
Editorial

Ten Simple Rules for Reproducible Computational
Research
Geir Kjetil Sandve1,2*, Anton Nekrutenko3, James Taylor4, Eivind Hovig1,5,6

1 Department of Informatics, University of Oslo, Blindern, Oslo, Norway, 2 Centre for Cancer Biomedicine, University of Oslo, Blindern, Oslo, Norway, 3 Department of

Biochemistry and Molecular Biology and The Huck Institutes for the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America,

4 Department of Biology and Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, United States of America, 5 Department of Tumor

Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway, 6 Institute for Medical Informatics, The

Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway

Replication is the cornerstone of a

cumulative science [1]. However, new

tools and technologies, massive amounts

of data, interdisciplinary approaches, and

the complexity of the questions being

asked are complicating replication efforts,

as are increased pressures on scientists to

advance their research [2]. As full replica-

tion of studies on independently collected

data is often not feasible, there has recently

been a call for reproducible research as an

attainable minimum standard for assessing

the value of scientific claims [3]. This

requires that papers in experimental

science describe the results and provide a

sufficiently clear protocol to allow success-

ful repetition and extension of analyses

based on original data [4].

The importance of replication and

reproducibility has recently been exempli-

fied through studies showing that scientific

papers commonly leave out experimental

details essential for reproduction [5],

studies showing difficulties with replicating

published experimental results [6], an

increase in retracted papers [7], and

through a high number of failing clinical

trials [8,9]. This has led to discussions on

how individual researchers, institutions,

funding bodies, and journals can establish

routines that increase transparency and

reproducibility. In order to foster such

aspects, it has been suggested that the

scientific community needs to develop a

‘‘culture of reproducibility’’ for computa-

tional science, and to require it for

published claims [3].

We want to emphasize that reproduc-

ibility is not only a moral responsibility

with respect to the scientific field, but that

a lack of reproducibility can also be a

burden for you as an individual research-

er. As an example, a good practice of

reproducibility is necessary in order to

allow previously developed methodology

to be effectively applied on new data, or to

allow reuse of code and results for new

projects. In other words, good habits of

reproducibility may actually turn out to be

a time-saver in the longer run.

We further note that reproducibility is

just as much about the habits that ensure

reproducible research as the technologies

that can make these processes efficient and

realistic. Each of the following ten rules

captures a specific aspect of reproducibil-

ity, and discusses what is needed in terms

of information handling and tracking of

procedures. If you are taking a bare-bones

approach to bioinformatics analysis, i.e.,

running various custom scripts from the

command line, you will probably need to

handle each rule explicitly. If you are

instead performing your analyses through

an integrated framework (such as Gene-

Pattern [10], Galaxy [11], LONI pipeline

[12], or Taverna [13]), the system may

already provide full or partial support for

most of the rules. What is needed on your

part is then merely the knowledge of how

to exploit these existing possibilities.

In a pragmatic setting, with publication

pressure and deadlines, one may face the

need to make a trade-off between the

ideals of reproducibility and the need to

get the research out while it is still relevant.

This trade-off becomes more important

when considering that a large part of the

analyses being tried out never end up

yielding any results. However, frequently

one will, with the wisdom of hindsight,

contemplate the missed opportunity to

ensure reproducibility, as it may already

be too late to take the necessary notes from

memory (or at least much more difficult

than to do it while underway). We believe

that the rewards of reproducibility will

compensate for the risk of having spent

valuable time developing an annotated

catalog of analyses that turned out as blind

alleys.

As a minimal requirement, you should

at least be able to reproduce the results

yourself. This would satisfy the most basic

requirements of sound research, allowing

any substantial future questioning of the

research to be met with a precise expla-

nation. Although it may sound like a very

weak requirement, even this level of

reproducibility will often require a certain

level of care in order to be met. There will

for a given analysis be an exponential

number of possible combinations of soft-

ware versions, parameter values, pre-

processing steps, and so on, meaning that

a failure to take notes may make exact

reproduction essentially impossible.

With this basic level of reproducibility in

place, there is much more that can be

wished for. An obvious extension is to go

from a level where you can reproduce

results in case of a critical situation to a

level where you can practically and

routinely reuse your previous work and

increase your productivity. A second

extension is to ensure that peers have a

practical possibility of reproducing your

results, which can lead to increased trust

in, interest for, and citations of your work

[6,14].

Citation: Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten Simple Rules for Reproducible Computational
Research. PLoS Comput Biol 9(10): e1003285. doi:10.1371/journal.pcbi.1003285

Editor: Philip E. Bourne, University of California San Diego, United States of America

Published October 24, 2013

Copyright: � 2013 Sandve et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: The authors’ laboratories are supported by US National Institutes of Health grants HG005133,
HG004909, and HG006620 and US National Science Foundation grant DBI 0850103. Additional funding is
provided, in part, by the Huck Institutes for the Life Sciences at Penn State, the Institute for Cyberscience at
Penn State, and a grant with the Pennsylvania Department of Health using Tobacco Settlement Funds. The
funders had no role in the preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: geirksa@ifi.uio.no

PLOS Computational Biology | www.ploscompbiol.org 1 October 2013 | Volume 9 | Issue 10 | e1003285

We here present ten simple rules for

reproducibility of computational research.

These rules can be at your disposal for

whenever you want to make your research

more accessible—be it for peers or for

your future self.

Rule 1: For Every Result, Keep
Track of How It Was Produced

Whenever a result may be of potential

interest, keep track of how it was pro-

duced. When doing this, one will frequent-

ly find that getting from raw data to the

final result involves many interrelated

steps (single commands, scripts, programs).

We refer to such a sequence of steps,

whether it is automated or performed

manually, as an analysis workflow. While

the essential part of an analysis is often

represented by only one of the steps, the

full sequence of pre- and post-processing

steps are often critical in order to reach the

achieved result. For every involved step,

you should ensure that every detail that

may influence the execution of the step is

recorded. If the step is performed by a

computer program, the critical details

include the name and version of the

program, as well as the exact parameters

and inputs that were used.

Although manually noting the precise

sequence of steps taken allows for an

analysis to be reproduced, the documen-

tation can easily get out of sync with how

the analysis was really performed in its

final version. By instead specifying the full

analysis workflow in a form that allows for

direct execution, one can ensure that the

specification matches the analysis that was

(subsequently) performed, and that the

analysis can be reproduced by yourself or

others in an automated way. Such execut-

able descriptions [10] might come in the

form of simple shell scripts or makefiles

[15,16] at the command line, or in the

form of stored workflows in a workflow

management system [10,11,13,17,18].

As a minimum, you should at least

record sufficient details on programs,

parameters, and manual procedures to

allow yourself, in a year or so, to

approximately reproduce the results.

Rule 2: Avoid Manual Data
Manipulation Steps

Whenever possible, rely on the execu-

tion of programs instead of manual

procedures to modify data. Such manual

procedures are not only inefficient and

error-prone, they are also difficult to

reproduce. If working at the UNIX

command line, manual modification of

files can usually be replaced by the use of

standard UNIX commands or small

custom scripts. If working with integrated

frameworks, there will typically be a quite

rich collection of components for data

manipulation. As an example, manual

tweaking of data files to attain format

compatibility should be replaced by for-

mat converters that can be reenacted and

included into executable workflows. Other

manual operations like the use of copy and

paste between documents should also be

avoided. If manual operations cannot be

avoided, you should as a minimum note

down which data files were modified or

moved, and for what purpose.

Rule 3: Archive the Exact
Versions of All External
Programs Used

In order to exactly reproduce a given

result, it may be necessary to use programs

in the exact versions used originally. Also,

as both input and output formats may

change between versions, a newer version

of a program may not even run without

modifying its inputs. Even having noted

which version was used of a given

program, it is not always trivial to get

hold of a program in anything but the

current version. Archiving the exact ver-

sions of programs actually used may thus

save a lot of hassle at later stages. In some

cases, all that is needed is to store a single

executable or source code file. In other

cases, a given program may again have

specific requirements to other installed

programs/packages, or dependencies to

specific operating system components. To

ensure future availability, the only viable

solution may then be to store a full virtual

machine image of the operating system

and program. As a minimum, you should

note the exact names and versions of the

main programs you use.

Rule 4: Version Control All
Custom Scripts

Even the slightest change to a computer

program can have large intended or

unintended consequences. When a contin-

ually developed piece of code (typically a

small script) has been used to generate a

certain result, only that exact state of the

script may be able to produce that exact

output, even given the same input data

and parameters. As also discussed for rules

3 and 6, exact reproduction of results may

in certain situations be essential. If com-

puter code is not systematically archived

along its evolution, backtracking to a code

state that gave a certain result may be a

hopeless task. This can cast doubt on

previous results, as it may be impossible to

know if they were partly the result of a bug

or otherwise unfortunate behavior.

The standard solution to track evolution

of code is to use a version control system

[15], such as Subversion, Git, or Mercu-

rial. These systems are relatively easy to set

up and use, and may be used to system-

atically store the state of the code through-

out development at any desired time

granularity.

As a minimum, you should archive

copies of your scripts from time to time,

so that you keep a rough record of the

various states the code has taken during

development.

Rule 5: Record All Intermediate
Results, When Possible in
Standardized Formats

In principle, as long as the full process

used to produce a given result is tracked,

all intermediate data can also be regener-

ated. In practice, having easily accessible

intermediate results may be of great value.

Quickly browsing through intermediate

results can reveal discrepancies toward

what is assumed, and can in this way

uncover bugs or faulty interpretations that

are not apparent in the final results.

Secondly, it more directly reveals conse-

quences of alternative programs and

parameter choices at individual steps.

Thirdly, when the full process is not

readily executable, it allows parts of the

process to be rerun. Fourthly, when

reproducing results, it allows any experi-

enced inconsistencies to be tracked to the

steps where the problems arise. Fifth, it

allows critical examination of the full

process behind a result, without the need

to have all executables operational. When

possible, store such intermediate results in

standardized formats. As a minimum,

archive any intermediate result files that

are produced when running an analysis (as

long as the required storage space is not

prohibitive).

Rule 6: For Analyses That
Include Randomness, Note
Underlying Random Seeds

Many analyses and predictions include

some element of randomness, meaning the

same program will typically give slightly

different results every time it is executed

(even when receiving identical inputs and

parameters). However, given the same

initial seed, all random numbers used in

an analysis will be equal, thus giving

identical results every time it is run. There

PLOS Computational Biology | www.ploscompbiol.org 2 October 2013 | Volume 9 | Issue 10 | e1003285

is a large difference between observing

that a result has been reproduced exactly

or only approximately. While achieving

equal results is a strong indication that a

procedure has been reproduced exactly, it

is often hard to conclude anything when

achieving only approximately equal re-

sults. For analyses that involve random

numbers, this means that the random seed

should be recorded. This allows results to

be reproduced exactly by providing the

same seed to the random number gener-

ator in future runs. As a minimum, you

should note which analysis steps involve

randomness, so that a certain level of

discrepancy can be anticipated when

reproducing the results.

Rule 7: Always Store Raw Data
behind Plots

From the time a figure is first generated

to it being part of a published article, it is

often modified several times. In some

cases, such modifications are merely visual

adjustments to improve readability, or to

ensure visual consistency between figures.

If raw data behind figures are stored in a

systematic manner, so as to allow raw data

for a given figure to be easily retrieved,

one can simply modify the plotting

procedure, instead of having to redo the

whole analysis. An additional advantage of

this is that if one really wants to read fine

values in a figure, one can consult the raw

numbers. In cases where plotting involves

more than a direct visualization of under-

lying numbers, it can be useful to store

both the underlying data and the pro-

cessed values that are directly visualized.

An example of this is the plotting of

histograms, where both the values before

binning (original data) and the counts per

bin (heights of visualized bars) could be

stored. When plotting is performed using a

command-based system like R, it is

convenient to also store the code used to

make the plot. One can then apply slight

modifications to these commands, instead

of having to specify the plot from scratch.

As a minimum, one should note which

data formed the basis of a given plot and

how this data could be reconstructed.

Rule 8: Generate Hierarchical
Analysis Output, Allowing
Layers of Increasing Detail to Be
Inspected

The final results that make it to an

article, be it plots or tables, often represent

highly summarized data. For instance,

each value along a curve may in turn

represent averages from an underlying

distribution. In order to validate and

fully understand the main result, it is

often useful to inspect the detailed values

underlying the summaries. A common

but impractical way of doing this is to

incorporate various debug outputs in the

source code of scripts and programs.

When the storage context allows, it is

better to simply incorporate permanent

output of all underlying data when a

main result is generated, using a system-

atic naming convention to allow the full

data underlying a given summarized

value to be easily found. We find

hypertext (i.e., html file output) to be

particularly useful for this purpose. This

allows summarized results to be generat-

ed along with links that can be very

conveniently followed (by simply click-

ing) to the full data underlying each

summarized value. When working with

summarized results, you should as a

minimum at least once generate, inspect,

and validate the detailed values underly-

ing the summaries.

Rule 9: Connect Textual
Statements to Underlying
Results

Throughout a typical research project, a

range of different analyses are tried and

interpretation of the results made. Al-

though the results of analyses and their

corresponding textual interpretations are

clearly interconnected at the conceptual

level, they tend to live quite separate lives

in their representations: results usually

live on a data area on a server or

personal computer, while interpretations

live in text documents in the form of

personal notes or emails to collaborators.

Such textual interpretations are not

generally mere shadows of the results—

they often involve viewing the results in

light of other theories and results. As

such, they carry extra information, while

at the same time having their necessary

support in a given result.

If you want to reevaluate your previ-

ous interpretations, or allow peers to

make their own assessment of claims you

make in a scientific paper, you will have

to connect a given textual statement

(interpretation, claim, conclusion) to the

precise results underlying the statement.

Making this connection when it is

needed may be difficult and error-prone,

as it may be hard to locate the exact

result underlying and supporting the

statement from a large pool of different

analyses with various versions.

To allow efficient retrieval of details

behind textual statements, we suggest

that statements are connected to under-

lying results already from the time the

statements are initially formulated (for

instance in notes or emails). Such a

connection can for instance be a simple

file path to detailed results, or the ID of a

result in an analysis framework, included

within the text itself. For an even tighter

integration, there are tools available to

help integrate reproducible analyses di-

rectly into textual documents, such as

Sweave [19], the GenePattern Word

add-in [4], and Galaxy Pages [20]. These

solutions can also subsequently be used

in connection with publications, as dis-

cussed in the next rule.

As a minimum, you should provide

enough details along with your textual

interpretations so as to allow the exact

underlying results, or at least some

related results, to be tracked down in

the future.

Rule 10: Provide Public Access
to Scripts, Runs, and Results

Last, but not least, all input data,

scripts, versions, parameters, and inter-

mediate results should be made publicly

and easily accessible. Various solutions

have now become available to make data

sharing more convenient, standardized,

and accessible in particular domains,

such as for gene expression data [21–

23]. Most journals allow articles to be

supplemented with online material, and

some journals have initiated further

efforts for making data and code more

integrated with publications [3,24]. As a

minimum, you should submit the main

data and source code as supplementary

material, and be prepared to respond to

any requests for further data or method-

ology details by peers.

Making reproducibility of your work

by peers a realistic possibility sends a

strong signal of quality, trustworthiness,

and transparency. This could increase

the quality and speed of the reviewing

process on your work, the chances of

your work getting published, and the

chances of your work being taken further

and cited by other researchers after

publication [25].

PLOS Computational Biology | www.ploscompbiol.org 3 October 2013 | Volume 9 | Issue 10 | e1003285

References

1. Crocker J, Cooper ML (2011) Addressing scien-

tific fraud. Science 334: 1182.

2. Jasny BR, Chin G, Chong L, Vignieri S (2011)

Data replication & reproducibility. Again, and

again, and again…. Introduction. Science 334:

1225.

3. Peng RD (2011) Reproducible research in

computational science. Science 334: 1226–1227.

4. Mesirov JP (2010) Computer science. Accessible

reproducible research. Science 327: 415–416.

5. Nekrutenko A, Taylor J (2012) Next-generation

sequencing data interpretation: enhancing repro-

ducibility and accessibility. Nat Rev Genet 13:

667–672.

6. Ioannidis JP, Allison DB, Ball CA, Coulibaly I,

Cui X, et al. (2009) Repeatability of published

microarray gene expression analyses. Nat Genet

41: 149–155.

7. Steen RG (2011) Retractions in the scientific

literature: is the incidence of research fraud

increasing? J Med Ethics 37: 249–253.

8. Prinz F, Schlange T, Asadullah K (2011) Believe

it or not: how much can we rely on published data

on potential drug targets? Nat Rev Drug Discov

10: 712.

9. Begley CG, Ellis LM (2012) Drug development:

raise standards for preclinical cancer research.

Nature 483: 531–533.

10. Reich M, Liefeld T, Gould J, Lerner J, Tamayo

P, et al. (2006) GenePattern 2.0. Nat Genet 38:

500–501.

11. Giardine B, Riemer C, Hardison RC, Burhans R,

Elnitski L, et al. (2005) Galaxy: a platform for

interactive large-scale genome analysis. Genome

Res 15: 1451–1455.

12. Rex DE, Ma JQ, Toga AW (2003) The LONI

Pipeline Processing Environment. Neuroimage

19: 1033–1048.

13. Oinn T, Addis M, Ferris J, Marvin D, Senger M,

et al. (2004) Taverna: a tool for the composition

and enactment of bioinformatics workflows.

Bioinformatics 20: 3045–3054.

14. Piwowar HA, Day RS, Fridsma DB (2007)

Sharing detailed research data is associated with

increased citation rate. PLoS ONE 2: e308.

doi:10.1371/journal.pone.0000308.

15. Heroux MA, Willenbring JM (2009) Barely

sufficient software engineering: 10 practices to

improve your cse software. In: 2009 ICSE

Workshop on Software Engineering for Compu-

tational Science and Engineering. pp. 15–21.

16. Schwab M, Karrenbach M, Claerbout J (2000)

Making scientific computations reproducible.

Comput Sci Eng 2: 61–67.

17. Goble CA, Bhagat J, Aleksejevs S, Cruickshank

D, Michaelides D, et al. (2010) myExperiment: a

repository and social network for the sharing of

bioinformatics workflows. Nucleic Acids Res 38:

W677–682.

18. Deelman E, Singh G, Su M-H, Blythe J, Gil Y, et

al. (2005) Pegasus: a framework for mapping

complex scientific workflows onto distributed

systems. Scientific Programming Journal 13:

219–237.
19. Leisch F (2002) Sweave: dynamic generation of

statistical reports using literate data analysis. In:
Härdle W, Rönz B, editors. Compstat: proceed-

ings in computational statistics. Heidelberg,

Germany: Physika Verlag. pp. 575–580.
20. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy:

a comprehensive approach for supporting acces-
sible, reproducible, and transparent computation-

al research in the life sciences. Genome Biol 11:

R86.
21. Brazma A, Hingamp P, Quackenbush J, Sherlock

G, Spellman P, et al. (2001) Minimum informa-
tion about a microarray experiment (MIAME)-

toward standards for microarray data. Nat Genet
29: 365–371.

22. Brazma A, Parkinson H, Sarkans U, Shojatalab

M, Vilo J, et al. (2003) ArrayExpress–a public
repository for microarray gene expression data at

the EBI. Nucleic Acids Res 31: 68–71.
23. Edgar R, Domrachev M, Lash AE (2002) Gene

Expression Omnibus: NCBI gene expression and

hybridization array data repository. Nucleic Acids
Res 30: 207–210.

24. Sneddon TP, Li P, Edmunds SC (2012) GigaDB:
announcing the GigaScience database. Giga-

science 1: 11.
25. Prlić A, Procter JB (2012) Ten simple rules for the

open development of scientific software. PLoS

Comput Biol 8: e1002802. doi:10.1371/journal.-
pcbi.1002802.

PLOS Computational Biology | www.ploscompbiol.org 4 October 2013 | Volume 9 | Issue 10 | e1003285

