
Shell Scripting
Alan Orth

August, 2014

Your first shell script

A shell script is a text file with a list of commands inside. Shell
scripts are good for automating tasks you use often, or
running “batch” jobs.

Enter the following in a new file, call it script.sh:

echo “Date and time is:”

date

echo “Your current directory is:”

pwd

Your first shell script

Run the script like this:

sh script.sh

It should output something like this:

“Date and time is:”

Mon Aug 18 10:15:00 EAT 2052

“Your current directory is:”

/home/aorth

Your second shell script

Create a new script, script2.sh:

DATE=$(date)

PWD=$(pwd)

echo “Date and time is: $DATE”

echo “Your current directory is: $PWD”

Your second shell script

This introduces two new concepts, variables and
command substitution.

A variable is a symbolic name for a piece of data,
like text, numbers, etc.

Command substitution launches a sub shell to
run the named command. It’s recommended to
use $(command) instead of `command`.

More shell scripts

A more advanced shell script utilizing a loop:

for num in 1 2 3

do

echo “We are on $num…”

done

What do you think it does? Can you try to run it?
What is a good use case for this?

Sequences

Same thing, but using a “sequence”:

for num in {1..3}

do

echo “We are on $num…”

done

This uses functionality built into the command
line shell.

More sequences

Same result, but using a command substitution
and the seq command.

for num in $(seq 1 3)

do

echo “We are on $num…”

done

Many ways to achieve the same thing!

“Globbing” (pattern expansion)

Controlled by a list of files from the shell:

DATA=/home/aorth/data/sequences

for seq in $DATA/*.fastq.gz

do

echo “We are on $seq…”

<do some science!>

done

I/O Redirection

By default, command line programs print to
stdout (“standard out”). I/O redirection
manipulates the input/output of Linux programs,
allowing you to capture it or send it somewhere
else.

Two main kinds of redirection:

> to a file

| to another program

sh script.sh > script.out

Voila! Script output is now inside script.out

I/O Redirection

Redirect the output of your script to a file:

sh script.sh > script.out

… and to another program, ie less:

sh script.sh | less

Voilà!

Links

Advanced Bash scripting guide:

http://www.tldp.org/LDP/abs/html/

Excellent wiki with common “pitfalls”:

http://mywiki.wooledge.org/BashPitfalls

http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/
http://mywiki.wooledge.org/BashPitfalls
http://mywiki.wooledge.org/BashPitfalls

