 🔀 & 째 , but bette 📿 !

 R is a comprehensive statistical and graphical programming language and is a dialect of the S language:


> 1988 - S2: RA Becker, JM Chambers, A Wilks 1992 - S3: JM Chambers, TJ Hastie 1998 - S4: JM Chambers

- R: initially written by Ross Ihaka and Robert Gentleman at Dep. of Statistics of U of Auckland, New Zealand during 1990s.
- Since 1997: international "R-core" team of 15 people with access to common CVS archive.

- Once experienced enough they are almost unlimited
 The users have to pay money to use the in their ability to change their environment software

- Not very user friendly at start
- No commercial support
- Substantially slower than programming languages (e.g. Perl, Java, C++)

Lecture Overview

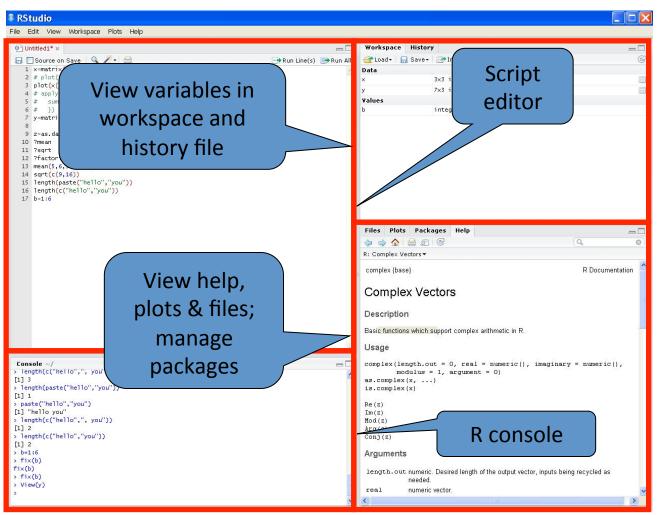
- What is R and why use it?
- Setting up R & RStudio for use
- Calculations, functions and variable classes
- File handling, plotting and graphic features
- Statistics
- Packages and writing functions

📶 < Tran.mirror.ac.za	▽ C ² (Q. Search) ☆ 🖻 💟 🕹 🏫 🛷 🅦 🔊
Most Visited 🔻 🎇 Examples, scripts] IIID 🧉 MISO LIMS 🛗 ROC curves 🎽 How to Calculate 🚷 Illumina adapter A USADELLAB.org
PODPDF Search PDF: Search for PDF	View PDF: Enter a URL of PDF file
CRAN Mirrors What's new? Task Views Search About R R Homepage The R Journal Software R Sources R Binaries Packages Other	The Comprehensive R Archive Network Download and Install R Pecompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R: • Download R for Linux • Download R for (Mac) OS X • Download R for Windows Mission of many Linux distributions, you should check with your Linux package management system in addition to the link above. Source Code for all Platforms Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them. If you do not you what this means, you probably do not want to do it! • The latest release (2015-08-14, Fire Safety) <u>R-3.2.2.tar.gz</u> , read what's new in the latest version.
Documentation Manuals FAQs Contributed	 Sources of <u>R alpha and beta releases</u> (daily snapshots, created only in time periods before a planned release). Daily snapshots of current patched and development versions are <u>available here</u>. Please read about <u>new features and bug fixes</u> before filing corresponding feature requests or bug reports.

_ _ . . . _ . _

Installing Rstudio (R)

- "RStudio is a... integrated development environment (IDE) for R"
- Install the "desktop edition" from this link: http://www.rstudio.org/download/
- http://hpc.ilri.cgiar.org/beca/training/ AdvancedBFX2015/download.html


Installing Rstudio

II. A hpc.ilri.cgiar.org/beca/training/Adv	ancedBFX2015/downli 🗵 C Search 👌 🖻 🔍 🦆 🎓 🛷 🌹 🛃 👻 🧶 🦿					
🔯 Most Visited 👻 🎇 Examples, scripts 📋 IIID	Most Visited 👻 🦉 Examples, scripts 🦳 IIID 🧉 MISO LIMS 🛗 ROC curves 🍟 How to Calculate 🌑 Illumina adapter 🔺 USADELLAB.org 🔅					
ODPDF Search PDF: Search for PDF	View PDF: Enter a URL of PDF file					
Advanced Genom	ics & Bioinformatics Workshop					
7th - 18 September, 2015						
	Welcome Program Participants Download Trainers Evaluation					
Courseur						
SCHEDULE						
Day 1	REQUIRED SOFTWARES Mobaxterm Direct Link					
Day 2						
• Day 3	R for Windows (32/64 bit) R for Mac					
Day 4						
	RStudio (Windows Vista/7/8/10) RStudio for Mac OS X					
• <u>Day 5</u>						
Day 6	QUICK GUIDE					
O Day 7	EMBOSS Quick guide					

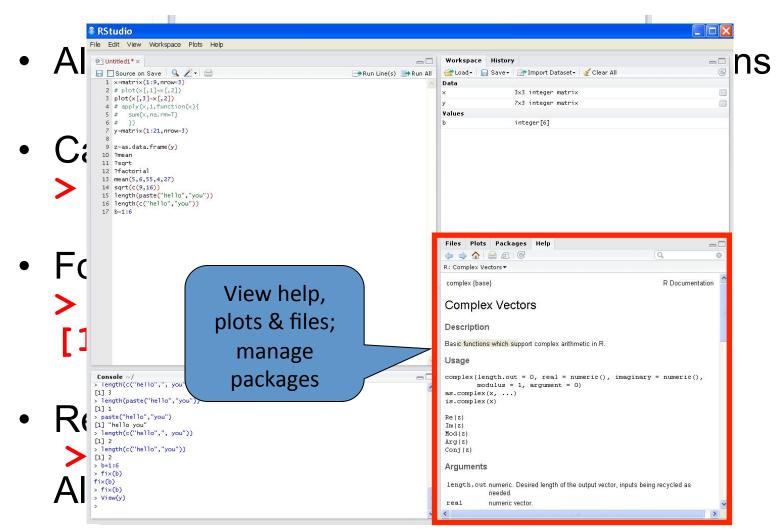
Using RStudio

Set Up Your Workspace


Files Plots Packages
🙆 New Folder 🛛 🝳 Delete
New Folder Q Delete Home R_workshop geneExprss.txt R_workshop.R

Lecture Overview

- What is R and why use it?
- Setting up R & RStudio for use
- Calculations, functions and variable classes
- File handling, plotting and graphic features
- Statistics
- Packages and writing functions



- Basic Calculations

- Basic Functions

R has a wide variety of data types including scalars, vectors (numerical, character, logical), matrices, dataframes, and lists.

- A variable is a symbolic name given to stored information
- Variables are assigned using either "=" or "<-"
 - > x<-12.6 > x [1] 12.6

a <- c(1,2,5.3,6,-2,4) # numeric vector b <- c("one","two","three") # character vector c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE)</pre>

#logical vector

Refer to elements of a vector using subscripts. a[c(2,4)] # 2nd and 4th elements of vector

Variables - Numeric Vectors

- A vector is the simplest R data structure. A numeric vector is a single entity consisting of a collection of numbers.
- It may be created:
 - Using the c () function (concatenate) :

```
x=c(3,7.6,9,11.1)
> x
[1] 3 7.6 9 11.1
```

- Using the rep(what, how_many_times) function (replicate):
 x=rep(10.2,3)
- Using the ":" operator, signifiving a series of integers
 x=4:15

Variables - Character Vectors

- Character strings are always double quoted
- Vectors made of character strings: > y=c("I","want","to","go","home") > y [1] "I" "want" "to" "go" "home"
- Using rep():
 > rep("bye",2)
 [1] "bye" "bye"
- Notice the difference using paste() (1 element):
 > paste("I", "want", "to", "go", "home")
 [1] "I want to go home"

Variables - Boolean Vectors

- Logical; either **FALSE** or **TRUE**
- > 5>3 [1] TRUE
- > x=1:5
 > x
 [1] 1 2 3 4 5
 > x<3
 [1] TRUE TRUE FALSE FALSE FALSE
 z=x<3</pre>

Workspace History	G
Care All	
🛛 🕣 Load 🗸 🛛 🔚 Save 🗸 🔛 Import Dataset 🗸 🚿 Clear All	G
Data	
pplAges 5 obs. of 2 variables	
Values	
ages numeric[5]	
pplNames character[5]	
	(2)
	tion
	

- Our vector: x=c (101,102,103,104)
- [] are used to access elements in x
- Extract 2nd element in x
 x[2]
 [1] 102
- Extract 3rd and 4th elements in x
 x[3:4] # or x[c(3,4)]
 [1] 103 104

- > x [1] 101 102 103 104
- Add 1 to all elements in x:
 x+1
 [1] 102 103 104 105
- Multiply all elements in x by 2:
 x*2
 [1] 202 204 206 208

- Comparison operators:
 - Equal ==
 - Not equal !=
 - Less / greater than < / >
 - Less / greater than or equal <= / >=
- Boolean (either FALSE or TRUE)
 - And &
 - Or |
 - Not !

- Our vector: **x=100:150**
- Elements of x higher than 145
 x[x>145]
 [1] 146 147 148 149 150
- Elements of x higher than 135 and lower than 140

> x[x>135 & x<140]
[1] 136 137 138 139</pre>

• Our vector:

> x=c("I","want","to","go","home")

Elements of x that do not equal "want":
 x[x != "want"]
 [1] "I" "to" "go" "home"

Note: use "==" for 1 element and "%in%" for several elements

Elements of x that equal "want" and "home":
 x[x %in% c("want", "home")]
 [1] "want" "home"

Variables – Matrices

All columns in a matrix must have the same mode(numeric, character, etc.) and the same length.

General format

mymatrix <- matrix(vector, nrow=r, ncol=c, byrow=FALSE,dimnames=list(char_vector_rownames, char_vector_colnames))

byrow=TRUE indicates that the matrix should be filled by rows. **byrow=FALSE** indicates that the matrix should be filled by columns (the default). **dimnames** provides optional labels for the columns and rows.

Variables – Matrices

A matrix is a table of a different class

	ing elements in matrices:	Weight	Height
	[row, column]	67	174
	he column must be of t	58	160
(e <u></u>	.xnumerigheharacter, e	80	187
> x[,2]		77	173
		95	185

 The mumber of eleménts in cash row must be identical

Variables – Matrices

generate a 5 x 4 numeric matrix y < -matrix(1:20, nrow=5, ncol=4)rnames <- c("R1", "R2","R3","R4","R5") cnames <- c("C1", "C2", "C3", "C4") y < -matrix(1:20, nrow=5, ncol=4,byrow=TRUE,dimnames=list(rnames, cnames)) # another example cells <- c(1, 26, 24, 68)rnames <- c("R1", "R2") cnames <- c("C1", "C2") mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE, dimnames=list(rnames, cnames))

#Identify rows, columns or elements using subscripts.

y[,4] # 4th column of matrix y[3,] # 3rd row of matrix y[2:4,1:3] # rows 2,3,4 of columns 1,2,3

Variables – Data Frames

• Adata frame is simply a table

e <- c("red", "white", "red", NA)

- Each column may be of a different class
 Each column may be of a different class
 (e.g. numeric, character, etc.)
 (horacter, etc.)
 #variable names
- The The matching of the providence of the providence

Variables – Data Frames

F

TRUE

- A data frame is simply a table
 Accessing elements in data frame:
- disease gender age 50 TRUE $\Box x [row, column]$ Μ FALSE Each column may be of a giffered (e.g., pumeric character, etc TRUF Μ F FALSE > x[,"age"] # or: 65 FALSE Μ
- The number of elements in each
 All male rows: row must be identical, x [x \$gender == M",]

An ordered collection of objects (components). A list allows you to gather a variety of (possibly unrelated) objects under one name.

example of a list with 4 components # a string, a numeric vector, a matrix, and a scaler
w <- list(name="Fred", mynumbers=a, mymatrix=y,
age=5.3)</pre>

example of a list containing two lists
v <- c(list1,list2)</pre>

Exercise

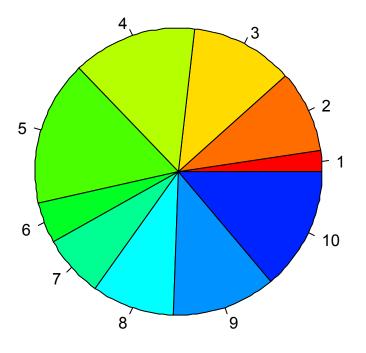
- Construct the character vector 'pplNames' containing 5 names: "Srulik", "Esti", "Shimshon", "Shifra", "Ezra"
- Construct the numeric vector 'ages' that includes the following numbers: 21, 12 (twice), 35 (twice)
- Use the data.frame() function to construct the 'pplAges' table out of 'pplNames' & 'ages'
- Access the 'pplAges' <u>rows</u> with 'ages' values greater than 19

Lecture Overview

- What is R and why use it?
- Setting up R & RStudio for use
- Calculations, functions and variable classes
- File handling, plotting and graphic features
- Statistics
- Packages and writing functions

•	For e	gene A2BP1 APBB1 API5	Adipose (SWAT) -0.43449 -0.28725 0.03281	Adrenal gland -0.35804 -0.22703 -0.01801	Peripheral -1.32619 -0.17179 -0.12612	leukocytes -1.3987 -0.244 0.1081	le
•	Work	APP AQR AR ARID4A ARL6IP4	-0.27273 0.09021 0.25143 0.11067 0.05169	-0.1069 0.06473 -0.22576 -0.01458 0.22849	-0.97834 0.25003 -0.07426 0.56982 0.08706	-0.35481 0.28211 -0.36435 0.26355 0.05618	
	– Sa – Re	ARMET BAT1 BCAS2 BIN1 BMPR1A	-0.08804 -0.04255 0.04659 -0.07957 0.07213	0.09259 -0.0177 0.08772 0.02061 -0.12251	-0.39333 -0.07406 0.02258 -0.26275 -0.64482	-0.01747 -0.0371 -0.16976 -0.7973 -0.69233	
•	- Ar	BRUNOL4 BRUNOL5 BRUNOL6 C16orf33	-0.2691 -0.17979 0.02433 -0.16461	-0.17955 -0.25154 0.12681 -0.06196	-0.15756 0.08302 0.29392 -0.46222	-0.18693 -0.01108 0.27288 -0.08127	
	comt	C19orf29 C1QBP C20orf4 C6orf151 C6orf206	0.15025 -0.11002 0.19923 0.10679 -0.23908	0.19744 0.20685 0.24458 -9e-04 -0.16266	0.27608 -0.41541 0.32765 0.05188 0.02546	0.21858 -0.12527 0.03384 0.17772 -0.10176	10 values
	– Va – Va	CCNL1 CCNL2 CCNT1 CCNT2	-0.07119 -0.0019 -0.13369 -0.11765	-0.11519 0.16522 -0.01735 -0.06113	0.40454 -0.0649 0.54416 0.14705	0.14201 -0.05127 0.10649 -0.00204	

• File includes 306 rows X 49 columns

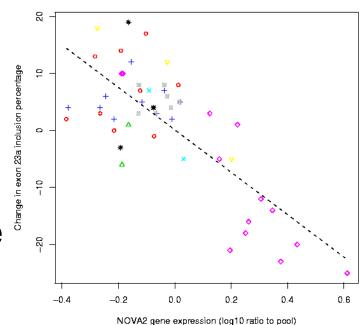

File Handling - Read File

- Read file to R
 - Use the **read.table()** function
 - Note: each function receives input ('arguments') and produces output ('return value')
 - The function returns a data frame
 - Run: > geneExprss = read.table(file = "geneExprss.txt", sep = "\t",header = T)
 - Check table:
 - > dim(geneExprss) # table dimentions
 - > geneExprss[1,] # 1st line
 - > class(geneExprss) # check variable class

- Or double click on variable name in workspace tab

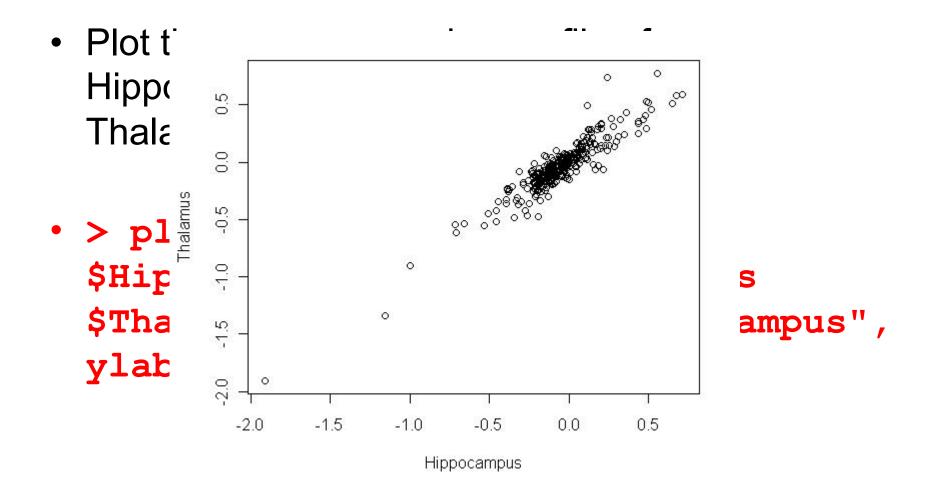
Plotting - Pie Chart

- What fraction of lung genes are over-expressed?
- What about the underexpressed genes?
- A pie chart can illustrate our findings

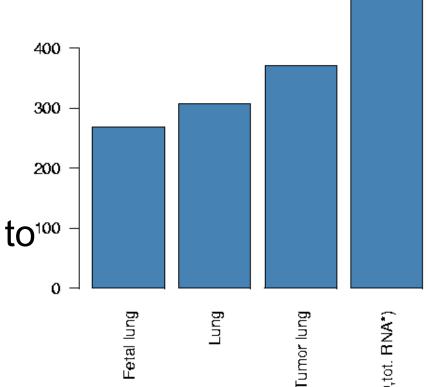

Using the **pie()** Function

Files Plots Packages Help $\neg \Box$ 🔎 Zoom 🛛 🔁 Export 🗸 🧕 🗹 Clear All C <Ъ <u>ung>0.2]</u>) 🔁 Save Plot as Image... up = 'lengt'
 Let 'S i
 down = let 🔁 Save Plot as PDF... rss\$Lung<(-0.2)]) Copy Plot to Clipboard... > nexpres ss\$Lung<=0.2 & geneExprs s.under, down expres - up mid • Let'sı ves the numbe)r

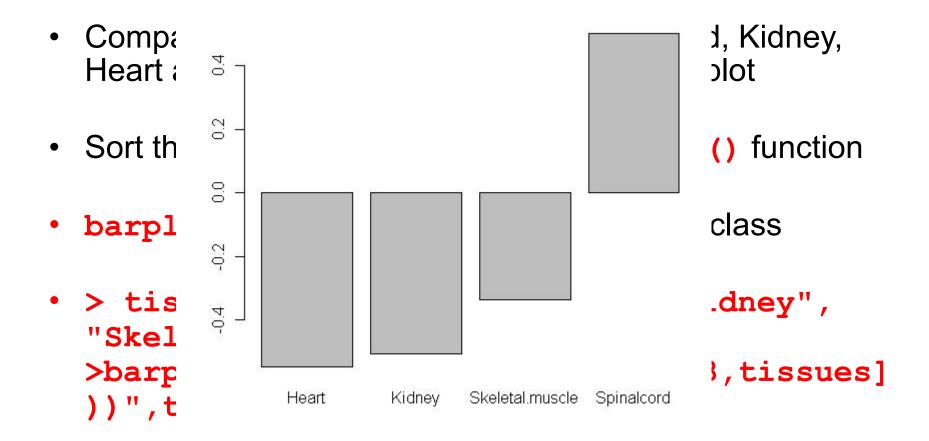
More on saving plots to files in a few slides...


Plotting - Scatter Plot

- How similar is the gene expression profile of the Hippocampus (brain) to that of that of the Thalamus (brain)?
- A scatter plot is ideal for the visualization of the correlation between two variables

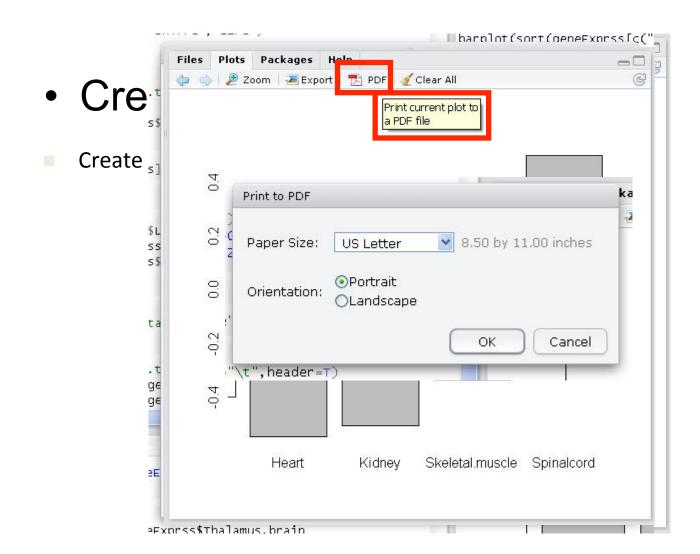

R: -0.764 ; P.value: 2e-10

Using the plot() Function



Plotting – Bar Plot

- How does the expression profile of "NOVA1" differ across several tissues?
- A bar plot can be used to¹⁰⁰ compare two or more 0 categories


Using the barplot() Function

More Graphic Functions to Keep in Mind

- hist()
- boxplot()
- plotmeans()
- scatterplot()

Save Plot to File - RStudi

- Eor example:
 Before running the visualizing function, redirect all plots to a file of a certain type geneExprss te read.table (file geneExprss.txt", sep =
- $'' \setminus t''$, header = T)
- jpeg(filename)
 > tissues = c ("Spinalcord", "Kidney", "skeng (filename Heart")

-pdf(filename)

- > pdf posted Bar 1 pt (PPI)ename)
- > barplot(as.matrix(geneExprss[143,tissues]))
- After running the visualization function, close graphic device using dev.off() or graphcis.off()

Lecture Overview

- What is R and why use it?
- Setting up R & RStudio for use
- Calculations, functions and variable classes
- File handling, plotting and graphic features
- Statistics
- Packages and writing functions

Statistics - cor.test()

A few sides back we compared the expression profiles of the Hippocampus.brain and the eader Thalamus.brain

> cor.test (geneExprss

- BHtispbataquelationastatistically Esignificant?
 \$Thalamus.brain, method = "pearson")
- > Rean help with this sert of question as well

\$Hippocampus.brain, geneExprss

 For Answer, that specific question we'll use the ogpetent.), function

Statistics – More Testing

- t.test() # Student t test
- wilcox.test() # Mann-Whitney test
- kruskal.test() # Kruskal-Wallis rank sum test
- chisq.test() # chi squared test
- cor.test() # pearson / spearman correlations
- lm(), glm() # linear and generalized linear models
- p.adjust() # adjustment of P-values for multiple testing (multiple testing correction) using FDR, bonferroni, etc.

Statistics – Examine the Distribution of Your Data

- Use the summary () function
- > geneExprss = read.table (file =
 "geneExprss.txt", sep = "\t", header = T)
- > summary(geneExprss\$Liver)
- Min. -1.84400

 1st Qu. -0.17290
 Median -0.05145
 Mean -0.08091
 3rd Qu. 0.05299
 Max. 0.63950

- mean()
- median()
- var()
- min()
- max()
- When using most of these functions remember to use argument na.rm=T

Lecture Overview

- What is R and why use it?
- Setting up R & RStudio for use
- Calculations, functions and variable classes
- File handling, plotting and graphic features
- Statistics
- Packages and writing functions

- All operations are performed by functions
- All R functions are stored in packages
- Base packages are installed along with R
- Packages including additional functions can by downloaded by user
- Functions can also be written by user

Install & Load Packages -RStudio

Files Plots	Packages	Help				-		1
💽 Install Pack	age	<i></i>					6	
	Fur	nctions for	Classification				^ ^	
✓ <u>cluster</u>	Clu	ister Analy	is Extended	Rousseeuw	et al.			
	Co	de Analysis	Tools for R					
✓ datasets	The	e R Datase	s Package					Check to load
<u>foreign</u>		ad Data St ase,	ored by Minita	ab, S, SAS, S	SPSS, Stata, Sy	/stat		package
🗹 <u>graphics</u>	The	e R Graphic	s Daalu					
🔽 <u>arDevices</u> -	The	e R Graphic	s Devices and	d Support fo	or Colours and	Fonts		
🔲 <u>arid</u>	The	e Grid Grap	hics Package	(
🗌 <u>KernSmoot</u>	: <mark>h</mark> Fur	nctions for	kernel smoot	hing for Wa	nd & Jones (19	995)		
🗌 lattice	Lat	tice Graph	cs					
🔲 <u>manipulate</u>	Int Int	eractive Pl	ots for RStudi	io				
	Su) MA		ions and Dat	asets for Ve	enables and Rij	pley's		
🔲 <u>Matrix</u>	Spa	arse and D	ense Matrix C	Classes and	Methods			
🔽 <u>methods</u>	For	mal Metho	ds and Class	es				
mqcv		Ms with GC PQL	V/AIC/REML s	smoothness	estimation an	id GAMMs		
🔲 <u>nime</u>	Lin	ear and No	nlinear Mixeo	d Effects Mo	dels			
🔲 <u>nnet</u>		ed-forward dels	Neural Netw	orks and Mu	ultinomial Log-L	Linear		
🔲 <u>rpart</u>	Red	cursive Par	titioning				~	
🗂 cnatial	Fur	actions for	Kriaina and D)nint Dattorn	Analycic		~	

- Use the functions:
 - Install.packages("package_name")
 - update.packages("package_name")
 - -library(package_name) # Load a
 package

 Reading the functions' help file (> ?function_name)

– Run the help file examples

- Use <u>http://www.rseek.org/</u>
- Google what you' re looking for
- Post on the R forum webpage
- And most importantly play with it, get the hang of it, and do NOT despair ⁽²⁾

Acknowledgement

Dror Hollander Gil Ast Lab

Jeremy Baxter, Rhodes University