
Workflow User Guide
Revision 3.0

December 1, 2006

Table of Contents
1 Introduction...1

2 System Requirements...3

3 Workflow Instance Schema..4
3.1 CommandSetRoot...4
3.2 CommandSet...4
3.3 CommandSetStatus...6
3.4 Config...7
3.5 Command..8
3.6 CommandStatus..10
3.7 DCESpecification...10
3.8 ExecEnvironment..12
3.9 Param..13
3.10 ParamDef..13

4 Workflow Template File...14

5 Configuration File...16
5.1 Simple Values...16
5.2 Complex Values..16
5.3 Iterators...18

5.3.1 Command Iterator..18
5.3.2 Command-Set Iterator...19

6 Dynamic Workflows...22

7 Tools...23
7.1 Template Editor..23

7.1.1 Single Level View...24
7.1.2 Multi Level View..24
7.1.3 Menus..25
7.1.4 Edit Template..28
7.1.5 Command Line Options..36
7.1.6 Usage and Examples...37

7.2 CreateWorkflow..37
7.2.1 Command-Line Options..37
7.2.2 Usage and Examples...39

7.3 RunWorkflow...39
7.3.1 Command-Line Options..39
7.3.2 Usage and Examples...43

7.4 KillWorkflow..44
7.4.1 Command-Line Options..45
7.4.2 Usage and Examples...45

7.5 CheckWorkflow..45
7.5.1 Command-Line Options..45
7.5.2 Usage and Examples...46

7.6 ControlWorkflow..46

Introduction

i

Table of Contents
7 Tools

7.6.1 Command-Line Options..46
7.6.2 Usage and Examples...47

7.7 CleanWorkflowRegistry...47
7.7.1 Command-Line Options..47
7.7.2 Usage and Examples...48

7.8 Monitor Workflow..48
7.8.1 Open Workflow...53
7.8.2 Add Workflow...53
7.8.3 Remove Workflow..54
7.8.4 Set Delay...54
7.8.5 Refresh...54
7.8.6 Command Line Options..54
7.8.7 Usage and Examples...55

8 Command Processors...56
8.1 SystemCommandProcessor...56

8.1.1 Redirection..56
8.1.2 Command Elements..57

8.2 DistributedProcessor...58
8.3 WaitProcessor...58

8.3.1 Command Elements..58
8.4 WaitForFileCreationProcessor..58

8.4.1 Command Elements..59

9 Command Dispatchers...60
9.1 LocalDispatcher..60
9.2 DistributedDispatcher...60
9.3 RemoteDispatcher...60

10 Processor and Dispatcher Lookup and Customization...61
10.1 Processor Lookup and Custom Processors...61
10.2 Dispatcher Lookup and Custom Dispatchers..62

11 Observers...63
11.1 Command Set Interfaces...63

11.1.1 CommandSetLifetimeLI..63
11.1.2 CommandSetStatusLI..63

11.2 Command Interfaces...63
11.2.1 CommandLifetimeLI...63
11.2.2 CommandStatusLI...64
11.2.3 CommandRuntimeLI...64

12 Observer Scripts..65

13 Thread Regulation..66

Introduction

ii

Table of Contents
14 Logging...67

14.1 Default Java configuration file..67
14.2 Log Levels..68

14.2.1 Fatal...68
14.2.2 Error...68
14.2.3 Warn..68
14.2.4 Info..68
14.2.5 Debug..69
14.2.6 Finer...69
14.2.7 Finest...69

15 Reporting Problems..70

Introduction

iii

1 Introduction
The Institute for Genomic Research (TIGR) has many computational pipelines that need to be created, executed, and
monitored on an ongoing basis. Examples include the pipeline to download and build PANDA databases, running
All-vs-All searches for genome databases, running annotation pipelines, etc. Each pipeline typically includes multiple
discrete steps that are executed as a combination of sequential and parallel steps either locally or farmed out to a
distributed computing environment (DCE) or grid. To reduce manual intervention, allow resumption of failed
pipelines, and streamline the process flow, TIGR's Annotation Software team, ANTware, has designed a system called
Workflow that can be used to build, run, and monitor such process pipelines or workflows.

The Java programming language was used to build the Workflow system to enable porting this application to multiple
operating systems and build rich GUIs. The system includes a set of command line and GUIs tools to create, execute,
manage and monitor workflows. A workflow instance, typically referred as a workflow, is represented as a collection
of one or more XML files that defines the hierarchical structure of the process pipeline. The workflow is defined as a
hierarchical collection of command sets and commands where the command sets group a set of related commands in a
sub-unit of work. The command represent the smallest discrete unit of work such as the execution of a blast job,
loading a database, etc, and specifies the action to be taken and the data needed for undertaking this action as
parameters. A workflow instance can have subflows (command sets) either that are fully contained in the instance file
or that reside as separate subflow instances with a reference in the parent file. Such a workflow is referred to as a
nested or hierarchical subflow.The Workflow engine steps through this XML file to identify and launch specialized
processors to process all the steps in the instance. The command sets are executed by Dispatchers and commands are
executed by Processors.

The Workflow system currently includes the tools EditTemplate, CreateWorkflow, RunWorkflow, ControlWorkflow,
KillWorkflow, MonitorWorkflow, CheckWorkflow and CleanWorkflowRegistry. EditTemplate is a GUI tool used to
build workflow templates, CreateWorkflow is used to build instances of predefined workflows, while the
RunWorkflow tool is used to execute the workflow instance. ControlWorkflow is used to restart one or more stopped
or failed commands or command sets in a currently running workflow. KillWorkflow is used to kill or terminate a
workflow gracefully. MonitorWorkflow provides a GUI to monitor the execution of one or more
workflows. CheckWorkflow allows a user to determine whether a given workflow is currently running and, if so, on
what machine. CleanWorkflowRegistry is used to clean up the java RMI registry used by workflow in the event of a
catastrophic failure of the engine and also to list all the workflows running on a particular host.

The Workflow system comes with a standard set of command dispatchers and processors but is designed to allow
users to build their own specialized command processors in any programming language and add them to the system.
The dispatcher set includes LocalDispatcher, DistributedDispatcher and RemoteDispatcher. LocalDispatcher
executes a set of commands in the workflow on the local machine either serially or in parallel, depending on the type
of the command set. DistributedDispatcher submits a set of distributable commands in the workflow to an underlying
grid (DCE). RemoteDispatcher submits an entire subflow to the underlying grid (DCE) as one job; the subflow must
reside in a separate XML file. The set of command processors include SystemCommandProcessor, which is a general
processor to launch various system commands, including standalone applications or utilities, WaitProcessor, which as
the name suggests sleeps for the specified duration, and the WaitForFileProcessor which waits for the creation of the
specified file and DistributedProcessor, which is used to launch a command in a distributed environment.

Workflow has been built to run in the background, but there are a number of situations where a user might want
notification of the finish or failure of the workflow. To accommodate this, the engine has been built to send
notifications via email upon completion or failure of the workflow. In other situations users may want some common
action to be taken upon the completion of each step of the workflow. To make this process simple, workflow provides
a mechanism of registering either stand alone utilities or special Java listener classes with the engine to receive
notifications at different levels of granularity. The workflow engine includes capability for other java process to

01/18/07 1

communicate with the engine to check execution status, stop the engine, or restart failed commands. This is
accomplished through Java's remote method invocation (RMI) API. As a result each instance of the workflow starts a
RMI server to listen to requests from other processes.

Workflow system can be used in two scenarios, one where the user generates the instance files and uses the workflow
engine for execution of the pipeline, or use the workflow to generate the instance files from template and
corresponding configuration files. The template file is a skeleton XML file that defines the structure of the workflow
along with the invariant parameters such as executable names, fixed parameters, while delegating the variant
parameters to be stored in the configuration file. This allows the user to reuse a pipeline definition with different
parameters without having to redefine the structure every time. This mechanism also allows the creation of dynamic
workflows where the structure is predefined but the parameters are created by parts of the pipeline.

Introduction

01/18/07 2

2 System Requirements
The workflow system has been written in Java and requires at least Java Standard Edition 5.0 or higher. The system
has been tested to work under Linux, and Solaris operating systems and relies on the availability of PERL interpreter.
The system uses a number of third party tools and libraries that include Log4j, Castor, JUnit, Xerces, etc., among
others.

01/18/07 3

3 Workflow Instance Schema
This section describes the structure of the workflow instance XML schema. A workflow instance is an instance of
CommandSetRoot, which represents the document and includes one and only one CommandSet element. Each
command set element can contain one or more Command or CommandSet elements that represent components of the
workflow. The CommandSet and Command elements can have other simple and complex elements as defined in the
schema. Each of the XML elements of this schema are discussed in detail in this section with a graphical
representation of the element. The graphical schema presented here pertains primarily to the workflow instance files,
the template files use a subset of these tags, and the tables describing these elements indicate which of the elements
are required for template and instance files.

3.1 CommandSetRoot

A CommandSetRoot is the root XML element and contains a single CommandSet element. Fig 1 shows the schema
diagram for the command set root. The major elements of the root element include the type, command set, the host
that is executing this instance, and the port on which the workflow engine is listening for RMI calls.

Fig 1: Command Set Root Schema

Name Description Data Type Instance Template Notes/Valid Values

type File type String required required library, template, instance

commandSet The command set that models the workflowCommandSet required required only one set can be defined

host The host on which the instance is running String required - This value is written by the
engine when execution begins

port The port on which the RMI server is listeningInteger required -
uses the default RMI port
(1099)

3.2 CommandSet

A commandSet is a complex element that represents one aggregate unit of work. Fig 2 shows the schema diagram for
the command set element , the elements that are associated with the command set include name, comment, type,
version, configMapID, state, status, startTime, endTime, and the commandList. A commandList contains one or more
command and commandSet elements. When a command list contains other command sets, the workflow is considered
to be a complex workflow built up from a hierarchy of sub-workflows.

The dceSpecelement is used to specify grid parameters for a command set. For remote command sets this dceSpec is
used to launch the job on the grid, for other command sets the dceSpec is used to specify grid params for any
distributed commands contained within this set, unless overridden by the dceSpec of a specific command.

01/18/07 4

Fig 2: Command Set Schema

Name Description Data Type Instance Template Notes/Valid Values

name Command set name String required required

comment A descriptive comment for the command
set

String optional optional

id The unique identifier for this command
set

Long required - set by engine if none exists

maxParallelCmds
The maximum number of commands
under this command set allowed to run
at once

Integer optional optional
uses workflow default if none
specified

Introduction

01/18/07 5

configMapId The config file mapping ID String required -

fileName The filename for the file-based subflow String optional optional

parentFileName The filename of the parent workflow String optional - set by engine during
execution

startTime Time the command set execution was
started

DateTime optional - created and set by engine if
none exists

endTime Time the command set execution was
completed

DateTime optional - created and set by engine if
none exists

state The current state of this command set String optional - created by engine if none
exists. Valid values are:
incomplete, complete, error,
running, failed, interrupted,
pending

waitUntil Do not launch execution until the
specified time

DateTime optional simple Not yet implemented

config The configuration parameters Config optional optional required for dynamic
subflows

status The status of this command set CommandSetStatus optional - created by engine if none
exists

dceSpec
A DCE specification for distributed or
remote command sets

DCESpecification optional optional

commandList The list of commands List required required command or commandSet
elements

type The type of command set String required required serial, parallel,
distributed-serial,
distributed-parallel,
remote-serial or
remote-parallel

version The version number associated with this
workflow

String required required

restarted
This is used internally during command
restarts

Boolean - - Automatically generated

3.3 CommandSetStatus

This element is used to track the command set status and includes the total count of command elements in the set and
the count of elements in different states. Fig 3 shows the schema diagram for this element.

Fig 3: Command Set Status Schema

Introduction

01/18/07 6

Name Description Data Type Instance Template Notes/Valid Values

total Count of all commands Integer required required

complete Count of successfully completed commands Integer required simple

incomplete Count of incomplete commands Integer required simple

failed Count of failed commands due to exceptions Integer required simple

pending Count of commands currently pending Integer required simple

errors Count of commands that had non-zero return
value

Integer required simple

running Count of commands currently running Integer required simple

waiting Count of commands currently waiting Integer required simple

interrupted Count of commands interrupted Integer required simple

message The failure or interruption message if any Integer optional simple

3.4 Config

This complex element is used to specify the configuration for a commandSet or command elements. Fig 4 shows the
graphical representation of the config element. For command set elements the config element is used to specify
parameters to build or execute the command set, for instance for dynamic file-based subflows, the Param element in
config is used to specify the template and configuration file names that are used to build the instance file when
needed. A param with the key template is used to specify the template file while the param with key configfile is used
to specify the config file used to build the subflow instance.

Although not currently used, the command element can have a config elements such as the required argument count,
required params, etc., associated with it. This will be used in the future for building GUI tools which will read this
information to provide form fields for required and optional elements and to validate the specified input against the
configured elements.

Fig 4:Config Schema

Introduction

01/18/07 7

Name Description Data Type Instance Template Notes/Valid Values

filePath
Configuration file to specify options to the
processor

String optional optional currently ignored

param A parameters hash Param optional optional
any, with special meaning
attached to template and
configfile.

requiredArgCount Required argument count Integer optional optional currently ignored

requiredParams Required parameter names and descriptionsParamDef optional optional currently ignored

optionalParams Optional parameter names and descriptions ParamDef optional optional currently ignored

3.5 Command

A command element represents the smallest discrete sub-unit of work in a workflow. Each command is associated
with a specific CommandProcessor that is invoked to execute this command. Fig 5 shows the diagram for the
command schema. The main elements of the command include the name, and type which are used to identify the
particular command processor, status, executable, and param elements. There are other status elements such as status,
startTime, endTime, etc. The dceSpec element is used to specify grid parameters if this is a distributed command. If
this is a distributed command and no dceSpec is specified the dceSpec from the parent set is used if one is specified.

Fig 5: Command Schema

Introduction

01/18/07 8

Name Description Data Type Instance Template Notes/Valid Values

name Command name used to identify processor String required required
optional if the type is
specified

comment A descriptive comment for the command String optional optional

id The unique identifier for this command Long required - set by engine if none present

Introduction

01/18/07 9

configMapId The config file mapping ID String optional required

startTime
Time the command set execution was
started

DateTime optional -
created and set by engine if
none exists

endTime
Time the command set execution was
completed

DateTime optional -
created and set by engine if
none exists

state The current state of this command set String optional -
incomplete, complete, error,
running, failed, interrupted,
pending, waiting

type
The type of command. An alternate key to
lookup processor

String required required optional if name is specified

waitUntil
Do not launch execution until the specified
time

DateTime optional optional Not yet implemented

retryCount
The number of times the system attempts to
execute this command before giving up

Integer optional optional

timeOut
The maximum time the command is
allowed to execute before giving up

Integer optional optional Not yet implemented

config The configuration element Config optional optional

status The status of this command String optional optional

executable The name of the executable String optional optional

param Parameters for this command Param optional optional

flag The flags passed to this command String optional optional

arg The arguments passed to this command String optional optional

dceSpec The DCE specifications DCESpecification optional optional
Valid only for distributed
commands

3.6 CommandStatus

This element is used to track the status of a command and includes returnValue, and message as the main elements.
See Fig 5 for a graphical representation of the status schema.

Name Description Data Type Instance Template Valid Values

returnValue The return value of the command Integer - - set by the engine

message A message string, typically error messages String - - set by the engine

3.7 DCESpecification

A dceSpecification element represents the distributed computing environment or grid specifications for a distributed
command or set. A dceSpecification element specifies the parameters required for launching the job on the grid such
as the os, memory, hosts, priority, duration, etc., as well as the run time values set by the engine such as the gridID,
executionHost, etc. See Fig 6 for a graphical representation of the dceSpecification element.

Fig 6: DCE Specification Schema

Introduction

01/18/07 10

Name Description Data Type Instance Template Notes/Valid Values

jobID The jobID assigned by HTC API Long - - set by engine at runtime

executionHost The host name which is executing the
command

String - - set by engine at runtime

log
The location to which DCE log messages are
sent

String - - set by engine at runtime

specFile
DCE parameters specifications file.
Individually specified params will supersede
params in file.

String optional optional

group Group name used for accounting and priorityString required optional

mail
E-mail address for sending individual job
completion notification

String optional optional
If not specified no notification
is sent

Introduction

01/18/07 11

os Operating systems on which jobs can run String optional optional
CSV list which is 'or-ed'.
Default linux at TIGR

memory Minimum memory requirements String optional optional
Specified in megabytes, eg:
256M

runtime Estimated running time String optional optional

evictable Whether a job may be preempted and restartedBoolean required optional The default is true.

queue An optional DCE queue to which job is sent String optional optional
Ignored in condor, honored in
SunGrid

hosts
List of hosts on which to try and execute the
command

String optional optional CSV list which is 'or-ed'

duration Estimated execution length of job String optional optional
short, medium, long, forever.
Default medium

priority The priority of the command String optional optional
very low, low, medium, high,
very high

passthrough
Requirements string passed through to the
underlying DCE

String optional optional
'and-ed' with other
specifications if any specified

workingDir
Starting directory from where the job is
launched

String optional optional

reqStartTime Actual execution start time. DateTime - - set by engine at runtime

type The type of grid to use String required optional Default is SGE at TIGR.

gridID The gridID for this job String - - set by engine at runtime

execEnv Runtime environment ExecEnv optional optional
Inherits user environment if
none specified. If specified,
replaces user environment

3.8 ExecEnvironment

The complex element execEnvironment is used to specify the runtime environment for executing a distributed
command or set on the grid. There are two ways to specify the environment, through a file specified in the envFile
element, or as a list params as key, value pairs that are set as the environment variables before execution. The default
environment passed to the grid is the users shell environment, if this element is specified it will override the user's
environment. See Fig: 7 for a graphical representation of this element.

Name Description Data Type Instance Template Notes/Valid Values

envFile File to specify environment as key-value pairs String optional optional

param One or more parameter objects Param optional optional

Fig 7: ExecEnv Schema

Introduction

01/18/07 12

3.9 Param

This complex element is used to specify various parameters and their values. A param element typically is converted
to a hash table of keys and values. When a particular parameter can have multiple values, the values can be specified a
comma separated list, or multiple value elements sequentially.

Name Description Data Type Instance Template Notes/Valid Values

key The key for the parameter String required required

value The value for this key String required required

3.10 ParamDef

This complex element is used to specify various parameter definition. A param def is used to specify the optional
definition of required and optional parameters for command config elements.

Name Description Data Type Instance Template Notes/Valid Values

key The key for the parameter String required required

comment The comment associated with this key String required required

Introduction

01/18/07 13

4 Workflow Template File
A workflow template file is a skeleton XML file that defines the basic structure of the pipeline and conforms to the
XML schema defined in commandSet.xsd (see the Workflow XML Schema section for details). The template file
includes the typical pipeline invariant elements such as the name, type, fixed command parameters, etc. The template
contains a CommandSetRoot root element. The root element should always have one and only one CommandSet
element which represents the workflow. This command set may contain one or more Command class elements, which
include, CommandSet and Command.

The following is an example of simple workflow template that contains two commands that are executed sequentially.

<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation='commandSet.xsd'>
 <commandSet type="serial">
 <name>myflow</name>
 <configMapId>1</configMapId>
 <command>
 <name>FirstCommand</name>
 <configMapId>1.1</configMapId>
 </command>
 <command>
 <name>SecondCommand</name>
 <configMapId>1.2</configMapId>
 </command>
 </commandSet>
</commandSetRoot>

In the template definition, a CommandSet must include the type, name, and configMapId elements. The type attribute
can be one of serial, parallel, distributed-serial, distributed-parallel, remote-serial or remote-parallel. A serial type
indicates that the commands within the set will be processed sequentially, while parallel, indicates that the commands
will be processed simultaneously. Similarly, distributed-serial indicates that the commands within the set should be
executed on the DCE sequentially, while distributed-parallel indicates that the commands of set should be executed
on the DCE simultaneously. Sets declared to be remote-serial or remote-parallel will be launched on the grid as
separate workflow instances. The name element identifies the descriptive name of the command set. The configMapId
is a unique string for each command class element and maps to a section of the configuration file that has the
parameters required for instantiating this element.

The following is an example of a file-based hierarchical template that contains one command and a command set that
should be executed simultaneously. The subflow template and configuration file are specified in the config element of
the command set while the subflow file name is specified in the fileName element.

Parent Template Child Template
<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>

 <commandSet type="parallel">
 <name>myflow</name>
 <configMapId>1</configMapId>
 <command>
 <name>RunUnixCommand</name>
 <configMapId>1.1</configMapId>
 </command>
 <commandSet type="serial">

<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>
 <commandSet type="serial">
 <name>sub-workflow</name>
 <configMapId>1.2</configMapId>
 <command>
 <name>RunUnixCommand</name>
 <configMapId>1.2.1</configMapId>
 </command>
 </commandSet>
</commandSetRoot>

01/18/07 14

 <name>sub-workflow</name>
 <configMapId>1.2</configMapId>
 <config>
 <param>
 <key>template</key>
 <value>subflow_templ.xml</value>
 </param>
 <param>
 <key>configfile</key>
 <value>subflow_templ.ini</value>
 </param>
 </config>
 <fileName>subflow.xml</fileName>
 </commandSet>
 </commandSet>
</commandSetRoot>

Introduction

01/18/07 15

5 Configuration File
A configuration file or config file is an INI style file that complements a template file and is used by the workflow
builder to create a workflow instance file. This file typically specifies values for workflow elements that change
between to workflow invocations, such as file names, parameters, etc. The file contains multiple sections identified by
unique section headers with names that map to the configMapId of the workflow template. Within each section, the
parameters are specified as key-value pairs, one per line. The equals sign (=) separates the key and its value. Multiple
values can be specified as a comma-separated list or as multiple occurrences of the key in that section.

The workflow builder uses the elements in template and configuration file to build the instance file element. When
both the template and configuration file specify a value for an element, the config file values are considered to be
additive and appended to the list of values specified in the template. However, in instances where there can only be
one value for an element, such as the executable, name, or type, the config file value supersedes the template file
value.

The config file is also the place where command or command-set iterators can be specified. Iterators cause the
replication of commands or command sets with different parameters and are useful when the same operations are
performed iteratively on a list of files, etc. See the Iterators section for details.

The table below shows an example of a template file and its corresponding configuration file:

Template File Configuration File
<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>
 <commandSet type="serial">
 <name>myflow</name>
 <configMapId>1</configMapId>
 <command>
 <name>FirstCommand</name>
 <configMapId>1.1</configMapId>
 <executable>yank.pl</executable>
 </command>
 <command>
 <name>SecondCommand</name>
 <configMapId>1.2</configMapId>
 <executable>ls</executable>
 </command>
 </commandSet>
</commandSetRoot>

[1]
name=myflow
config.filePath=hello

[1.1]
name=FirstCommand
param.--conf=my.conf
param.--outfile=my.out

[1.2]
name=SecondCommand
arg=/home/amahurka

5.1 Simple Values

For simple XML elements such as name and retryCount that take a single value, the key in the config file maps to the
name of the XML element, and the value associated with the key is assigned as the value of the XML element. For
example, if a command in the template file contains an XML element name with value FirstCommand, the entry in the
configuration file would look like name=FirstCommand.

5.2 Complex Values

For complex elements like Param or Config (see examples below) which contain one or more sub-elements, the key
for an XML element should contain a "dot" (.)-separated path that includes all the XML elements in the tree path. For
a Param element with key '--in' and value 'infile' in the example, the entry in the config file would be param

01/18/07 16

--in=infile. For example the entry for Config param template with value subflow_templ.xml the entry in the config file
would be config.param.templateFile=subflow_templ.xml. If a key has more than one value, the values can be
specified as a comma-separated list or as multiple sequential instances of the value line.

<param>
 <key>--in</key>
 <value>infile</value>
</param>

<config>
 <filePath></filePath>
 <param>
 <key>template</key>
 <value>subflow_templ.xml</value>
 </param>
</config>

The following table shows example configuration files for building hierarchical workflow. The top section shows the
template and config file for the parent, while the second row shows the template and config file for the child flow.

Template File Config File
<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>
 <commandSet type="parallel">
 <name>myflow</name>
 <configMapId>1</configMapId>
 <command>
 <name>RunUnixCommand</name>
 <configMapId>1.1</configMapId>
 </command>
 <commandSet type="serial">
 <name>sub-workflow</name>
 <configMapId>1.2</configMapId>
 <config>
 <param>
 <key>template</key>
 <value>subflow_templ.xml</value></param>
 </config>
 <fileName>subflow.xml</fileName>
 </commandSet>
 </commandSet>
</commandSetRoot>

[1]
; Top level command set
name=myflow

[1.1]
; First command
name=RunUnixCommand
param.--config=yank.conf
executable=yank.pl

[1.2]
; A sub-workflow specified as a command set
name=sub-workflow

<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>
 <commandSet type="serial">
 <name>sub-workflow</name>
 <configMapId>1.2</configMapId>
 <command>
 <name>RunUnixCommand</name>
 <configMapId>1.2.1</configMapId>
 </command>
 </commandSet>
</commandSetRoot>

[1.2]
; Sub-workflow command set
name=sub-workflow

[1.2.1]
; First command
name=RunUnixCommand
executable=ls

arg=/home/user

Introduction

01/18/07 17

5.3 Iterators

In most computational pipelines we encounter situations where a single command or an entire pipeline is run on a
collection of data repeatedly. For instance, to perform an all-vs-all BLAST search for a set of genomes the same blast
pipeline is run once per organism. Within the pipeline one might break the data set into smaller chunks, say one per
chromosome, and run the BLAST search per cheroots. Instead of manually creating instances with these repeating
command sets and commands, workflow provides a mechanism for using an existing pipeline definition and iterating
over the entire data set using this pipeline. For instance the entire pipeline might include the execution of the BLAST
pipeline once per organism where in the organism pipeline we split the organism data into smaller data sets based on
chromosomes, or some other logical unit, and then run BLAST search for each of the units. The first type of iteration
would be a command set iteration while the second type of iteration is considered a command iteration. These two
types of iterators, command iterators and command-set iterators, are discussed in this section. Iteration is
accomplished within workflow by specifying the iterator parameters in the configuration files with special element
names. These are used by the builder to elaborate the iteration to specific commands and sets.

5.3.1 Command Iterator

A command iterator can be used to iterate over a list of parameters and execute a specific command for each of the
items in the list. For instance in the above example we iterate over the individual chromosome files to run BLAST
search on each of the files. Instead of repeating that many commands in template and config files, a template file can
simply specify the single BLAST command, and the config file can use an iterator parameter to specify the list of
chromosome files over which the BLAST command iterates.

The following table shows an example of a workflow template and corresponding config file with an iterator
command:

Template File Config File

<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>
 <commandSet type="parallel">
 <name>Blast Proteins</name>
 <configMapId>1</configMapId>
 <command>
 <name>Blast</name>
 <configMapId>1.1</configMapId>
 <executable>blastp</executable>
 </command>
 </commandSet>
</commandSetRoot>

[1]
; Top level command set
name=Blast Proteins
config.filePath=hello

[1.1]
; First command
name=Blast
command.iterate = param.-i, param.-o
param.-i=first.chr, second.chr
param.-o=first.chr.out, second.chr.out
param.-d=AllGroup.niaa

There are two requirements for specifying command iterators. The first is that the command section in the config or
template file (section 1.1 in the above example) have an entry with the key 'command.iterate' to indicate that this
command is an iterator command. The value associated with this key is a comma-separated list of iterator parameters
(param.-i, param.-o in the example). The second requirement is that the iterator parameters specify the list of values
to iterate over (Note: The number of items in the iteration list should be the same for each of the iterator parameters).
In this case we want to iterate over two chromosome (first.chr, second.chr) files and write the output to two files
(first.chr.out, second.chr.out).

The major elements of the resulting instance file are shown below:

<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>

Introduction

01/18/07 18

 <commandSet type="parallel">
 <name>Blast Proteins</name>
 <configMapId>1</configMapId>
 <command><name>Blast</name>
 <configMapId>1.1</configMapId>
 <id>12344</id>
 <executable>blastp</executable>
 <param>
 <key>-i</key>
 <value>first.chr</value>
 </param>
 <param>
 <key>-o</key>
 <value>first.chr.out</value>
 </param>
 <param>
 <key>-d</key>
 <value>AllGroup.niaa</value>
 </param>
 </command>
 <command><name>Blast</name>
 <configMapId>1.1</configMapId>
 <id>12345</id>
 <executable>blastp</executable>
 <param>
 <key>-i</key>
 <value>second.chr</value>
 </param>
 <param>
 <key>-o</key>
 <value>second.chr.out</value>
 </param>
 <param>
 <key>-d</key>
 <value>AllGroup.niaa</value>
 </param>
 </command>
 </commandSet>
</commandSetRoot>

When specifying a list of arguments or flags to iterate over, a position number is appended to the arg or flag
parameter. For instance if the the first argument is the input file and the second argument is the output file, the section
map looks as follows:

[1.1]
; First command
name=MyProcess
command.iterate = arg.1, arg.2
arg.1 = first.in, second.in
arg.2 = first.out, second.out

5.3.2 Command-Set Iterator

A command-set iterator can used to iterate over a list and execute a specific sub-flow for each item in the list. For
instance in the above discusses example we would have one command set or workflow for each of the organisms.
Instead of repeating that many command sets in template and config files, a template file can simply specify the single
command set, and the config file can use a command-set iterator to specify the list of files over which the command
set iterates.

Introduction

01/18/07 19

The following table shows an example of a workflow template and corresponding config file with command set
iterators:

Template File Config File
<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>
 <commandSet type="parallel">
 <name>My Iterative Blast Pipeline</name>
 <configMapId>1</configMapId>
 <commandSet type="serial">
 <name>OrganismSubflow</name>
 <configMapId>1.1</configMapId>
 <config>
 <param>
 <key>template</key>
 <value>org_subflow_template.xml</value>
 </param>
 </config>
 </commandSet>
 </commandSet>
</commandSetRoot>

[1]
; Top level command set
name=My Iterative Blast Pipeline

[1.1]
; Subflow
name=OrganismSubflow
commandset.iterate=fileName, config.param.configfile
config.param.configfile=h_sapiens.ini, b_taurus.ini
fileName = h_sapiens.xml, b_taurus.xml

There are two requirements for specifying command-set iterators. The first is that the command-set section in the
config or template file (section 1.1 in the above example) have a parameter with the name 'commandset.iterate' to
indicate that this command set is an iterator command set. The value associated with this entry is a comma-separated
list of iterator parameters (config.param.configfile, fileName in the example). The second requirement is that the
iterator parameters specify the list of values to iterate over (Note: The number of items in the iteration list should be
the same for each of the iterator parameters). In this case we want to iterate over two organisms, h_sapiens, and
b_taurus, the config files (h_sapiens.ini, b_taurus.ini) contain the parameters that are used to generate the organism
pipelines (h_sapiens.xml, b_taurus.xml).

The major elements of the resulting pipeline instance file are shown below:

<?xml version="1.0" encoding="UTF-8"?>
<commandSetRoot>
 <commandSet type="parallel">
 <name>My Iterative Flow</name>
 <configMapId>1</configMapId>
 <id>1</id>
 <commandSet type="serial">
 <name>MySubflow</name>
 <configMapId>1.1</configMapId>
 <id>2</id>
 <fileName>h_sapiens.xml</fileName>
 <config>
 <param>
 <key>template</key>
 <value>org_subflow_template.xml</value>
 </param>
 <param>
 <key>configfile</key>
 <value>h_sapiens.ini</value>
 </param>
 </config>
 </commandSet>
 <commandSet type="serial">
 <name>MySubflow</name>
 <configMapId>1.1</configMapId>

Introduction

01/18/07 20

 <id>3</id>
 <fileName>b_taurus.xml</fileName>
 <config>
 <param>
 <key>template</key>
 <value>org_subflow_template.xml</value>
 </param>
 <param>
 <key>configfile</key>
 <value>b_taurus.ini</value>
 </param>
 </config>
 </commandSet>
 </commandSet>
</commandSetRoot>

Introduction

01/18/07 21

6 Dynamic Workflows
Workflow system allows the creation and execution of dynamic workflows. Dynamic workflows in this instance are
defined as workflows that cannot be elaborated or fully defined at the onset of a pipeline execution but become
defined as the process progresses. In a future release we may add the ability for branching based on conditions, etc.

For instance in the example of an all-vs-all search discusses in the previous section, at the outset we may not know
how many organisms exist in our data collection, or within an organism how many chromosomes exist. One
possibility would be for a pre-process step to do all of this identification and build the necessary configuration files,
but another possibility is for one step of the pipeline to create these files as the need arises. So, at the top level there
may be a step that identifies the number of organisms and build the organism subflow config files. Once the execution
of the pipeline for an organism begins the first step might be to split the data file based on organisms and build the
config file to iterate over the chromosomes. To support the second possibility, the workflow engine can be instructed
to delay the creation of instance files till the point of execution. While there is no right way of doing it the latter
approach in our experience has proven to be a more scalable and elegant approach.

01/18/07 22

7 Tools
This section discusses the various workflow command-line and GUI tools used to build, manage, monitor, and execute
workflows. This section describes the tools, their invocation, command line options and some example invocations.

7.1 Template Editor

This GUI tool allows the user to view, create, edit, and print workflow templates. Additionally, this tool can be used to
create initial config files associated with the templates. The editor can be used in two modes, the Single Level mode in
which a single level of the template file can be viewed and edited, and the Multi Level mode in which the template can
be viewed at an arbitrary depth level. The screen shot of the Template Editor screen shown in Fig 8 displaying a
template in the Single Level mode. The commands in the workflow are represented as rectangles while the command
sets are represented by a folder. The figure shows a workflow with three commands and a command set that is visible.

Fig 8: Template Editor - Single Level Mode

01/18/07 23

7.1.1 Single Level View

This section discusses the main layout of the editor in the single level view in which templates can be viewed, edited,
and created. The GUI in the single level view contains three areas, the Display Pane on the left, which shows the
graphical representation of the template, the Details Pane on the top-right hand side which shows the details for the
element currently selected in the display pane, and the Repository Pane, at the bottom-right that shows the selected
templates and commands in the repositories. Along the left hand side of the GUI is the Tool Bar which includes
buttons for adding command or command set elements to the template, and along the top is the Menu and the Menu
Bar with the most commonly used menu items.

7.1.1.1 Move Up and Down Hierarchy

In the Single Level Mode only one level of a workflow hierarchy is displayed. To move down the hierarchy
double-click on the desired command set represented as a folder. This will switch the view to display the contents of
the selected command set. To move up the hierarchy click on the Move Up icon. This will switch the view to the
parent of the currently displayed command set.

7.1.2 Multi Level View

To view the template and its subflows in an expanded view switch to the Multi Level View. In this view the user can
choose a depth level to which the template is expanded. Each depth level is displayed in a darker shade and is
surrounded by a dotted line. Fig 9 shows the expanded view of a template expanded to the third depth level. The multi
level mode is very useful to see the overall structure of a pipeline and can be used to document the pipeline.

Fig 9: Template Editor - Multi Level Mode

Introduction

01/18/07 24

7.1.2.1 Change Depth Level

To change the depth of the expanded view change the depth level in the Spinner control in the Menu Bar. This will
change the depth to which the template is displayed. Currently the maximum depth to which a template can be
expanded is 16.

7.1.3 Menus

This section discusses the main menu items in the three main menu categories, File, Edit, and View. The menu items
are organized by category with a brief description of each of the menu items.

7.1.3.1 File Menu

The file menu contains the menu items for creating, opening, closing, saving, and printing the templates. Each option
in this section is discussed below.

Introduction

01/18/07 25

7.1.3.1.1 Open

To open an existing template select the File -> Open menu item. Alternately, the user can click on the icon, or use
the keyboard shortcut Ctrl-O, to open an existing template file. This brings up a Open File Dialog which can be used
to navigate and select the desired template file. When this menu item is selected any open template file is closed and
displays the contents of the selected template in the Display Pane.

7.1.3.1.2 Create New

To create a new template or library select the File -> New menu item. Alternately, the user can click on the icon,
or use the keyboard shortcut Ctrl-N, to create a new template. This brings up the Select Set Configuration Dialog
shown in Fig. 10 which can be used to specify the type of the file template or library, and other initial values. When
the user clicks on the OK button, this closes any open template and displays the new template in the Display Pane. A
library is a special template file that contains a collection of commands that can be reused to build templates.

Fig 10: Template Editor - Select Set Configuration Dialog

7.1.3.1.3 Save

To save an open template click the File -> Save menu item. Alternately the user can click on the icon, or use the
keyboard shortcut Ctrl-S, to save the file. If this is a new file the Save File Dialog is displayed which can be used to
navigate and select the desired template filename. This selection only saves the current file. If this file is a subflow of
a parent flow, the parent flow is not saved.

7.1.3.1.4 Save As

To save an open template to a different file click the File -> Save As menu item. Alternately the user can click on the
 icon, or use the keyboard shortcut Ctrl-A, to save the file. The Save File Dialog is displayed which can be used to

navigate and select the desired template filename. This selection only saves the current file. If this file is a subflow of
a parent flow, the parent flow is not saved.

7.1.3.1.5 Save All

To save all modified files select the File -> Save All menu item. Alternately the user can use the keyboard shortcut
Ctrl-L, to save the file. If this is a new file the Save File Dialog is displayed which can be used to navigate and select
the desired template filename. This selection recursively saves all new and modified template files starting from the
top-level template file.

Introduction

01/18/07 26

7.1.3.1.6 Print

To print the the template select the File -> Print menu item. Alternately, the user can use the keyboard shortcut
Ctrl-P, to print the set. Based on the current view this will cause the current command set or the expanded view of the
workflow to the selected depth to be printed to the selected printer.

7.1.3.1.7 Create Configs

To create base config files associated with template files, or update existing config file, select the File -> Create
Configs menu item. Alternately, the user can use the keyboard shortcut Ctrl-G. This will recursively create or update
config files associated with template files. If no config file name is specified, a name is derived from the template file
name by replacing the 'xml' extension with 'ini' extension. The config element of the command set is modified to
reflect the config file associated with the template. All pre-defined parameters are added to the config file along with
the name and the section header. As this may cause the template files to be modified, the user must save all the
changes to template file after this operation.

7.1.3.1.8 Close

To close the current top-level template select the File -> Close menu item. Alternately the user can use the keyboard
shortcut Alt-C, to close template. This will close the current open template, if there an unsaved changes the user is
presented with the option to abort the close operation so the user can save the changes before closing.

7.1.3.1.9 Exit

To exit the application select the File -> Exit menu item. Alternately the user can use the keyboard shortcut Alt-X, to
exit. This will close the application, if there an unsaved changes the user is presented with the option to abort the exit
operation so the user can save the changes before exiting.

7.1.3.2 Edit Menu Items

This section discusses the edit menu items of the editor that include the functions to delete, copy, and paste elements
of the workflow template. This menu is only enabled in the Single Level mode as editing is disabled in the Multi Level
mode.

7.1.3.2.1 Delete

To delete an element from the current template select the element and then choose Edit -> Delete menu item.
Alternately the user can click on the icon. This will delete the selected element from the current template.

7.1.3.2.2 Cut

To cut an element from the current template into the clipboard select the element in the display pane and choose Edit
-> Cut menu item. Alternately the user can use the keyboard shortcut Ctrl-X. This will move the selected element
from the current template to the application clipboard.

7.1.3.2.3 Copy

To copy an element from the current template into the clipboard select the element in the display pane and choose Edit
-> Copy menu item. Alternately the user can use the keyboard shortcut Ctrl-C. This will copy the selected element
from the current template to the clipboard.

Introduction

01/18/07 27

7.1.3.2.4 Paste

To paste an element from clipboard to the current template choose Edit -> Paste menu item. Alternately the user use
the keyboard shortcut Ctrl-V. This will paste the element from the clipboard to the end of the current template.

7.1.3.2.5 Move

To move the location of an element select the element and then drag and drop the element to the new location. This
will rearrange the elements in the command set.

7.1.3.3 View Menu Items

This section discusses the menu items on the View Menu that include items to zoom in and out and switch the views.

7.1.3.3.1 Single Level

To switch the view to single level mode select View -> Single Level menu item. Alternately the user can use the
keyboard shortcut Alt-S. This will switch the current view to the single level mode where the template can be edited.

7.1.3.3.2 Multi Level

To switch the view to multi level mode select View -> Multi Level menu item. Alternately the user can use the
keyboard shortcut Alt-M. This will switch the current view to the multi level mode where the template can be viewed
in an exploded view at an arbitrary depth (Note: This view disables editing functions of the editor).

7.1.3.3.3 Zoom In

To zoom in or increase the magnification of the current view select View -> Zoom In menu item. Alternately the user
can use the keyboard shortcut Ctrl-=. This will increase the magnification of the view by 20%.

7.1.3.3.4 Zoom Out

To zoom out or decrease the magnification of the current view select View -> Zoom Out menu item. Alternately the
user can use the keyboard shortcut Ctrl--. This will decrease the magnification of the view by 20%.

7.1.3.3.5 Zoom Level

To select a specific zoom level from a set of predefined zoom levels select the zoom level under the Zoom Level
submenu. This will change the magnification of the template to the specified magnification level.

7.1.4 Edit Template

This section discusses the essential editing capabilities of the template editor. The section is organized around the
major functions that one can perform such as adding commands, command sets, etc.

7.1.4.1 Add Command

To add a new command to the template drag and drop one of the following command icons from the Tool Bar to the
desired location in the display panel.

 - Local Command
 - Distributed Command

Introduction

01/18/07 28

This brings up a Select Command Configuration Dialog shown in Fig. 11. The user can enter the Name of the
command, select a Type of command from the drop down list (generated by reading the standard and custom
command processor lookup files), the optional Comment, and the required Config Map ID fields. If this is an
iterative command the user can click on the Iterative Command check box. This enables the Iterator Params text
field where the user can enter a comma separated list if the iterator parameter names. Fig. 11 shows that the new
command is an iterator command that has two iterator params, param.in and param.out. Finally, the user can click on
the Distributed check box to specify that this is a distributed command. When the user clicks on the OK button, the
new command is inserted at the specified location.

Fig 11: Template Editor - Select Command Configuration Dialog

7.1.4.2 Edit Command Details

To edit the details of a command, select the command in the Display Panel. This will select the command and the
details of the command are displayed in the details pane where they can be edited. To edit the command summary
click on the Summary tab and edit the appropriate fields. See Fig. 12 to see the summary fields which include the
name, comment, configMapID, type, retry count, and executable name of the command that can be edited.

Fig 12: Template Editor - Command Summary Editing

Introduction

01/18/07 29

To edit the parameters of a command click on the Params tab and add the key value pairs to the list. For distributed
commands the DCE specification values can be specified in the DCE tab. The arguments, and flags of a command
command can be specified in the Arguments and Flags tabs.

7.1.4.3 Edit Command Config

To edit the command configuration, select the command in the Display Panel. This will display the details of the
command in the details pane. To edit the command config click on the Config tab which will show the three types of
config parameters that can be edited for commands. See Fig. 13 to see the summary fields of the command that can be
edited. (Note: Currently workflow engine and builder ignores the command config element)

Fig 13: Template Editor - Command Config Editing

Introduction

01/18/07 30

To edit the parameters of a command click on the Params tab and add the key value pairs to the list. The required
params and optional params can be specified in the Required Params and Optional Params tabs.

7.1.4.4 Add Command from Commands Library

Another way of adding commands to a template is to choose a command from a pre-existing library of commands. A
pre-existing library is a special template file marked as library that contains a series of command definitions. To use a
library, select the Commands tab in the Browse Repositories pane of the editor and click on the Add button. This
will bring up a file dialog which can be used to navigate and select the directory that contains the library files. The
editor parses all the files in the specified directory to identify library files and adds the libraries to the library
collection. The repository is listed in the Repositories list, the libraries in this repository are added to the Libraries
list, and the commands in a selected library displayed in the Commands list. Fig. 14 shows the commands in the
PANDA Library in the repository /home/amahurka/wflibs.

Fig 14: Template Editor - Select Library Command

Introduction

01/18/07 31

To add a command from the commands list, drag and drop one of the commands on to the Display Pane at the desired
location. A copy of the selected command is made and the Select Command Configuration Dialog shown in Fig. 11
filled with values from the command is displayed. The user can either accept the values or make necessary changes
and click on the OK button to add the command to the template.

7.1.4.5 Add Command Set

To add a new command set to the template drag and drop one of the following command set icons from the Tool Bar
to the desired location in the display panel.

 - Serial Command Set
 - Parallel Command Set
 - Distributed Serial Command Set
 - Distributed Parallel Command Set
 - Remote Serial Command Set
 - Remote Parallel Command Set

Fig 15: Template Editor - Select Command Set Configuration Dialog

Introduction

01/18/07 32

This brings up a Select Set Configuration Dialog shown in Fig. 15. If the new command set is a file based command
set click on the File Based check box. This enables the Template File text field, Choose button, and Copy check box.
If the top level template has not been saved before and the user attempts to add a file based subflow, a warning dialog
box pops up to warn the user that relative path names cannot be used until the top level template is saved. (See Fig.
16) Although the user is given the option to continue (in which case fully qualified path names are used for subflows),
it is highly recommended that the user save the top level template before attempting to add file based subflows as this
enables relative path names making the workflows more portable.

Fig 16: Template Editor - Unsaved Top Level Template Dialog

The user can either choose an existing template file or create a new one by entering the name of the subflow file in the
Template File field, or click on the Choose button to navigate the file system to select the template file. If the file is
an existing file and resides in a separate directory the user can also check on the Copy check box to instruct that the
template file be copied from the original location to the current location of the top level template file.

The user can select command set Type of command from the drop down list, enter a Name, the optional Comment,
and the required Config Map ID fields in the dialog box. If this is an iterative command set the user can click on the
Iterative Set check box which enables the Iterator Params text field where the user can enter a comma separated list
if the iterator parameter names. Fig. 14 shows that the new set is an iterator set that has two iterator params,
config.param.configfile and fileName. When the user clicks on the OK button, the new set is inserted at the specified

Introduction

01/18/07 33

location.

7.1.4.6 Edit Set Details

To edit the details of a set select the set in the Display Pane. This will select the set and the details of the set are
displayed in the Details Pane. Click on the Summary tab if it is not already selected. To edit the command summary
click on the Summary tab and edit the appropriate fields. See Fig. 17 to see the summary fields of the set that can be
edited.

Fig 17: Template Editor - Command Set Summary Editing

7.1.4.7 Edit Set Config

To edit the set configuration select the set in the Display Pane. This will select the command and the details of the
command are displayed in the Details Pane. To edit the set config click on the Config tab which will show the three
types of config parameters that can be edited for commands. See Fig. 18 to see the summary fields of the command
that can be edited.

Fig 18: Template Editor - Command Set Config Editing

Introduction

01/18/07 34

To edit the parameters of a command click on the Params tab and add the key value pairs to the list. The required
params and optional params can be specified in the Required Params and Optional Params tabs.

7.1.4.8 Add Set from Template Repositories

Another way of adding command sets to a template is to choose a pre-defined template. To use a pre-defined template,
select the Templates tab in the Browse Repositories pane of the editor and click on the Add button to navigate and
select the directory that contains template files. The editor parses all the files in the specified directory to identify
template files and adds the templates to the editor. The repository is listed in the Repositories list, and the templates
in a selected repository are listed in the Templates list. Fig. 19 shows the commands in the PANDA Library in the
repository /home/amahurka/wftemplates.

Fig 19: Template Editor - Select Command Set Configuration Dialog

Introduction

01/18/07 35

To add a template from the list, drag and drop one of the templates on to the Display Pane at the desired location. The
Select Set Configuration Dialog shown in Fig. 15 filled with values from the selected template is displayed. The user
can either accept the values or make necessary changes and click on the OK button to add the subflow to the current
template.

7.1.5 Command Line Options

7.1.5.1 Summary

Param Brief Description Required Default Valid values

logconf Java logging configuration file Optional log4j.properties

t Template file Optional

version Program version Optional

help Program usage or help Optional
7.1.5.2 Details

--logconf : This parameter is used to specify a user specified logger configuration file.

Instead of using the workflow default configuration file the user can specify a custom
configuration file using this parameter.

-t : This flag is used to specify the template file to open. This is an optional parameter.

If no template is specified the editor is opened without any tempalte file.

Introduction

01/18/07 36

-version : This flag is used to print the version information.

--help : This option produces a short help / usage message before exiting the program.

7.1.6 Usage and Examples

Usage:

EditTemplate [--help] [--version]
 [--logconf=<logger config file>]
 -t=<template file> | template file

Examples:

EditTemplate -t egc_template.xml

7.2 CreateWorkflow

CreateWorkflow is used to create a workflow instance from a template and configuration files. A workflow template
is a bare-bones XML file that specifies the structure and definition of the workflow and included all the required and
invariant elements of the workflow, including the name and the configMapID, that remain the same across instances
of a workflow. Refer to the Workflow Template section of this guide for more information on templates. A
configuration file is an INI-style file that specifies parameters for a single instance of the workflow. Refer to the
Configuration File section of this guide for more information.

Workflow instances can be created in compressed format by specifying the name with '.gz' extension. Only '.gz'
extensions are supported at this time. If a workflow instance has file based subflows, the file names for the subflows
also have to be specified with '.gz' extension, on order to create the subflows in compressed format. Compression is
decided on a per-file basis, therefore if a parent has '.gz' extension but the child does not, the parent is saved in a
compressed format while the child is not.

7.2.1 Command-Line Options

7.2.1.1 Summary

Param Brief Description Required Default Data Type Valid values

t Workflow template file Required String

c Configuration file Required String

i Workflow instance file Required String

autobuild Build file-based subworkflows Optional true Boolean true, false

paramfile Command line parameters file Optional String

logconf Java logging configuration file Optional log4j.properties String

delete-old Delete old instance files Optional Flag
7.2.1.2 Details

-t : This flag is used to specify a Workflow template. This is a required parameter.

Introduction

01/18/07 37

For example, to use a Workflow template egc_template.xml which is under
/usr/local/projects/workflow/testing/templates, specify
-t=/usr/local/projects/workflow/testing/templates/egc_template.xml .

-c : This flag is used to specify the configuration file. This is a required parameter.

For example, to use a configuration file sample.ini in the directory
usr/local/projects/workflow/testing/config, specify
-c=/usr/local/projects/workflow/testing/config/sample.ini.

-i : This flag is used to specify the Workflow instance file name. This is a required parameter.

To create an instance file in compressed (*.gz) format, specify the file name with a
".gz" extension. Only "*.gz" extensions are supported at this time.

For example:
To create an instance file egc.xml in the current directory, specify -i=egc.xml.
To create an instance file egc.xml in compressed format, in the current directory,
specify -i=egc.xml.gz

--autobuild : This flag is used to specify if file-based subflow instance files are created now or their
creation postponed till execution.

When this value is set to true, if a workflow has a file-based subflows, the instance
builder attempts to build all subflow instance files recursively. The program fails if
any of the instance files cannot be created.

If the value is false, then the recursive subflow instance creation is delayed till the
point of execution, in effect allowing rudimentary dynamic workflow creation and
execution. Thus, for instances where one of the commands in a parent flow elaborates
the child flow, the user should set this flag to false to allow the creation of subflow
instance files on the fly.

--delete-old : This flag is used to specify that all old instance files be deleted and recreated, the
default behavior is to create files only if they do not exist.

--paramfile : This parameter is used to specify a file containing the command line parameters.

Instead of typing the command line parameters for each invocation, the command
line parameters can be used from the specified INI style file. Explicitly specified
parameters supersede file based parameters.

--logconf : This parameter is used to specify a user specified logger configuration file.

Instead of using the workflow default configuration file the user can specify a custom
configuration file using this parameter.

-help : This option produces a short help / usage message before exiting the program.

Introduction

01/18/07 38

7.2.2 Usage and Examples

Usage:

CreateWorkflow -t = <TemplateFile> -c = <ConfigFile> -i = <Workflow name>
 [--autobuild<true|false> (default true)] [--paramfile = <param file>]
 [--logconf = <logger config file>] [--delete-old]

Examples:

CreateWorkflow -t=/export/workflow/testing/templates/egc_template.xml
 -c=/export/workflow/testing/config/sample.ini -i=egc.xml

To Create an instance file in compressed format:
 CreateWorkflow -t=/export/workflow/testing/templates/egc_template.xml
 -c=/export/workflow/testing/config/sample.ini -i=egc.xml.gz

7.3 RunWorkflow

RunWorkflow launches the workflow engine that executes commands in an instance file. When this tool is invoked, it
opens the XML instance file and launches all incomplete, interrupted and previously unsuccessful commands in the
specified order through the specialized command processors. A Workflow instance can be run in compressed format,
if it was created in compressed format with '.gz' extension. Only '.gz' extension is supported at this time. For ease of
use, this tool may also be used to build an instance before it is executed. If the user specifies a template and
configuration file, then this program creates a instance before executing it. Otherwise, the program executes
commands in an existing instance file.

As of release 3.0, RunWorkflow allows only one engine to execute a given instance file at a time. If the engine
encounters another engine executing this workflow the engine will fail with an error message.

7.3.1 Command-Line Options

7.3.1.1 Summary

Param Brief Description Required Default Data Type Valid values

i Workflow instance file name Required String

t Workflow template name Optional String

c Configuration file Optional String

m Marshalling interval in minutes Optional Integer

notify e-mail address for notification Optional String

observers
Java classes to which event
notifications are sent

Optional String

jars
Additional jar files prepended to
classpath

Optional String

scripts
Standalone scripts to which
notifications are sent

Optional String

delaybuild
Delay building file-based subflow
instances

Optional true Boolean true, false

Introduction

01/18/07 39

delete-old Delete old instance files Optional Flag

resume
Resume execution of existing instance
file

Optional Flag

paramfile Command line parameters file Optional String

init-heap Initial heap size in megabytes Optional 100m String

max-heap Maximum heap size in megabytes Optional 250m String

thread-stack Thread stack size in kilobytes Optional
 JVM default

(128K)

proc-lookup Custom command processor lookup Optional

dist-lookup
Custom distributed command
processor lookup

Optional

logconf Java logging configuration file Optional log4j.properties

perl-logconf Perl logging configuration file Optional log4perl.properties
7.3.1.2 Details

-i : This flag is used to specify the Workflow instance file name. This is a required parameter.

For example, to execute an instance file egc.xml in the current directory, specify
-i=egc.xml.

To create and run an instance file in compressed (*.gz) format, specify the file
name with a ".gz" extension.
Only "*.gz" extensions are supported at this time.

For example:
To create an instance file egc.xml in compressed format, in the current directory,
specify -i=egc.xml.gz

-t : This flag is used to specify a Workflow template. This is an optional parameter, but is required if
a config file is specified.

For example, to use a Workflow template egc_template.xml which is under
/usr/local/projects/workflow/testing/templates, specify
-t=/usr/local/projects/workflow/testing/templates/egc_template.xml .

-c : This flag is used to specify the configuration file. This is an optional parameter, but is required if
a template file is specified.

For example, to use a configuration file sample.ini in the directory
usr/local/projects/workflow/testing/config, specify
-c=/usr/local/projects/workflow/testing/config/sample.ini.

-m : This flag is used to specify the marshalling interval, an interval at which the workflow instance
files are updated by the WorkflowEngine, while the workflow is running. This is an optional
parameter. If this flag is specified the engine will accumulate the state changes till this interval has
elapsed before saving changes. If the engine were to die then some of these accumulated state changes
may be lost.

Introduction

01/18/07 40

 For example, to update the workflow instance files only every 2 minutes, specify -m=2

 The marshalling interval, when specified, will also be passed along to the remote subflows, if
any.

--notify : This parameter is used to specify an e-mail address to which workflow completion message
is sent.

The message includes the Workflow instance file name and the status of the
workflow.

--observers : This parameter is used to specify java observer classes to which workflow progress
events are sent.

For example, to receive workflow start and completion events, specify a java class
which implements the CommandSetLifetimeLI listener interface, along with the
optional properties files as follows:
--observers=org.tigr.MyObserver:myobs.props

This will register the class 'org.tigr.MyObserver' to receive command set start and
finish notification. If the Workflow instance has child command sets, then each of
these will trigger start and finish events. The second part of the specification is the
properties file name. If one is specified the name is passed to the class so that the
class can use this file to lookup the value it needs.

To register multiple observers either use multiple instances of 'observers' parameter,
or specify the observers as a comma separated list as follows:
--observers=org.tigr.MyObserver:observer.props,org.tigr.CommandObserver
See Observers section for additional details.

--jars : This parameter is used to specify additional jar files that are prepended to the execution
classpath.

To specify the jar that contains the observer class specify the jar file as follows:
--jars=myproj.jar. This will cause the myproj.jar file to be the first file on the
classpath. Typically when the user specifies observers, this parameter is used to
specify the jar file containing the observer classes or for specifying the file that
contains custom command processor.

--scripts : This parameter is used to specify standalone programs/scripts to which event notifications
are sent.

For example, to receive workflow start and completion events, register the program
of interest, the event type, along with the optional properties files as follows:
--scripts=myscript:life:myscript.props.
This will register the script 'myscript' to receive command lifetime notifications that
include execution start and finish for each of the commands in the instance file and its
sub-workflows. To register multiple observers either use multiple instances of
'scripts' parameter, or specify the observers as a comma separated list. See Observer
Scripts section for details on script invocation and the contract that these scripts must

Introduction

01/18/07 41

adhere to.

--delaybuild : This flag is used to specify if file-based subflow creation is delayed till execution.

This flag takes on different meaning if the workflow execution is invoked with an
existing instance file, or if the user wants the top-level instance file to be created
before execution begins. If the user invokes this command with an existing top-level
workflow and the value of this parameter is true, the Workflow engine attempts to
create non-existent file-based subflow instances just before execution. If however the
value is false, then the engine makes no attempt to create the subflow instances and
returns with an error if it cannot find the subflow instance file.

In the second instance where the engine is asked to first create the Workflow instance
before execution, if the value of delayedbuild is true, the engine delays the creation
of file-based subflows till the point of execution. If the flag is false, the engine tries to
create all the subflows when the parent is created and fails if any of the subflows
cannot be created.

--resume : This parameter is used to specify that the engine should resume executing the workflow if
it exists.

When the user specifies the '-t' and '-c' flags the typical behavior is for the engine to
try and create the instance file. Specifying 'resume' flag indicates to the workflow that
if the specified instance exists then do not recreate the instance file. This flag will
override the behavior of the delete-old flag, such that even if delete-old is specified
along with resume the top level instance is reused if it exists.

--delete-old : This parameter is used to specify that all old instance files are deleted if they exist and
new files created.

The default behavior is for workflow to reuse any instance files, this flag will ensure
that before an instance file is executed, it is always recreated (see 'resume' flag
description for one exception case).

--paramfile : This parameter is used to specify a file containing the command line parameters.

Instead of typing the command line parameters for each invocation, the command
line parameters can be used from an INI style file.

--init-heap : Initial heap size allocated for the JVM (default is 100 MB).

This is the amount of memory reserved by the JVM on startup for creating objects.
As more objects are created, the JVM increases the amount of heap size up to the
maximum heap specified. If the maximum heap size is exceeded, the JVM will throw
an exception and quit.

--max-heap : Maximum heap size allocated for the JVM (default is 200 MB).

This is the maximum amount of memory allowed for creating objects. The JVM stats
out by allocating the initial heap, as more objects are created, the JVM increases the
amount of memory up to the maximum heap specified. If the maximum heap size is

Introduction

01/18/07 42

exceeded, the JVM will throw an exception and quit.

--thread-stack : Individual thread stack size (default is JVM default).

--proc-lookup : This parameter is used to specify a processor lookup file that is checked to resolve
command processor names.

The workflow system resolves the command processor used for executing a
command by matching the name or type in the default lookup file
command_proc_factory_lookup.prop. To use custom names or command types to
map to existing command processors, or user developed command processors, the
user can use this flag to specify the lookup file. This file, a java properties style file,
contains entries where each key in the lookup file is either name or type while the
value associated with the key is the name of the java class which executes the specific
command.

--dist-lookup : This parameter is used to specify a distributed processor lookup file that is check to
resolve distributed command processor names.

The workflow system resolves the distributed command processor used for executing
a command by matching the name or type in the default lookup file
distributable_command_lookup.prop. To use custom names or command types to
map to existing command processors, or user developed command processors, the
user can use this flag to specify the additional lookup file. This file, a java properties
style file, contains entries where each key in the lookup file is either name or type
while the value associated with the key is the name of the java class which executes
the specific command.

--logconf : This parameter is used to specify a user chosen logger configuration file.

Instead of using the workflow default configuration file the user can specify a custom
configuration file using this parameter.

--perl-logconf : This parameter is used to specify a user chosen logger configuration file for the perl
components of the Workflow system.

Instead of using the workflow default configuration file (Log4perl.properties) the
user can specify a custom configuration file using this parameter.

-help : This option produces a short help / usage message before exiting the program.

7.3.2 Usage and Examples

Usage:
Run existing work flow:

RunWorkflow -i=<WorkflowInstanceFile>
 [--delaybuild=<true|false> (default true)] [--resume] [--delete-old]
 [--observers=<class:props>] [--scripts=<script:event:props>]
 [--paramfile<param file>] [--notify=<user@tigr.org>]
 [--init-heap=<initial heap size>] [--max-heap=<max heap size>]
 [--thread-stack=<thread stack size>]

Introduction

01/18/07 43

 [--proc-lookup=<processor lookup>] [--dist-lookup=<distributed processor lookup>]
 [--observers=<class:props>] [--scripts=<script:event:props>]
 [--logconf=<logger config file>] [--perl-logconf=<perl logger config file>]

Create and run a workflow:

RunWorkflow -i=<WorkflowInstanceFile> -t=<TemplateFile> -c=<ConfigFile>
 [--delaybuild=<true|false> (default true)] [--resume] [--delete-old]
 [--observers=<class:props>] [--scripts=<script:event:props>]
 [--paramfile<param file>] [--notify=<user@tigr.org>]
 [--init-heap=<initial heap size>] [--max-heap=<max heap size>]
 [--thread-stack=<thread stack size>]
 [--proc-lookup=<processor lookup>] [--dist-lookup=<distributed processor lookup>]
 [--observers=<class:props>] [--scripts=<script:event:props>]
 [--logconf=<logger config file>] [--perl-logconf=<perl logger config file>]

Examples:

Run an existing workflow:

RunWorkflow -i=/export/workflow/source/xml/egc.xml
--observers=org.tigr.MyObserver:myobs.props --jars=myproj.jar

 --scripts=myscript.pl:life:myscript.props

Run an existing workflow in compressed format:

RunWorkflow -i=/export/workflow/source/xml/egc.xml.gz
--observers=org.tigr.MyObserver:myobs.props --jars=myproj.jar
 --scripts=myscript.pl:life:myscript.props

Create and run a workflow:

RunWorkflow -c=/export/workflow/testing/config/sample.ini
 -t=/export/workflow/testing/templates/egc_tempalte.xml
 -i=egc.xml

Create and run a workflow in compressed format:

RunWorkflow -c=/export/workflow/testing/config/sample.ini
 -t=/export/workflow/testing/templates/egc_tempalte.xml
 -i=egc.xml.gz

7.4 KillWorkflow

KillWorkflow allows the user to terminate a workflow gracefully. When invoked with the name of an instance file, it
finds the corresponding workflow and kills it. It is not necessary to execute KillWorkflow on the same machine on
which the workflow is running or even to know what that machine is. Alternately, KillWorkflow may be invoked
without a filename, in which case it lists all the workflows running on the current machine but doesn't kill any of
them. If the desired workflow is found, the user may kill it by reinvoking KillWorkflow with the filename. The
process group of the selected process usually includes all descendant processes. At the end of the signal propagation,
the workflow gets the 'interrupted' state.

Note: The behavior of KillWorkflow has changed significantly as of release 3.0. Among other changes, it will be

Introduction

01/18/07 44

sure all descendant processes have actually been terminated before returning. The old version of the tool may be
invoked as OldKillWorkflow.

7.4.1 Command-Line Options

7.4.1.1 Summary

Param Brief Description Required Default Data Types Valid values

i Workflow instance file name Required String

list List all active workflow Optional Flag
7.4.1.2 Details

-i:This flag is used to specify instance file name

Specify the instance file name whose engine needs to be terminated

--list: This flag is used to list all running workflows

Use this flag to list all the workflows currently running on this machine.

7.4.2 Usage and Examples

Usage:
To terminate an active workflow:

KillWorkflow -i=<WorkflowInstanceFile>

To list all active workflows:

KillWorkflow --list

Examples:

To terminate workflow:

KillWorkflow -i=/export/workflow/source/xml/egc.xml

7.5 CheckWorkflow

CheckWorkflow allows a user to determine whether a given workflow is currently running and, if so, where. It should
be invoked with the name of an instance file. The filename may be specified with either an absolute or a relative path;
in the latter case, it will look in the current directory only. It will report the workflow's current execution host, if
applicable. Alternately, if no workflow based on that instance file is running, it will report that fact. The functionality
of CheckWorkflow is also used internally by the Workflow system whenever RunWorkflow is invoked to ensure that
multiple copies of the same workflow aren't executed simultaneously.

7.5.1 Command-Line Options

Introduction

01/18/07 45

7.5.1.1 Summary

Param Brief Description Required Default Data Type Valid values

i Workflow instance file name Required String
7.5.1.2 Details

-i: This flag is used to specify instance file name

Specify the instance file name whose execution status is to be checked.

7.5.2 Usage and Examples

Examples:

Running workflow:

CheckWorkflow -i my-workflow.xml
The workflow is running on aegan-lx.

Completed workflow:

CheckWorkflow -i my-workflow.xml
No workflow based on my-workflow.xml is running.

7.6 ControlWorkflow

ControlWorkflow can be used to alter the course of a running workflow by restarting one or more commands or
command sets on a workflow that is currently running. The commands or command sets to be restarted may have
failed or may have succeeded but produced unexpected results (for example, because of an error in an input file).
ControlWorkflow should be invoked with the name of an instance file, and a single command or set or a
comma-separated list of commands or sets to restart. The commands or command sets should be the IDs from the
instance file. Note that when multiple commands or command sets are to be restarted, the restarts are performed
sequentially in the order in which the IDs are given. Currently running commands and sets or those that were not
executed before cannot be restarted at this time. Also, the top-level command set may not be restarted; to restart a
workflow from the beginning, just use KillWorkflow and then run the workflow again.

When a command or set to be restarted is part of a serial command set, all the commands that follow this command
and have finished execution will have their state rest and will be executed again after the specified command. When
the restarted command or set is part of a parallel command set that has some commands still running, the state of the
parallel flows will not be reset, but only that specific command and its successors will be reset and restarted.

7.6.1 Command-Line Options

7.6.1.1 Summary

Param Brief Description Required Default Data Type Valid values

i Workflow instance file name Required String

restart List of command IDs to restart Required String

Introduction

01/18/07 46

7.6.1.2 Details

-i: This flag is used to specify instance file name

Specify the instance file name whose engine needs to be terminated

--restart: This parameter is used to specify the list of commands to restart

Comma separated list of command IDs which are to be restarted.

7.6.2 Usage and Examples

Examples:
Restart one command:

ControlWorkflow -i my-workflow.xml --restart 1922

Restart three commands:

ControlWorkflow -i my-workflow.xml --restart 1922,6705,6702

7.7 CleanWorkflowRegistry

CleanWorkflowRegistry can be used to clean up the RMI registry that was left in an inconsistent state because of
some catastrophic failure of the workflow engine. This tool may also be used to list the RMI servers registered on a
particular machine. To clean up the RMI registry you must be logged into the machine whose registry you are
attempting to clean. You can list the registry from any host.

7.7.1 Command-Line Options

7.7.1.1 Summary

Param Brief Description Required Default Data Type Valid values

i
Workflow instance file name which is to be
cleaned up

Required String

host Host name Required String

list List of command IDs to restart Required Flag
7.7.1.2 Details

-i: This flag is used to specify instance file name that is to be cleaned up

Specify the instance file name whose RMI registry is to be cleaned up

--host: This parameter is used to specify the host name

Introduction

01/18/07 47

Host name whose registry is to be listed, local host if nothing is specified.

--list: This flag is used to list the registry contents

7.7.2 Usage and Examples

Examples:
Clean up registry:

CleanWorkflowRegistry -i my-workflow.xml

List registry contents:

CleanWorkflowRegistry --host somehost --list

7.8 Monitor Workflow

This GUI tool allows the user to monitor the progress of one or more workflows by monitoring their instance files.
The GUI checks all the instance files and their subflow files at the user specified frequency (default is 30 seconds) to
see if any of the instance files have changed and updates the corresponding nodes automatically. The screen shot of
the MonitorWorkflow screen shown in Fig 20 shows workflow being monitored.

The GUI has two main sections the left pane which shows the workflow instances as a tree, and the right pane which
shows the details for the selected tree node. The details pane to the right shows the command set details corresponding
to the workflow instance file composite_out.xml. The title of the screen shows the current top-level instance file being
monitored. The tree nodes show the string built of the following elements for a command set, percentage complete,
name, unique ID, and the instance file name for file-based sets. For commands the node string displayed includes the
name and unique ID.

Fig 20: MonitorWorkflow - Command Set Summary

Introduction

01/18/07 48

To see the details of an instance open the folder and click on the command or command set element. The right pane
has a tabbed pane which includes various tabs that display the details of the selected node. In Fig 20 the right pane
shows the summary tab for the selected command set which includes the name, type, comment, state, start time, end
time, elapsed time, the execute time, the status, and error messages for the command set. Fig 21 shows the details tab
for the command set and include the config path, and config parameters in addition to the above mentioned fields.

Fig 21: MonitorWorkflow - Command Set Details

Introduction

01/18/07 49

Fig 22 shows the summary tab for the selected command. The tab includes the name, type, comment, state, stdout,
stderr redirects, start time, end time, execution time return value, message, and the command processor name or the
simulated system command invocation string. The user can click on the View Out and View Err buttons to bring up
the output or error redirected output if any. If the command is a distributed command the distributed computing
environment (DCE) specifications are shown in a separate tab. See the next screen shot which shows the details of the
command.

Fig 22: MonitorWorkflow - Command Summary

Introduction

01/18/07 50

Fig 23 shows the details tab for the selected command and includes the retry count, retry attempts, the arguments,
flags, and parameters for the command in addition to the fields displayed in the summary tab. If the command is a
distributed command, a third tab, DCE Specification, displays the distributed computing environment specifications
and execution information for the selected command.

Fig 23: MonitorWorkflow - Command Details

Introduction

01/18/07 51

Fig 24 shows the DCE specification tab for the selected command and includes the HTC ID, Grid ID, the execution
host, DCE log file, optional DCE specification file, the notification address, the OS, memory, queue, priority, and
duration requirements, the submission and actual execution time, the passthrough string, the execution environment
specification file and environment variables. The underlying DCE sets the values for the JobID, host name, and log
file when the execution begins. It uses the requirements specified to find a matching computer that then executes the
particular command.

Fig 24: MonitorWorkflow - Command DCE Specification Details

Introduction

01/18/07 52

The GUI provides a mechanism to perform the operations such as adding or removing workflows, forcing a refresh, or
setting the refresh delay. This section examines these operations.

7.8.1 Open Workflow

To monitor a different workflow click on the Open button. This will display a Open File Dialog Box which allows the
user to choose the workflow instance file to open. When the 'open' function is used, all existing workflows are
removed and the new instance file added to the monitor.

7.8.2 Add Workflow

To add a new workflow to the monitor click on the Add button. This will display a Open File Dialog Box which
allows the user to choose the workflow instance file to add. When the add function is used, the new workflow is
appended to the list of workflows in the monitor.

Introduction

01/18/07 53

7.8.3 Remove Workflow

To remove a workflow instance select the folder representing the workflow instance. This will enable the Remove
button. Click on the button to remove the workflow from the monitor. After a workflow is removed the monitor will
select the next workflow if one is available, else the previous workflow is selected. If no workflows are present then
the root is selected.

7.8.4 Set Delay

To change the frequency at which the monitor examines the instance files for change click on the Set Delay button.
This will open a dialog box where the user can specify the the refresh delay in milliseconds.

7.8.5 Refresh

By default the monitor will recursively check all the instance files and their subflow files for file modification at the
refresh frequency specified by the user. If any of the underlying files have been modified the corresponding node will
be automatically updated. A user can force a refresh at any time by selecting a workflow instance, which will enable
the Refresh button, and clicking on the button. This will force a refresh of the node representing the selected instance
file.

7.8.6 Command Line Options

7.8.6.1 Summary

Param Brief Description Required Default Data Type Valid values

i Workflow instance file name Optional String

proc-lookup Custom command processor lookup Optional String

dist-lookup
Custom distributed command processor
lookup

Optional String

refresh Refresh delay in seconds Optional 30 seconds Long

logconf Java logging configuration file Optional log4j.properties String
7.8.6.2 Details

-i : This flag is used to specify the Workflow instance file name.

--proc-lookup : This parameter is used to specify a processor lookup file that is checked to resolve
command processor names.

By default the workflow system resolves the command processor used for executing a
command by matching the name or type in the default lookup file
command_proc_factory_lookup.prop. To use custom names or command types to
map to existing command processors, or user developed command processors, the
user can use this flag to specify the lookup file. This file, a java properties style file,
contains entries where each key in the lookup file is either name or type while the
value associated with the key is the name of the java class which executes the specific
command.

Introduction

01/18/07 54

--dist-lookup : This parameter is used to specify a distributed processor lookup file that is check to
resolve distributed command processor names.

By default the workflow system resolves the distributed command processor used for
executing a command by matching the name or type in the default lookup file
distributable_command_lookup.prop. To use custom names or command types to
map to existing command processors, or user developed command processors, the
user can use this flag to specify the lookup file. This file, a java properties style file,
contains entries where each key in the lookup file is either name or type while the
value associated with the key is the name of the java class which executes the specific
command.

--refresh : This parameter is used to specify the refresh delay in seconds.

--logconf : This parameter is used to specify a user specified logger configuration file.

Instead of using the workflow default configuration file the user can specify a custom
configuration file using this parameter.

--help : This option produces a short help / usage message before exiting the program.

7.8.7 Usage and Examples

Usage:

MonitorWorkflow -i = instance file
 [--proc-lookup=<processor lookup>]
 [--dist-lookup=<distributed processor lookup>]
 [--logconf=<logger config file>]

Examples:

MonitorWorkflow --proc-lookup=egc_commands.props --logconf=custom_logger.conf egc.xml

Introduction

01/18/07 55

8 Command Processors
The workflow system comes with a set of basic command processors that include the SystemCommandProcessor, a
processor to execute other programs and scripts, DistributedProcessor, a processor to launch the executable on a
remote machine via the DCE, WaitProcessor, a processor that waits for a predefined amount of time, and
WaitForFileCreationProcessor, a processor that waits for the creation of a file. The details of these processors are
discussed in this section.

8.1 SystemCommandProcessor

This specialized command processor written in Java is used to run system commands and can therefore be used to
create a workflow made of other standalone utilities or applications. When the workflow engine encounters a
command that uses this processor it invokes a system command to execute the specified program. The workflow
engine looks for the program name by searching for the element with the name executable, in case it cannot find this
element it looks for a parameter with the key command for the program name (Note: executable is a new element and
is the preferred way of specifying the program name). The arguments, flags, and parameters to the system command
are specified by a list of param, arg, and flag elements of the command.

So, for instance, to execute the following system command:

ls -al --width=100 --color=always /home/someuser /home/someotheruser

the major command elements of the workflow would be defined as shown below:

<command>
 <executable>ls</executable>
 <param>
 <key>--color</key>
 <value>always</value>
 </param>
 <param>
 <key>--width</key>
 <value>100</value>
 </param>
 <flag>-a</flag>
 <flag>-l</flag>
 <arg>/home/someuser</arg>
 <arg>/home/someotheruser</arg>
</command>

Note: In earlier versions of workflow if the parameter or flag did not have a leading '-' or '--', we attempted to guess
the appropriate one based one on the key length. That method of specifying parameters is now deprecated, all
parameters specified will be interpreted as is.

8.1.1 Redirection

To redirect stdout, stderr or stdin for a system command the user can either specify redirects as special parameters to
the command or build the redirection string and specify it as one of the arguments. If the same file name is specified
for stdout and stderr, the script builds an 'sh'-style string redirecting stderr to stdout. If no files are specified for
redirecting stderr and stdout, the workflow system redirects the output to /dev/null. The following redirection
parameters of a command are interpreted as special redirection parameters by the engine:

01/18/07 56

stdout•
stdoutappend•
stderr•
stderrappend•
stdin•

To specify that stdin should be read from a file 'myin' and the stdout and stderr are to be redirected and appended to a
file 'myout', the last command argument can be '1 >> myout 2>&1 <myin', or the command section might include the
following parameters:

<command>
 <executable>somecommand</executable>
 <param>
 <key>stdin</key>
 <value>myin</value>
 </param>
 <param>
 <key>stdout</key>
 <value>myout</value>
 </param>
 <param>
 <key>stderr</key>
 <value>myout</value>
 </param>
 <param>
 <key>stdoutappend</key>
 <value>1</value>
 </param>
</command>

The complete command string used for the above example would be:

 somecommand >> myout 2>&1 < myin

8.1.2 Command Elements

8.1.2.1 Summary

Element Brief Description Required Default Data Type Valid values

executable The system command to execute Required String

param.command
An alternate mechanism for specifying
system command

Required String

param.stdout The file to redirect standard out Optional String

param.stdoutappend
Indicate if the standard out should
append or overwrite

Optional Boolean 0, 1

param.stderr The file to redirect standard error Optional String

param.stderrappend
Indicate if the standard out should
append or overwrite

Optional Boolean 0, 1

param.stdin The file from which to read standard inOptional String

Introduction

01/18/07 57

8.2 DistributedProcessor

This specialized command processor, written in Java, is used to run a command on a remote machine in a DCE. When
the workflow engine encounters a command that uses this processor, the system uses the TIGR's High-Throughput
Computing (HTC) API to submit the command to the underlying DCE. The same mechanism and command elements
described for the SystemCommandProcessor are used by the distributed processor.

When a command is executed on a remote machine, the user can specify a series of requirements that the execution
host must meet. The requirements available depend on the underlying DCE environment. The common requirements
that can be specified include memory, host name, and operating system. The workflow engine will convey these to the
underlying DCE. In addition to these, the user can specify a requirements string that is passed without interpretation to
the underlying DCE through the passthrough parameter. See the DCESpecification schema for other requirements that
can be specified.

8.3 WaitProcessor

This specialized command processor written in Java is used to wait for a predefined amount of time before
completion. The processor by default waits for 5 seconds, this duration can be overridden by specifying a parameter
with the key duration which specifies the duration to wait.

8.3.1 Command Elements

8.3.1.1 Summary

Element Brief Description Required Default Data Type Valid values

param.duration
The durationthis processor should wait in
seconds

Required 5 Long

flag.create-file
Create a file to indicate that this command
finished

Optional
Command

name
Flag

param.file
The name of the file to create after
execution

Optional String

param.outfile
File to which a message is logged
indicating that the processor started

Optional String

8.4 WaitForFileCreationProcessor

This specialized command processor written in Java is used to wait for a the creation of a file before proceeding. This
is a quick way to add pauses to the workflow for the completion of some external event before a particular step can
begin. For instance there may be a situation where we need to wait for an email notification about some request before
the workflow can proceed. In such a situation the user can pause on a file and create this file when the notification is
receieved.

The processor by default waits indefinitely for the creation of the file specified with the parameter with key file
watching for the file creation every 10 seconds. The duration for which this processor waits as well as the watch
frequency can be controlled by specifying additional parameters with the keys watch-frequency, and max-duration
with values specified in seconds. If a maximum watch duration is specified and the file cannot be found the processor
exits with an error code.

Introduction

01/18/07 58

8.4.1 Command Elements

8.4.1.1 Summary

Element Brief Description Required Default Data Type Valid values

param.file
The name of the file for which this
processor is waiting

Required String

param.max-duration
The maximum duration this
processor should wait in seconds

Optional Indefinite Long

param.watch-frequency
The frequency in seconds at which
the processor checks

Optional
10

seconds
Long

Introduction

01/18/07 59

9 Command Dispatchers
Workflow engine uses command dispatchers to execute the contents of a command set. The engine comes with three
dispatchers, LocalDispatcher, DistributedDispatcher, and RemoteDispatcher to process local, distributed, and remote
command sets. This section discusses these dispatchers and their behavior.

9.1 LocalDispatcher

This specialized command dispatcher is used to process commands in a command set that are executed on the local
host where the engine is running. This dispatcher processes both serial as well as parallel command sets. In the present
implementation, each command is executed in a separate thread. The total number of active threads executing
command or sets for a given instance is limited by the maximum number of threads set in the configuration file. See
the section on thread regulation for more details. In the case of a serial command set the maximum simultaneous
processors is limited to one causing the dispatcher to behave like a serial dispatcher.

When this dispatcher is processing a parallel set and if one of the commands fails, the dispatcher will continue to
launch other commands until all the commands in the set have been launched. While processing serial sets if one of
the command fails, the execution is aborted.

9.2 DistributedDispatcher

This command dispatcher is used to process a command set made up of commands that should be executed on remote
machines using the underlying DCE. This dispatcher processes both serial as well as parallel command sets. In the
present implementation, a limit on the number of DCE requests that can be submitted by a single Workflow engine
instance is specified in the workflow configuration file. See the section on thread regulation for more details.

When this dispatcher is processing a parallel set and if one of the commands fails, the dispatcher will continue to
launch other commands until all the commands in the set have been launched. While processing serial sets if one of
the command fails, the execution is aborted.

9.3 RemoteDispatcher

This command dispatcher is used to process a file-based subflow on a remote machine using the underlying DCE
environment. This will cause the subflow to be executed in a separate engine running on the remote machine.

01/18/07 60

10 Processor and Dispatcher Lookup and Customization
The workflow system has been designed to be used out of the box using a standard set of processors
SystemCommandProcessor, and DistributedProcessor, and dispatchers LocalDispatcher, DistributedDispatcher,
RemoteDispatcher. However, the user is free to add other custom processors and dispatchers written in Java to
perform pipeline tasks. This section discusses the mechanism by which the workflow system identifies these
processors and how the users can use this mechanism to add custom processors and dispatchers.

10.1 Processor Lookup and Custom Processors

Custom processors can be built by extending the base command processor class
org.tigr.workflow.common.CommandProcessor. The custom processor must then implement the necessary
constructors and the process method which will be invoked by the engine to perform the actual task. For more
information on adding a custom processor, see the programmer's guide.

The workflow system uses a factory class to instantiate a processor to process a specific command. This factory class
uses the name or the type of the command to lookup the specific class used to execute a command in
Java-properties-style lookup files. This mechanism also allows users to specify their own lookups that map
meaningful names to specific command processors.

The system first attempts to map the command name from the lookup files, failing which, it attempts to use the
command type to map. The user can specify a custom lookup file for workflow tools such as the engine and monitor
with the --proc-lookup command-line argument. The system first attempts to lookup names in a user specified lookup
file, if no file is specified, or no match can be found, it uses the default file command_proc_factory_lookup.prop
found in the properties directory of the application deployment area.

The following are a few example entries from the file:

WaitForFile = org.tigr.workflow.processors.WaitForFileCreationProcessor
Sleep = org.tigr.workflow.processors.WaitProcessor
Wait = org.tigr.workflow.processors.WaitProcessor
RunPerlUnixCommand = org.tigr.workflow.common.SystemCommandProcessor
RunUnixCommand = org.tigr.workflow.common.JavaSystemCommandProcessor

For instance, in the above file the command type RunUnixCommand maps to the class
org.tigr.workflow.common.SystemCommandProcessor, which is used to process a command in a distributed
environment. Similarly, the command processor org.tigr.workflow.processors.WaitForFileCreationProcessor is a
generalized processor class that can be used to pause workflow execution till a file is created.

When commands are defined in distributed command set the workflow engine lookup is performed in a separate
properties file called distributable_command_lookup.prop, which resides under the properties directory of the
application deployment area.

The following are example entries from the file:

RunDistributedCommand = org.tigr.workflow.common.DistributedProcessor
DummyDistributedCommand=org.tigr.workflow.common.DistributedProcessor

01/18/07 61

10.2 Dispatcher Lookup and Custom Dispatchers

To accommodate custom dispatchers, the workflow engine uses a Java-properties-style file to keep a list of command
set types and the corresponding Java classes used to execute them. This file dispatcher_factory_lookup.prop can be
found in the properties directory of the application deployment area. Custom dispatchers must extend the class
org.tigr.workflow.common.CommandDispatcher. For more information on adding a custom dispatcher, see the
programmer's guide.

The following are example entries from the file:

serial = org.tigr.workflow.common.LocalDispatcher
parallel = org.tigr.workflow.common.LocalDispatcher
distributed-serial = org.tigr.workflow.common.DistributedDispatcher
distributed-parallel = org.tigr.workflow.common.DistributedDispatcher
remote-serial = org.tigr.workflow.common.RemoteDispatcher
remote-parallel = org.tigr.workflow.common.RemoteDispatcher

Introduction

01/18/07 62

11 Observers
When a Workflow engine is created, the user can register one or more observers or listeners to receive notifications as
various events occur in the workflow execution. Observers are Java classes that implement one or more of the
Workflow event-listener interfaces. The Workflow system supports three kinds of event listeners, lifetime, status, and
runtime, that provide the ability to monitor events at different levels of details. Lifetime observers are sent command
or command-set start and finish notifications. Status observers are sent command or command-set start, finish,
interruption and failure notifications. Runtime observers, which are only applicable to commands, are sent command
submit, suspend and resume event notifications. When a user registers an observer, the engine identifies all the
Workflow event-listener interfaces implemented by the observer and registers the observer to receive appropriate
event notifications as workflow execution proceeds.

All observers must implement one of the two possible constructors shown below:

public void Observer();
public void Observer(String pPropsFile);

The zero-argument constructor is used if the observer does not need any additional information to process event
notifications. The constructor which takes the properties file as an argument should be used when the observer needs
information such as database-connection details or other variable values to perform its functions.

The following is a list of workflow related event-listener interfaces and their method signatures. See the javadoc
for more detailed descriptions.

11.1 Command Set Interfaces

11.1.1 CommandSetLifetimeLI

This interface defines the command-set lifetime event notifications and includes set-execution start and finish events.

public void commandSetStarted(StartEvent p_event);

public void commandSetFinished(FinishEvent p_event);

11.1.2 CommandSetStatusLI

This interface defines the command-set status event notifications and includes set-execution start, resume, finish,
interrupt and failure events.

public void commandSetStarted(StartEvent p_event);
public void commandSetFinished(FinishEvent p_event);
public void commandSetResumed(ResumeEvent p_event);
public void commandSetInterrupted(InterruptEvent p_event);
public void commandSetFailed(FailureEvent p_event);

11.2 Command Interfaces

11.2.1 CommandLifetimeLI

This interface defines the command lifetime event notifications and includes command-execution start and finish
events.

01/18/07 63

public void commandStarted(StartEvent p_event);

public void commandFinished(FinishEvent p_event);

11.2.2 CommandStatusLI

This interface defines the command status event notifications and includes command-execution start, restart, finish,
interrupt and failure events.

public void commandStarted(StartEvent p_event);
public void commandFinished(FinishEvent p_event);
public void commandRestarted(StartEvent p_event);
public void commandInterrupted(InterruptEvent p_event);

public void commandFailed(FailureEvent p_event);

11.2.3 CommandRuntimeLI

This interface defines the command set status event notifications and includes command submit, resume and suspend
events.

public void commandSubmitted(SubmitEvent p_event);
public void commandResumed(ResumeEvent p_event);
public void commandSuspended(SuspendEvent p_event);

Introduction

01/18/07 64

12 Observer Scripts
When a Workflow engine is created, the user can also register one or more observer scripts or programs to receive
notifications as various events occur during the execution of the workflow. Observer scripts, unlike the observer Java
classes in the previous section, are stand-alone programs or scripts that are invoked as execution proceeds. When an
observer script is registered, the user must specify the event group type and may optionally specify a properties
filename, which is passed to the observer script.

The following event group types are supported and map to the four listener interfaces discussed in the Observers
section:

Event Type Listener Interface Events Command or Command Set

setlife CommandSetLifetimeLI start, finish Command Set

setstatus CommandSetStatusLI start, resume, finish, interrupt, failure Command Set

life CommandLifetimeLI start, finish Command

status CommandStatusLI start, restart, finish, interrupt, failure Command

When an event notification is sent to the observer script, the following command-line parameters are passed to the
script. The observer script must understand these options and process them as needed. In addition, the observer script
must return with a zero value in the case of successful execution or a non-zero value to indicate an error in the
execution of the script.

ObserverScript --name=<name> --id=<unique ID> --time=<time of event>
 --event=<start|finish|resume|failure|interrupt|restart>
 --file=<file name of enclosing instance file>
 [--props=<props file>] - Optional properties file
 [--message=<message>] - Optional message for failure, and interrupt events
 [--retval=<return value>] - Optional return value for finish events

As the Workflow engine is actually invoking these scripts, we strongly recommend that you keep their execution
times short, particularly in instances where workflows are executed under a distributed computing environment.

01/18/07 65

13 Thread Regulation
Each Command or CommandSet of a workflow in a workflow engine is executed either by a CommandProcessor or a
CommandDispatcher in a separate thread. When executing large workflows this will lead to the creation of a large
number of threads posing a risk of slowing down or crashing the workflow engine or the host system. To avoid this
risk, the workflow engine employs a mechanism to enforce a maximum limit on the number of processors or
dispatchers that can run concurrently within an engine instance. Further, it also restricts the number of concurrent
DCE jobs that can be submitted to the grid by the engine instance. These are configurable parameters in the
workflow.configfile found in the application deployment area and can be modified by the workflow administrator
based upon your environment.

Following are the various limits that are enforced in the current release:

Command Processor Limit: This limit represents the maximum number of concurrent CommandProcessors
that can run inside a Workflow engine. The current limit is 400. This means that at any given instant, only a
maximum of 400 commands can be executed with in the scope of a Workflow engine.

•

Command Dispatcher Limit: This limit represents the maximum number of concurrent
CommandDispatchers that can run within the scope of a command set. The current limit is 10. This
means that if a command set contains more than five command sets, only a maximum of five can be
executed at once. There is no upper limit on the number of CommandDispatchers that can run
simultaneously within a Workflow engine.

•

DCE Jobs Limit: This limit represents the the maximum number of concurrent DCE jobs that can be
submitted to the grid. The current limit is 50. This means that at given instance there can only be a
maximum of 700 jobs submitted to the grid by a Workflow engine.

•

01/18/07 66

14 Logging
The workflow system is written primarily in Java, but there are specialized processors that use Perl to run system
commands. To allow logging through both these languages as well as to support custom processors written in other
languages in the future, the system uses the log4xxx logging libraries. The workflow system has a built-in logging
system that is used to log and monitor the application flow. This logging system is based on the Log4j logging system
and uses the log levels listed in the table below to log messages about the application. This section describes the
seven log levels and the types of messages logged for each of these levels. For more information about Log4j, see the
short manual at the Log4j web site. The logging system is configured to monitor for changes in the configuration file
so that the log levels can be changed on the fly during the workflow execution.

The Log4j logging system uses a set of log appenders that are configured through a configuration file that specifies the
different appenders and their effective log levels. This file can be modified at runtime to change the logging behavior.
When the user chooses a particular log level for an appender, messages intended for all levels above the selected level
(that is, with lower numbers) are also logged. For instance, when the log level is set to DEBUG, then all messages of
the levels DEBUG, INFO, WARN, ERROR, and FATAL will be logged. The table below summarizes the types of
messages logged at each level. The Log Levels section discusses these levels in greater detail.

Note: Even though, for backward compatibility, the tools still accept -v (log level) and -l (log file) flags to enable
logging, the preferred way to enable logging is through configuration files, these options will be depreacted in a
future release.

Log Level
Param
Value

Messages

Fatal 0 Exceptional conditions leading to failure

Error 1 Non-fatal conditions

Warn 2 Non-critical conditions

Info 3 Messages informing the user of the major steps

Debug 4 High-level trace of application flow

Finer 5 Detailed trace of application flow

Finest 6 Verbose mode of application execution

14.1 Default Java configuration file

By default the workflow system looks for a logging configuration file, log4j.properties, in the current working
directory. If that cannot be found, it uses the default file included in the workflow system. The user can replace this
default logging configuration by specifying a custom logging configuration file through the --logconf parameter to all
the workflow tools or creating an file in the current working directory.

The following are the contents of the default log4j.properties file in the Workflow installation area:

instance=${wf.instance.file}
file=${instance}.log
log4j.rootLogger=INFO#org.tigr.antware.shared.util.Finest, FILE
log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=${file}
log4j.appender.FILE.Append=false
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern=%p %d{HH:mm:ss:SSS} [Name: %X{Name}] %C{1} %M:%L %m%n

01/18/07 67

http://jakarta.apache.org/log4j/docs/manual.html8

Console configuration
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.Threshold=WARN
log4j.appender.CON.layout=org.apache.log4j.PatternLayout
log4j.appender.CON.layout.ConversionPattern=%p %d{HH:mm:ss:SSS} [Thread: %t] %C{1} %M:%L %m%n

The file creates a single file appender which creates a log file with the extension '<instance file>.xml[.<tool>].log'.
When executing programs for which there is no explicitly specified instance file, such as the MonitorWorkflow or
EditTemplate , the process ID is used as the file prefix of the log file. This runtime file name resolution is
accomplished by setting the wf.instance.file java runtime property in the launch script. The tool extension is added for
all other tools except CreateWorkflow and RunWorkflow. Therefore when checking a workflow with the name
pipeline.xml the log file would be named pipeline.xml.check.log.

The above configuration file specifies that the default log level is INFO and the class
org.tigr.antware.shared.util.Finest is used to define the log levels. New messages are appended to the file, if one
exists, through the Append pragma. The pattern layout is used to lay out the log message with the specified conversion
pattern, which prints the log level (%p), date and time (%d), the message diagnostic context 'Name' (%X{Name}), the
class name (%C{1}), the method and line number (%M:%L), and finally the message (%m).

14.2 Log Levels

14.2.1 Fatal

Messages logged at this level are deemed to be important to the workflow administrator and the end user. Fatal errors
usually require the application to be aborted. Messages logged at this level should provide adequate information to the
end user or the administrator to determine the reason for the error and its potential location in the application flow. A
fatal message could be a detailed one, possibly with a proper stack trace of the error or exception. Example causes of
fatal errors: missing files, invalid configuration or template files, invalid working directories, incorrect parameters,
command failure in a serial workflow, etc.

14.2.2 Error

Messages logged at this level are deemed to be important to the workflow administrator and the end user. These errors
will not require the application to be aborted but will affect the application flow and the end result. A typical example
of such an error is command failure in a parallel workflow.

14.2.3 Warn

Messages logged at this level may be of importance to the workflow administrator and the end user. These errors,
while of concern, are not expected to affect the application flow significantly. A typical example of such a condition is
usage of deprecated format for config and template files.

14.2.4 Info

Messages logged at this level may interest both the workflow programmer and the end user. All major events that
provide the progress of the application flow are typically logged at this level. All the configuration information such
as workflow parameters, database profile, user profile, server / machine profile and the invocation strings of system
and distributed Commands must be logged at this level. A log file that is created at this level may provide a medium
level of application monitoring.

Introduction

01/18/07 68

14.2.5 Debug

Messages logged at this level may be of importance to both Workflow programmers and the workflow administrator.
Application-flow monitoring at a detailed level is made possible by logging messages at this level. Typical debug
messages include messages about the parsed fields of configuration files, Command and CommandSet elements and
attributes, event notifications, marshalling and unmarshalling of Command or CommandSet objects in xml format and
SQL statements. Logging at this level may produce a great deal of output, so users should be cautious. Users may also
enable or disable logging for specific packages/modules of the application by providing custom configuration files for
Log4J or Log4perl.

14.2.6 Finer

Messages logged at this level are of importance primarily to Workflow programmers. Application-flow monitoring at
an even more detailed level is made possible by logging messages at this level. Typical 'finer' level messages include
messages about the entry and exit of each routine along with the parameters or parameter summaries in case of lists,
return values, and summaries in case of lists, etc., and other detailed information about the application progress.
Logging at this level will produce very verbose output, so users should be cautious. Users may also enable or disable
logging for specific packages/modules of the application by providing custom configuration files for Log4J.

14.2.7 Finest

Messages logged at this level are of importance primarily to Workflow programmers. Application-flow monitoring at
the most detailed level is made possible by logging messages at this level. Typical 'finest' level messages include
messages about values of iteration parameters and other information intended to assist programmers in stepping
through the code. Logging at this level will produce very verbose output, so users should be cautious. Users may also
enable or disable logging for specific packages/modules of the application by providing custom configuration files for
Log4J.

Introduction

01/18/07 69

15 Reporting Problems
Please report all problems, concerns and comments about the Workflow system by sending mail to antware@tigr.org.

01/18/07 70

mailto:antware@tigr.org

	Table of Contents
	1 Introduction
	2 System Requirements
	3 Workflow Instance Schema
	3.1 CommandSetRoot
	3.2 CommandSet
	3.3 CommandSetStatus
	3.4 Config
	3.5 Command
	3.6 CommandStatus
	3.7 DCESpecification
	3.8 ExecEnvironment
	3.9 Param
	3.10 ParamDef

	4 Workflow Template File
	5 Configuration File
	5.1 Simple Values
	5.2 Complex Values
	5.3 Iterators
	5.3.1 Command Iterator
	5.3.2 Command-Set Iterator

	6 Dynamic Workflows
	7 Tools
	7.1 Template Editor
	7.1.1 Single Level View
	7.1.2 Multi Level View
	7.1.3 Menus
	7.1.4 Edit Template
	7.1.5 Command Line Options
	7.1.6 Usage and Examples

	7.2 CreateWorkflow
	7.2.1 Command-Line Options
	7.2.2 Usage and Examples

	7.3 RunWorkflow
	7.3.1 Command-Line Options
	7.3.2 Usage and Examples

	7.4 KillWorkflow
	7.4.1 Command-Line Options
	7.4.2 Usage and Examples

	7.5 CheckWorkflow
	7.5.1 Command-Line Options
	7.5.2 Usage and Examples

	7.6 ControlWorkflow
	7.6.1 Command-Line Options
	7.6.2 Usage and Examples

	7.7 CleanWorkflowRegistry
	7.7.1 Command-Line Options
	7.7.2 Usage and Examples

	7.8 Monitor Workflow
	7.8.1 Open Workflow
	7.8.2 Add Workflow
	7.8.3 Remove Workflow
	7.8.4 Set Delay
	7.8.5 Refresh
	7.8.6 Command Line Options
	7.8.7 Usage and Examples

	8 Command Processors
	8.1 SystemCommandProcessor
	8.1.1 Redirection
	8.1.2 Command Elements

	8.2 DistributedProcessor
	8.3 WaitProcessor
	8.3.1 Command Elements

	8.4 WaitForFileCreationProcessor
	8.4.1 Command Elements

	9 Command Dispatchers
	9.1 LocalDispatcher
	9.2 DistributedDispatcher
	9.3 RemoteDispatcher

	10 Processor and Dispatcher Lookup and Customization
	10.1 Processor Lookup and Custom Processors
	10.2 Dispatcher Lookup and Custom Dispatchers

	11 Observers
	11.1 Command Set Interfaces
	11.1.1 CommandSetLifetimeLI
	11.1.2 CommandSetStatusLI

	11.2 Command Interfaces
	11.2.1 CommandLifetimeLI
	11.2.2 CommandStatusLI
	11.2.3 CommandRuntimeLI

	12 Observer Scripts
	13 Thread Regulation
	14 Logging
	14.1 Default Java configuration file
	14.2 Log Levels
	14.2.1 Fatal
	14.2.2 Error
	14.2.3 Warn
	14.2.4 Info
	14.2.5 Debug
	14.2.6 Finer
	14.2.7 Finest

	15 Reporting Problems

