
Administering Platform LSF®
Version 6.0
January 2004

Comments to: doc@platform.com

mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback


Copyright © 1994-2004 Platform Computing Corporation

All rights reserved.

We’d like to hear from
you

You can help us make this document better by telling us what you think of the content, 
organization, and usefulness of the information. If you find an error, or just want to make a 
suggestion for improving this document, please address your comments to 
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact 
support@platform.com.

Although the information in this document has been carefully reviewed, Platform Computing 
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform 
reserves the right to make corrections, updates, revisions or changes to the information in this 
document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS 
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED 
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM 
COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR 
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Document
redistribution policy

This document is protected by copyright and you may not redistribute or translate it into 
another language, in part or in whole.

Internal redistribution You may only redistribute this document internally within your organization (for example, on 
an intranet) provided that you continue to check the Platform Web site for updates and update 
your version of the documentation. You may not make it available to your organization over 
the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in 
other jurisdictions.

™ ACCELERATING INTELLIGENCE, THE BOTTOM LINE IN DISTRIBUTED COMPUTING, PLATFORM 
COMPUTING, and the PLATFORM and LSF logos are trademarks of Platform Computing 
Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other 
jurisdictions.

Other products or services mentioned in this document are identified by the trademarks or 
service marks of their respective owners.

Last update January 8 2004

Latest version www.platform.com/services/support/docs_home.asp

mailto:doc@platform.com?Subject=Platform%20Documentation%20Feedback
mailto:support@platform.com
http://www.platform.com/services/support/docs_home.asp


Contents
Welcome    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .    13

About This Guide      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   14

What’s New in the Platform LSF Version 6.0     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   16

Upgrade and Compatibility Notes .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   22

Learning About Platform Products      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   26

Technical Support   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   27

1 About Platform LSF       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .    29

Cluster Concepts       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   30

Job Life Cycle       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   41

2 How the System Works      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .    43

Job Submission       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   44

Job Scheduling and Dispatch     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   46

Host Selection    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   48

Job Execution Environment    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   49

Fault Tolerance       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   51

Part I: Managing Your Cluster

3 Working with Your Cluster       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .    55

Viewing Cluster Information       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   56

Default Directory Structures       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   58

Cluster Administrators       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   61

Controlling Daemons     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   62

Controlling mbatchd       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   64

Reconfiguring Your Cluster    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   65

4 Working with Hosts     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .    67

Host States .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   68

Viewing Host Information  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   70

Controlling Hosts     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   74

Adding a Host    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   76

Removing a Host       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   78
Administering Platform LSF 3



Contents

4

Adding and Removing Hosts Dynamically     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   79

Adding Host Types and Host Models to lsf.shared .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   84

Registering Service Ports     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   85

Host Naming  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   88

Hosts with Multiple Addresses     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   89

Host Groups    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   92

Tuning CPU Factors    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   94

Handling Host-level Job Exceptions .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .   96

5 Working with Queues     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .    99

Queue States .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      100

Viewing Queue Information  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      101

Controlling Queues     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      104

Adding and Removing Queues     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      107

Managing Queues    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      108

Handling Job Exceptions       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      109

6 Managing Jobs   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 111

Job States       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      112

Viewing Job Information .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      115

Changing Job Order Within Queues  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      117

Switching Jobs from One Queue to Another     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      118

Forcing Job Execution   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      119

Suspending and Resuming Jobs .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      120

Killing Jobs  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      121

Sending a Signal to a Job     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      122

Using Job Groups      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      123

7 Managing Users and User Groups .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 127

Viewing User and User Group Information   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      128

About User Groups      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      130

Existing User Groups as LSF User Groups       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      131

LSF User Groups   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      132
Administering Platform LSF



Contents
Part II: Working with Resources

8 Understanding Resources   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 137

About LSF Resources       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      138

How Resources are Classified  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      140

How LSF Uses Resources      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      143

Load Indices    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      144

Static Resources   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      148

Automatic Detection of Hardware Reconfiguration       .      .      .      .      .      .      .      .      .      .      .      .      .      .      149

9 Adding Resources    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 151

About Configured Resources    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      152

Adding New Resources to Your Cluster .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      153

Configuring lsf.shared Resource Section   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      154

Configuring lsf.cluster.cluster_name ResourceMap Section   .      .      .      .      .      .      .      .      .      .      155

Static Shared Resource Reservation .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      157

External Load Indices and ELIM   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      158

Modifying a Built-In Load Index  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      163

Part II I: Scheduling Policies

10 Time Syntax and Configuration   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 167

Specifying Time Values     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      168

Specifying Time Windows  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      169

Specifying Time Expressions     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      170

Automatic Time-based Configuration .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      171

11 Deadline Constraint and Exclusive Scheduling   .      .      .      .      .      .      .      .      .      .      .      .      .      . 173

Deadline Constraint Scheduling .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      174

Exclusive Scheduling      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      175

12 Preemptive Scheduling       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 177

About Preemptive Scheduling .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      178

How Preemptive Scheduling Works  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      179

Configuring Preemptive Scheduling       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      181

13 Specifying Resource Requirements    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 185

About Resource Requirements     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      186

Queue-Level Resource Requirements  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      187

Job-Level Resource Requirements .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      189

About Resource Requirement Strings .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      190
Administering Platform LSF 5



Contents

6

Selection String      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      192

Order String    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      194

Usage String   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      195

Span String .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      198

Same String      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      199

14 Fairshare Scheduling .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 201

About Fairshare Scheduling  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      202

User Share Assignments .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      203

Dynamic User Priority   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      205

How Fairshare Affects Job Dispatch Order    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      207

Host Partition Fairshare    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      208

Queue-Level User-based Fairshare      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      210

Cross-queue Fairshare .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      211

Hierarchical Fairshare    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      215

Queue-based Fairshare      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      218

Configuring Slot Allocation per Queue    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      220

Viewing Queue-based Fairshare Allocations     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      222

Typical Slot Allocation Scenarios    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      224

Using Historical and Committed Run Time  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      230

Users Affected by Multiple Fairshare Policies .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      234

Ways to Configure Fairshare       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      236

15 Goal-Oriented SLA-Driven Scheduling      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 239

Using Goal-Oriented SLA Scheduling    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      240

Configuring Service Classes for SLA Scheduling    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      243

Viewing Information about SLAs and Service Classes     .      .      .      .      .      .      .      .      .      .      .      .      .      246

Understanding Service Class Behavior     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      250

Part IV: Job Scheduling and Dispatch

16 Resource Allocation Limits       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 257

About Resource Allocation Limits .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      258

Configuring Resource Allocation Limits       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      261

Viewing Information about Resource Allocation Limits      .      .      .      .      .      .      .      .      .      .      .      .      267
Administering Platform LSF



Contents
17 Reserving Resources .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 269

About Resource Reservation      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      270

Using Resource Reservation .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      271

Memory Reservation for Pending Jobs     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      272

Viewing Resource Reservation Information       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      275

18 Managing Software Licenses with LSF       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 277

Using Licensed Software with LSF       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      278

Host Locked Licenses    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      279

Counted Host Locked Licenses    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      280

Network Floating Licenses       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      281

19 Dispatch and Run Windows    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 285

Dispatch and Run Windows   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      286

Run Windows       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      287

Dispatch Windows  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      288

20 Job Dependencies     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 289

Job Dependency Scheduling .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      290

Dependency Conditions  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      292

21 Job Priorities    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 295

User-Assigned Job Priority .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      296

Automatic Job Priority Escalation   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      298

22 Job Requeue and Job Rerun    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 299

About Job Requeue      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      300

Automatic Job Requeue    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      301

Reverse Requeue       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      302

Exclusive Job Requeue .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      303

User-Specified Job Requeue   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      304

Automatic Job Rerun       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      305

23 Job Checkpoint, Restart, and Migration  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 307

Checkpointing Jobs     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      308

Approaches to Checkpointing .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      309

Creating Custom echkpnt and erestart for Application-level Checkpointing     .      310

Checkpointing a Job  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      313

The Checkpoint Directory  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      314

Making Jobs Checkpointable      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      315

Manually Checkpointing Jobs   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      316

Enabling Periodic Checkpointing    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      317
Administering Platform LSF 7



Contents

8

Automatically Checkpointing Jobs      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      318

Restarting Checkpointed Jobs .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      319

Migrating Jobs   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      320

24 Chunk Job Dispatch     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 323

About Job Chunking  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      324

Configuring a Chunk Job Dispatch     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      325

Submitting and Controlling Chunk Jobs      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      327

25 Job Arrays      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 331

Creating a Job Array  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      332

Handling Input and Output Files      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      334

Redirecting Standard Input and Output .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      335

Passing Arguments on the Command Line   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      336

Job Array Dependencies  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      337

Monitoring Job Arrays  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      338

Controlling Job Arrays .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      340

Requeuing a Job Array .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      341

Job Array Job Slot Limit     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      342

Part V: Controlling Job Execution

26 Runtime Resource Usage Limits  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 345

About Resource Usage Limits   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      346

Specifying Resource Usage Limits       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      348

Supported Resource Usage Limits and Syntax    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      351

CPU Time and Run Time Normalization       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      357

27 Load Thresholds   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 359

Automatic Job Suspension       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      360

Suspending Conditions     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      362

28 Pre-Execution and Post-Execution Commands     .      .      .      .      .      .      .      .      .      .      .      .      .      . 365

About Pre-Execution and Post-Execution Commands      .      .      .      .      .      .      .      .      .      .      .      .      .      366

Configuring Pre- and Post-Execution Commands       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      368

29 Job Starters .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 371

About Job Starters   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      372

Command-Level Job Starters      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      374

Queue-Level Job Starters       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      376

Controlling Execution Environment Using Job Starters       .      .      .      .      .      .      .      .      .      .      .      .      378
Administering Platform LSF



Contents
30 External Job Submission and Execution Controls .      .      .      .      .      .      .      .      .      .      .      .      . 379

Understanding External Executables    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      380

Using esub  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      381

Working with eexec    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      388

31 Configuring Job Controls      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 389

Default Job Control Actions   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      390

Configuring Job Control Actions      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      392

Customizing Cross-Platform Signal Conversion     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      395

Part VI: Interactive Jobs

32 Interactive Jobs with bsub .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 399

About Interactive Jobs  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      400

Submitting Interactive Jobs    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      401

Performance Tuning for Interactive Batch Jobs .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      404

Interactive Batch Job Messaging       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      407

Running X Applications with bsub      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      409

Writing Job Scripts  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      410

Registering utmp File Entries for Interactive Batch Jobs   .      .      .      .      .      .      .      .      .      .      .      .      413

33 Running Interactive and Remote Tasks   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 415

Running Remote Tasks      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      416

Interactive Tasks .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      419

Load Sharing Interactive Sessions       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      422

Load Sharing X Applications       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      423

Part VII: Running Parallel Jobs

34 Running Parallel Jobs       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 429

How LSF Runs Parallel Jobs     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      430

Preparing Your Environment to Submit Parallel Jobs to LSF    .      .      .      .      .      .      .      .      .      .      431

Submitting Parallel Jobs   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      432

Submitting PVM Jobs to LSF  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      433

Submitting MPI Jobs   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      434

Starting Parallel Tasks with LSF Utilities      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      436

Job Slot Limits For Parallel Jobs   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      437

Specifying a Minimum and Maximum Number of Processors    .      .      .      .      .      .      .      .      .      438

Specifying a Mandatory First Execution Host .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      439

Controlling Processor Allocation Across Hosts  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      441
Administering Platform LSF 9



Contents

10
Running Parallel Processes on Homogeneous Hosts  .      .      .      .      .      .      .      .      .      .      .      .      .      .      444

Using LSF Make to Run Parallel Jobs      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      446

Limiting the Number of Processors Allocated      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      447

Reserving Processors     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      450

Reserving Memory for Pending Parallel Jobs   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      452

Allowing Jobs to Use Reserved Job Slots    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      453

Parallel Fairshare       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      458

How Deadline Constraint Scheduling Works For Parallel Jobs   .      .      .      .      .      .      .      .      .      459

Optimized Preemption of Parallel Jobs    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      460

35 Advance Reservation       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 461

About Advance Reservation  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      462

Configuring Advance Reservation       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      463

Using Advance Reservation   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      465

Part VIII: Monitoring Your Cluster

36 Event Generation .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 477

Event Generation       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      478

37 Tuning the Cluster  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 481

Tuning LIM  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      482

Adjusting LIM Parameters   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      483

Load Thresholds  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      484

Changing Default LIM Behavior to Improve Performance      .      .      .      .      .      .      .      .      .      .      .      487

Tuning mbatchd on UNIX    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      491

38 Authentication   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 493

About User Authentication      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      494

About Host Authentication     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      500

About Daemon Authentication     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      501

LSF in Multiple Authentication Environments .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      502

User Account Mapping       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      503

39 Job Email, and Job File Spooling .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 505

Mail Notification When a Job Starts   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      506

File Spooling for Job Input, Output, and Command Files       .      .      .      .      .      .      .      .      .      .      .      509
Administering Platform LSF



Contents
40 Non-Shared File Systems       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 513

About Directories and Files    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      514

Using LSF with Non-Shared File Systems    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      515

Remote File Access      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      516

File Transfer Mechanism (lsrcp)  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      518

41 Error and Event Logging  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 519

System Directories and Log Files    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      520

Managing Error Logs       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      522

System Event Log     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      523

Duplicate Logging of Event Logs    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      524

42 Troubleshooting and Error Messages  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 527

Shared File Access  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      528

Common LSF Problems     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      529

Error Messages       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      534

Setting Daemon Message Log to Debug Level    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      540

Setting Daemon Timing Levels     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      543

Part IX: LSF Utilities

43 Using lstcsh      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 547

About lstcsh    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      548

Task Lists      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      549

Local and Remote Modes     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      550

Automatic Remote Execution    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      551

Differences from Other Shells .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      552

Limitations  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      553

Starting lstcsh    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      554

Using lstcsh as Your Login Shell      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      555

Host Redirection  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      556

Task Control  .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      557

Built-in Commands       .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      558

Writing Shell Scripts in lstcsh    .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      560

Index   .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 561
Administering Platform LSF 11



Contents

12
 Administering Platform LSF



About Platform Computing
Platform Computing is the largest independent grid software developer, delivering intelligent, 
practical enterprise grid software and services that allow organizations to plan, build, run and 
manage grids by optimizing IT resources. Through our proven process and methodology, we 
link IT to core business objectives, and help our customers improve service levels, reduce costs 
and improve business performance. 

With industry-leading partnerships and a strong commitment to standards, we are at the 
forefront of grid software development, propelling over 1,600 clients toward powerful insights 
that create real, tangible business value. Recognized worldwide for our grid computing 
expertise, Platform has the industry's most comprehensive desktop-to-supercomputer grid 
software solutions. For more than a decade, the world's largest and most innovative companies 
have trusted Platform Computing's unique blend of technology and people to plan, build, run 
and manage grids.

Learn more at www.platform.com.

Welcome
Contents ◆ “About This Guide” on page 14

◆ “What’s New in the Platform LSF Version 6.0” on page 16

◆ “Upgrade and Compatibility Notes” on page 22

◆ “Learning About Platform Products” on page 26

◆ “Technical Support” on page 27
Administering Platform LSF 13

http://www.platform.com


About This Guide

14
About This Guide

Purpose of this guide
This guide describes how to manage and configure Platform LSF® software 
(“LSF”). In it, you will find information to do the following:

◆ Configure and maintain your cluster

◆ Configure and manage queues, hosts, and users

◆ Run jobs and control job execution

◆ Understand and work with resources

◆ Understand and configure scheduling policies 

◆ Manage job scheduling and dispatch

Who should use this guide
This guide is intended for Platform LSF cluster administrators who need to 
implement business policies in LSF. Users who want more in-depth 
understanding of advanced details of LSF operation should also read this guide. 
Users who simply want to run and monitor their jobs should read Running 
Jobs with Platform LSF.

What you should already know
This guide assumes:

◆ You have knowledge of system administration tasks such as creating user 
accounts, sharing and mounting Network File System (NFS) partitions, and 
backing up the system

◆ You are familiar with basic LSF concepts and basic LSF operations

Typographical conventions

Typeface Meaning Example

Courier The names of on-screen computer output, commands, files, 
and directories

The lsid command

Bold Courier What you type, exactly as shown Type cd /bin

Italics ◆ Book titles, new words or terms, or words to be 
emphasized

◆ Command-line place holders—replace with a real name 
or value

The queue specified 
by queue_name

Bold Sans Serif ◆ Names of GUI elements that you manipulate Click OK
Administering Platform LSF



Welcome
Command notation

Notation Meaning Example

Quotes " or ' Must be entered exactly as shown "job_ID[index_list]"

Commas , Must be entered exactly as shown -C time0,time1

Ellipsis … The argument before the ellipsis can be 
repeated. Do not enter the ellipsis.

job_ID ...

lower case italics The argument must be replaced with a real 
value you provide.

job_ID

OR bar | You must enter one of the items separated 
by the bar. You cannot enter more than one 
item, Do not enter the bar.

[-h | -V]

Parenthesis ( ) Must be entered exactly as shown -X "exception_cond([params])::acti
on] ...

Option or variable in 
square brackets [ ]

The argument within the brackets is 
optional. Do not enter the brackets.

lsid [-h]

Shell prompts ◆ C shell: %
◆ Bourne shell and Korn shell: $
◆ root account: #
Unless otherwise noted, the C shell prompt 
is used in all command examples

% cd /bin
Administering Platform LSF 15



What’s New in the Platform LSF Version 6.0

16
What’s New in the Platform LSF Version 6.0
Platform LSF Version 6.0 introduces the following new features:

◆ “Policy management” on page 16

❖ “Goal-oriented SLA-driven scheduling” on page 16

❖ “Platform LSF License Scheduler” on page 17

❖ “Job-level exception management” on page 17

❖ “Queue-based fairshare” on page 18

❖ “User fairshare by queue priority” on page 18

◆ “Job group support” on page 18

◆ “High Performance Computing” on page 18

❖ “Dynamic ptile enforcement” on page 18

❖ “Resource requirement specification for advance reservation” on 
page 19

◆ “Administration and diagnosis” on page 19

❖ “Scheduler dynamic debug” on page 19

❖ “Administrator action messages” on page 19

❖ “Platform LSF Reports” on page 20

◆ “Run-time enhancements” on page 21

❖ “Thread limit enforcement” on page 21

❖ “Non-normalized job run time limit” on page 21

❖ “Resource allocation limit display (blimits command)” on page 21

Policy management
Goal-oriented SLA-
driven scheduling

Goal-oriented SLA-driven scheduling policies help you configure your 
workload so that your jobs are completed on time and reduce the risk of 
missed deadlines:

◆ They enable you to focus on the “what and when” of your projects, not the 
low-level details of “how” resources need to be allocated to satisfy various 
workloads.

◆ They define a “just-in-time” service-level agreement between LSF 
administrators and LSF users. 

You implement your SLA scheduling policies in service classes associated 
with your projects and users. Each service class defines how many jobs should 
be run to meet different kinds of goals:

◆ Deadline goals—A specified number of jobs should be completed within 
a specified time window. For example, run all jobs submitted over a 
weekend.

◆ Velocity goals—Expressed as concurrently running jobs. For example: 
maintain 10 running jobs between 9:00 a.m. and 5:00 p.m. Velocity goals 
are well suited for short jobs (run time less than one hour). Such jobs leave 
the system quickly, and configuring a velocity goal ensures a steady flow 
of jobs through the system.
Administering Platform LSF



Welcome
◆ Throughput goals—Expressed as number of finished jobs per hour. For 
example: finish 15 jobs per hour between the hours of 6:00 p.m. and 7:00 
a.m. Throughput goals are suitable for medium to long running jobs. These 
jobs stay longer in the system, so you typically want to control their rate of 
completion rather than their flow.

You use the bsla command to track the progress of your projects and see 
whether they are meeting the goals of your policy.

See Chapter 15, “Goal-Oriented SLA-Driven Scheduling” for more information.

Platform LSF
License Scheduler

Platform LSF License Scheduler ensures that higher priority work never has to 
wait for a license. Prioritized sharing of application licenses allows you to make 
policies that control the way software licenses are shared among different users 
in your organization. 

You configure your software license distribution policy and LSF intelligently 
allocates licenses to improve quality of service to your end users while 
increasing throughput of high-priority work and reducing license costs.

It has the following features:

◆ Applies license distribution policies fairly among multiple projects cluster-
wide 

◆ Easily configurable distribution policies; instead of assigning equal share of 
licenses to everyone, you can give more licenses to larger or more 
important projects

◆ Guaranteed access to a minimum portion of licenses, no matter how 
heavily loaded the system is

◆ Controls the distribution of licenses among jobs and tasks it manages and 
still allows users to check out licenses directly

◆ Preempts lower priority jobs and releases their licenses to allow higher 
priority jobs to get the license and run.

◆ Provides visibility of license usage with blusers command

See Using Platform LSF License Scheduler for installation and configuration 
instructions.

Platform LSF license-aware scheduling is available as separately installable 
add-on packages located in /license_scheduler/ on the Platform FTP site 
(ftp.platform.com/).

Job-level
exception

management

Configure hosts and queues so that LSF takes appropriate action automatically 
when it detects exceptional conditions while jobs are running. Customize what 
exceptions are detected, and their corresponding actions.

LSF detects:

◆ Job exceptions:

❖ Job underrun—job ends too soon (run time is less than expected). 
Underrun jobs are detected when a job exits abnormally

❖ Job overrun—job runs too long (run time is longer than expected)

❖ Idle job—running job consumes less CPU time than expected (in terms 
of cputime/runtime)
Administering Platform LSF 17

ftp://lsfuser@ftp.platform.com/


What’s New in the Platform LSF Version 6.0

18
◆ Host exceptions: 

❖ LSF detects “black hole” or “job-eating” hosts. LSF monitors the job exit 
rate for hosts, and closes the host if the rate exceeds a threshold you 
configure. 

❖ A host can still be available to accept jobs, but some other problem 
prevents the jobs from running. Typically jobs dispatched to such 
problem hosts exit abnormally. 

See Chapter 4, “Working with Hosts” for more information.

Queue-based
fairshare

Prevents starvation of low-priority work and ensures high-priority jobs get the 
resources they require by sharing resources among queues. Queue-based 
fairshare extends your existing user- and project-based fairshare policies by 
enabling flexible slot allocation per queue based on slot share units you 
configure.

See Chapter 14, “Fairshare Scheduling” for more information.

User fairshare by
queue priority

Improves control of user-based fairshare by taking queue priority into account 
for dispatching jobs from different queues against the same user fairshare 
policy. Within the queue, dispatch order is based on share quota.

See Chapter 14, “Fairshare Scheduling” for more information.

Job group support
Use LSF job groups to organize and control a collection of individual jobs in 
higher level work units for easy management. A job group is a container for 
jobs in much the same way that a directory in a file system is a container for 
files. For example, you can organize jobs around groups that are meaningful 
to your business: a payroll application may have one group of jobs that 
calculates weekly payments, another job group for calculating monthly 
salaries, and a third job group that handles the salaries of part-time or contract 
employees.

Jobs groups increase end-user productivity by reducing complexity: 

◆ Submit, view, and control jobs according to their groups rather than 
looking at individual jobs

◆ Create job group hierarchies

◆ Move jobs in and out of job groups as needed

◆ Kill, stop resume and send job control actions to entire job groups

◆ View job status by group

See Chapter 6, “Managing Jobs” for more information.

High Performance Computing
Dynamic ptile
enforcement

Parallel jobs now have a flexible choice of the number of CPUs in the different 
kinds of hosts in a heterogeneous cluster.

Improves the performance and throughput of parallel jobs by setting multiple 
ptile values in a span string according to the CPU configuration of the host 
type or model.
Administering Platform LSF



Welcome
You can specify various ptile values in the queue (RES_REQ in lsb.queues, 
or at job submission with bsub -R):

◆ Default ptile value, specified by n processors. For example:
span[ptile=4]

LSF allocates 4 processors on each available host, regardless of how many 
processors the host has. 

◆ Predefined ptile value, specified by ’!’. For example:
span[ptile='!']

LSF uses the predefined maximum job slot limit in lsb.hosts (MXJ per 
host type/model) as its value.

◆ Predefined ptile value with optional multiple ptile values, per host type 
or host model. For example:
span[ptile='!',HP:8,SGI:8,LINUX:2] same[type]

The job requests 8 processors on a host of type HP or SGI, and 2 processors 
on a host of type LINUX, and the predefined maximum job slot limit in 
lsb.hosts (MXJ) for other host types. 

See Chapter 13, “Specifying Resource Requirements” for more information.

Resource
requirement

specification for
advance

reservation

You no longer need to specify a host list manually for your advance 
reservations. Specify a resource requirement string with the -R option of 
brsvadd instead of or in addition to a list of hosts. This makes advance 
reservation specification more flexible by reserving host slots based on your 
specific resource requirements. Only hosts that satisfy the resource 
requirement expression are reserved.

See Chapter 35, “Advance Reservation” for more information.

Administration and diagnosis
Scheduler

dynamic debug
Enables dynamic debugging of the LSF scheduler daemon (mbschd) without 
reconfiguring the cluster. Administrators no longer need to run badmin 
mbdrestart to debug the LSF scheduler:

badmin schddebug [-c class_name] [-l debug_level] [-f 
logfile_name] [-o]

badmin schdtime [-l timing_level] [-f logfile_name] [-o]

See Chapter 42, “Troubleshooting and Error Messages” for more information.

Administrator
action messages

Improves communication of LSF status to users. Users know the reason for the 
administrator actions, and administrators can easily communicate actions to 
users.

Administrators can attach a message to mbatchd restart, and host and queue 
operations:

◆ Use the -C option of badmin mbdrestart to log an administrator 
comment in lsb.events. For example,
% badmin mbdrestart -C "Configuration change"

The comment text Configuration change is recorded in lsb.events.
Administering Platform LSF 19



What’s New in the Platform LSF Version 6.0

20
◆ Use the -C option of badmin hclose and badmin hopen to log an 
administrator comment in lsb.events. For example,
% badmin hclose -C "Weekly backup" hostB

The comment text Weekly backup is recorded in lsb.events. If you 
close or open a host group, each host group member displays the same 
comment string.

◆ Use the -C option of badmin queue commands qclose, qopen, qact, and 
qinact to log an administrator comment in lsb.events. For example,
% badmin qclose -C "change configuration" normal

The comment text change configuration is recorded in lsb.events.

To see administrator comments, users run badmin hist, badmin mbdhist, 
badmin hhist, or badmin qhist.

See Chapter 3, “Working with Your Cluster”, Chapter 4, “Working with Hosts”, 
and Chapter 5, “Working with Queues” for more information.

Platform LSF
Reports

Understand cluster operations better, so that you can improve performance 
and troubleshoot configuration problems.

Platform LSF Reports provides a lightweight reporting package for single LSF 
clusters. It provides simple two-week reporting for smaller LSF clusters (about 
100 hosts, 1,000 jobs/day) and shows trends for basic cluster metrics by user, 
project, host, resource and queue. 

LSF Reports provides the following historical information about a cluster:

◆ Cluster load

Trends the LSF internal load indices: status, r15s, r1m, r15m, ut, pg, ls, it, 
swp, mem, tmp, and io.

◆ Cluster service level

Shows the average cluster service level using the following metrics: CPU 
time, memory and swap consumption, job runtime, job pending time, and 
job turnaround time

◆ Cluster throughput

Shows the amount of work pushed through the cluster, using both 
accounting information (total number of submitted, completed, and exited 
jobs) and sampled information (the minimum, maximum, and average 
number of running and pending jobs, by state and type).

◆ Shared resource usage

Shows the total, free, and used shared resources for the cluster.

◆ Reserved resource usage

Shows the actual usage of reserved resources.

◆ License usage

Shows peak, average, minimum, and maximum license usage by feature.

◆ License consumption

Shows license minutes consumed by user, feature, vendor, and server.
Administering Platform LSF



Welcome
See Platform LSF Reports Reference for installation and configuration 
instructions.

Platform LSF Reports is available as separately installable add-on packages 
located in /lsf_reports/ on the Platform FTP site (ftp.platform.com/).

Run-time enhancements
Thread limit
enforcement

Control job thread limit like other limits. Use bsub -T to set the limit of the 
number of concurrent threads for the whole job. The default is no limit. In the 
queue, set THREADLIMIT to limit the number of concurrent threads that can 
be part of a job. Exceeding the limit causes the job to terminate.

See Chapter 26, “Runtime Resource Usage Limits” for more information.

Non-normalized
job run time limit

Presents consistent job run time limits no matter which host runs the job. With 
non-normalized job run limit configured, job run time is not normalized by 
CPU factor.

If ABS_RUNLIMIT=Y is defined in lsb.params, the run time limit is not 
normalized by the host CPU factor. Absolute wall-clock run time is used for all 
jobs submitted with a run limit.

See Chapter 26, “Runtime Resource Usage Limits” for more information.

Resource
allocation limit
display (blimits

command)

Improves visibility to resource allocation limits. If your job is pending because 
some configured resource allocation limit has been reached, you can find out 
what limits may be blocking your job.

Use the blimits command to show the dynamic counters of each resource 
allocation limit configured in lsb.resources.

See Chapter 16, “Resource Allocation Limits” for more information.
Administering Platform LSF 21

ftp://lsfuser@ftp.platform.com/


Upgrade and Compatibility Notes

22
Upgrade and Compatibility Notes

UPGRADE document
To upgrade to LSF Version 6.0, follow the steps in upgrade.html.

API Compatibility between LSF 5.x and Version 6.0
Full backward compatibility: your applications will run under LSF Version 6.0 
without changing any code.

The Platform LSF Version 6.0 API is fully compatible with the LSF Version 5.x 
and Version 4.x API. An application linked with the LSF Version 5.x and 
Version 4.x library will run under LSF Version 6.0 without relinking.

To take full advantage of new Platform LSF Version 6.0 features, you should 
recompile your existing LSF applications with LSF Version 6.0.

Server host compatibility Platform LSF
You must upgrade the LSF master hosts in your cluster to Version 6.0.

LSF 5.x servers are compatible with Version 6.0 master hosts. All LSF 5.x 
features are supported by 6.0 master hosts except: 

To use new features introduced in Platform LSF Version 6.0, you must upgrade 
all hosts in your cluster to 6.0.

Platform LSF MultiCluster

You must upgrade the LSF master hosts in all clusters to Version 6.0.

New configuration parameters and environment variables
The following new parameters and environment variables have been added for 
LSF Version 6.0:

lsb.hosts EXIT_RATE specifies a threshold in minutes for exited jobs

lsb.params ◆ EADMIN_TRIGGER_DURATION defines how often 
LSF_SERVERDIR/eadmin is invoked once a job exception is detected.

◆ JOB_EXIT_RATE_DURATION defines how long LSF waits before checking 
the job exit rate for a host.

◆ ABS_RUNLIMIT—if set, the run time limit specified by the -W option of 
bsub, or the RUNLIMIT queue parameter in lsb.queues is not normalized 
by the host CPU factor. Absolute wall-clock run time is used for all jobs 
submitted with a run limit.

lsb.queues ◆ DISPATCH_ORDER defines an ordered cross-queue fairshare set

◆ JOB_IDLE specifies a threshold for idle job exception handling

◆ JOB_OVERRUN specifies a threshold for job overrun exception handling

◆ JOB_UNDERRUN specifies a threshold for job underrun exception 
handling

◆ RES_REQ accepts multiple ptile specifications in the span section for 
dyamic ptile enforcement
Administering Platform LSF

http://www.platform.com/services/support/docs/lsfdoc60/upgrade.html


Welcome
◆ SLOT_POOL is the name of the pool of job slots the queue belongs to for 
queue-based fairshare

◆ SLOT_SHARE specifies the share of job slots for queue-based fairshare, 
representing the percentage of running jobs (job slots) in use from the 
queue

◆ THREADLIMIT limits the number of concurrent threads that can be part of 
a job. Exceeding the limit causes the job to terminate

◆ RUNLIMIT—if ABS_RUNLIMIT=Y is defined in lsb.params, the run time 
limit is not normalized by the host CPU factor. Absolute wall-clock run time 
is used for all jobs submitted to a queue with a run limit configured.

Environment
variables

◆ LSB_SUB_EXTSCHED_PARAM

Value of external scheduling options specified by bsub -extsched, or 
queue-level MANDATORY_EXTSCHED or DEFAULT_EXTSCHED

◆ LSB_SUB_JOB_WARNING_ACTION

Value of job warning action specified by bsub -wa

◆ LSB_SUB_JOB_WARNING_TIME_PERIOD

Value of job warning time period specified by bsub -wt

New command options and output
The following command options and output have changed for LSF Version 6.0:

bacct ◆ -sla service_class_name displays accounting statistics for jobs that ran 
under the specified service class

◆ -x displays jobs that have triggered a job exception (overrun, underrun, 
idle)

badmin ◆ schddebug sets message log level for mbschd to include additional 
information in log files

◆ schdtime sets timing level for mbschd to include additional timing 
information in log files

◆ -C comment logs the text of comment as an administrator comment 
record to lsb.events for the following subcommands:
❖ mbdrestart
❖ qopen
❖ qclose
❖ qact
❖ qinact
❖ hopen
❖ hclose

bhist -l displays:

◆ Job group modification

◆ Configured thread limit

bhosts ◆ -x displays hosts whose job exit rate has exceeded the threshold 
configured by EXIT_RATE in lsb.hosts for longer than 
JOB_EXIT_RATE_DURATION configured in lsb.params, and are still high
Administering Platform LSF 23



Upgrade and Compatibility Notes

24
◆ -l displays the comment text if the LSF administrator specified an 
administrator comment with the -C option of the badmin host control 
commands hclose or hopen

bjobs ◆ -g job_group_name displays information about jobs attached to the 
specified job group

◆ -l displays the thread limit for the job

◆ -sla service_class_name displays jobs belonging to the specified service 
class

◆ -x displays unfinished jobs that have triggered a job exception (overrun, 
underrun, idle)

bkill ◆ -g job_group_name operates only on jobs in the specified job group

◆ -sla service_class_name operates on jobs belonging to the specified 
service class.

bmod ◆ -g job_group_name | -gn

◆ -sla service_class_name | -slan

bqueues -l displays:

◆ Configured job exception thresholds and number of jobs in each exception 
state for the queue

◆ The job slot share (SLOT_SHARE) and the name of the share pool 
(SLOT_POOL) that the queue belongs to for queue-based fairshare

◆ DISPATCH_ORDER in a master queue for cross-queue fairshare

◆ The comment text if the LSF administrator specified an administrator 
comment with the -C option of the queue control commands qclose, 
qopen, qact, and qinact, qhist

bresume -g job_group_name resumes only jobs in the specified job group

brsvadd -R selects hosts for the reservation according to the specified resource 
requirements

bstop ◆ -g job_group_name suspends only jobs in the specified job group

◆ -sla service_class_name suspends jobs belonging to the specified 
service class

bsub ◆ -g job_group_name submits jobs in the specified job group

◆ -R accepts multiple ptile specifications in the span section for dyamic ptile 
enforcement

◆ -sla service_class_name specifies the service class where the job is to 
run

◆ -T thread_limit sets the limit of the number of concurrent threads to 
thread_limit for the whole job.

◆ -W—if ABS_RUNLIMIT=Y is defined in lsb.params, the run time limit is 
not normalized by the host CPU factor. Absolute wall-clock run time is 
used for all jobs submitted with a run limit.
Administering Platform LSF



Welcome
New files added to installation
The following new files have been added to the Platform LSF Version 6.0 
installation:

◆ LSB_CONFDIR/cluster_name/configdir/lsb.serviceclasses
◆ LSF_BINDIR/bgadd
◆ LSF_BINDIR/bgdel
◆ LSF_BINDIR/bjgroup
◆ LSF_BINDIR/blimits
◆ LSF_BINDIR/bsla
◆ LSF_SERVERDIR/eadmin
◆ LSF_LIBDIR/schmod_jobweight.so

Symbolic links to
LSF files

If your installation uses symbolic links to other files in these directories, you must 
manually create links to these new files.

New accounting and job event fields
The following fields have been added to lsb.acct and lsb.events:

lsb.acct ◆ JOB_FINISH:

sla (%s) is the SLA service class name under which the job runs.

lsb.events ◆ JOB_NEW:

❖ sla (%s) is the SLA service class name under which the job runs

❖ SLArunLimit (%d) is the absolute run time limit of the job for SLA 
service classes

❖ jobGroup (%s) is the job group under which the job runs

◆ JOB_MODIFY2:

❖ sla (%s) is the SLA service class name that the job is to be attached to

❖ jobGroup (%s) is the job group under which the job runs

◆ JOB_EXECUTE:

SLAscaledRunLimit (%d) is the run time limit for the job scaled by the 
execution host

◆ QUEUE_CTRL:

ctrlComments (%s) is the administrator comment text from the -C option 
of badmin queue control commands qclose, qopen, qact, and qinact

◆ HOST_CTRL:

ctrlComments (%s) is the administrator comment text from the -C option 
of badmin host control commands hclose and hopen

◆ MBD_DIE: 

ctrlComments (%s) is the administrator comment text from the -C option 
of badmin mbdrestart
Administering Platform LSF 25



Learning About Platform Products

26
Learning About Platform Products

World Wide Web and FTP
The latest information about all supported releases of Platform LSF is available 
on the Platform Web site at www.platform.com. Look in the Online Support 
area for current README files, Release Notes, Upgrade Notices, Frequently 
Asked Questions (FAQs), Troubleshooting, and other helpful information.

The Platform FTP site (ftp.platform.com) also provides current README 
files, Release Notes, and Upgrade information for all supported releases of 
Platform LSF.

Visit the Platform User Forum at www.platformusers.net to discuss 
workload management and strategies pertaining to distributed and Grid 
Computing.

If you have problems accessing the Platform web site or the Platform FTP site, 
contact support@platform.com.

Platform training
Platform’s Professional Services training courses can help you gain the skills 
necessary to effectively install, configure and manage your Platform products. 
Courses are available for both new and experienced users and administrators 
at our corporate headquarters and Platform locations worldwide.

Customized on-site course delivery is also available.

Find out more about Platform Training at www.platform.com/training, or 
contact Training@platform.com for details.

README files and release notes and UPGRADE
Before installing LSF, be sure to read the files named readme.html and 
release_notes.html. To upgrade to Version 6.0, follow the steps in 
upgrade.html.

You can also view these files from the Download area of the Platform Online 
Support Web page.

Platform documentation
Documentation for Platform products is available in HTML and PDF format on 
the Platform Web site at 
www.platform.com/services/support/docs_home.asp.
Administering Platform LSF

http://www.platform.com
http://www.platformusers.net
mailto:support@platform.com
http://www.platform.com/services/training.asp
http://www.platform.com/training
mailto:Training@platform.com
http://www.platform.com/services/support/docs_home.asp


Welcome
Technical Support
Contact Platform Computing or your LSF vendor for technical support.

Email support@platform.com

World Wide Web www.platform.com

Phone ◆ North America: +1 905 948 4297

◆ Europe: +44 1256 370 530

◆ Asia: +86 10 6238 1125

Toll-free phoneó 1-877-444-4LSF (+1 877 444 4573)

Mail Platform Support
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

When contacting Platform, please include the full name of your company.

We’d like to hear from you
If you find an error in any Platform documentation, or you have a suggestion 
for improving it, please let us know:

Email doc@platform.com

Mail Information Development
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

Be sure to tell us:

◆ The title of the manual you are commenting on

◆ The version of the product you are using

◆ The format of the manual (HTML or PDF)
Administering Platform LSF 27

mailto:support@platform.com
http://www.platform.com
mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback


Technical Support

28
 Administering Platform LSF



C H A P T E R

1
About Platform LSF

Contents ◆ “Cluster Concepts” on page 30

◆ “Job Life Cycle” on page 41
Administering Platform LSF 29



Cluster Concepts

30
Cluster Concepts

Clusters, jobs, and queues
Cluster A group of computers (hosts) running LSF that work together as a single unit, 

combining computing power and sharing workload and resources. A cluster 
provides a single-system image for disparate computing resources.

Hosts can be grouped into clusters in a number of ways. A cluster could 
contain:

◆ All the hosts in a single administrative group

◆ All the hosts on one file server or sub-network

◆ Hosts that perform similar functions

Commands
◆ lshosts—View static resource information about hosts in the cluster

◆ bhosts—View resource and job information about server hosts in the 
cluster

◆ lsid—View the cluster name

◆ lsclusters—View cluster status and size

Configuration
◆ Define hosts in your cluster in lsf.cluster.cluster_name

The name of your cluster should be unique. It should not be the same as any host or 
queue.

Job A unit of work run in the LSF system. A job is a command submitted to LSF for 
execution. LSF schedules, controls, and tracks the job according to configured 
policies.

Jobs can be complex problems, simulation scenarios, extensive calculations, 
anything that needs compute power.

lim

sbatchd

Commands

respim

Execution Host
Server Host lim

sbatchd

Commands

respim

Execution Host
Server Host

lim

sbatchd

Commands

respim

Execution Host
Server Host

lim

sbatchd

Commands

respim

Submission Host
Server Host

Commands

Submission Host
Client Host

Master lim

mbschd

sbatchd

Commands

respim

mbatchdQueues

Master Host
Server Host
Administering Platform LSF



Chapter 1
About Platform LSF
Commands
◆ bjobs—View jobs in the system

◆ bsub—Submit jobs 

Job slot A job slot is a bucket into which a single unit of work is assigned in the LSF 
system. Hosts are configured to have a number of job slots available and 
queues dispatch jobs to fill job slots.

Commands
◆ bhosts—View job slot limits for hosts and host groups

◆ bqueues—View job slot limits for queues

◆ busers—View job slot limits for users and user groups

Configuration
◆ Define job slot limits in lsb.resources.

Job states LSF jobs have the following states:

◆ PEND—Waiting in a queue for scheduling and dispatch

◆ RUN—Dispatched to a host and running

◆ DONE—Finished normally with zero exit value

◆ EXITED—Finished with non-zero exit value

◆ PSUSP—Suspended while pending

◆ USUSP—Suspended by user

◆ SSUSP—Suspended by the LSF system

◆ POST_DONE—Post-processing completed without errors

◆ POST_ERR—Post-processing completed with errors

◆ WAIT—Members of a chunk job that are waiting to run

Queue A clusterwide container for jobs. All jobs wait in queues until they are 
scheduled and dispatched to hosts.

Queues do not correspond to individual hosts; each queue can use all server 
hosts in the cluster, or a configured subset of the server hosts.

When you submit a job to a queue, you do not need to specify an execution 
host. LSF dispatches the job to the best available execution host in the cluster 
to run that job. 

Queues implement different job scheduling and control policies. 

Commands
◆ bqueues—View available queues

◆ bsub -q—Submit a job to a specific queue

◆ bparams—View default queues

Configuration
◆ Define queues in lsb.queues

The names of your queues should be unique. They should not be the same as the 
cluster name or any host in the cluster.
Administering Platform LSF 31



Cluster Concepts

32
First-come, first-served (FCFS) scheduling
The default type of scheduling in LSF. Jobs are considered for dispatch based 
on their order in the queue.

Hosts
Host An individual computer in the cluster.

Each host may have more than 1 processor. Multiprocessor hosts are used to 
run parallel jobs. A multiprocessor host with a single process queue is 
considered a single machine, while a box full of processors that each have their 
own process queue is treated as a group of separate machines.

Commands
◆ lsload—View load on hosts

◆ lshosts—View configuration information about hosts in the cluster 
including number of CPUS, model, type, and whether the host is a client 
or server

◆ bhosts—View batch server hosts in the cluster

The names of your hosts should be unique. They should not be the same as the 
cluster name or any queue defined for the cluster.

Submission host The host where jobs are submitted to the cluster. 

Jobs are submitted using the bsub command or from an application that uses 
the LSF API. 

Client hosts and server hosts can act as submission hosts.

Commands
◆ bsub—Submit a job

◆ bjobs—View jobs that are submitted

Execution host The host where a job runs. Can be the same as the submission host. All 
execution hosts are server hosts.

Commands
◆ bjobs—View where a job runs

Server host Hosts that are capable of submitting and executing jobs. A server host runs 
sbatchd to execute server requests and apply local policies.

Commands
◆ lshosts—View hosts that are servers (server=Yes)

Configuration
◆ Server hosts are defined in the lsf.cluster.cluster_name file by 

setting the value of server to 1

Client host Hosts that are only capable of submitting jobs to the cluster. Client hosts run 
LSF commands and act only as submission hosts. Client hosts do not execute 
jobs or run LSF daemons.

Commands
◆ lshosts—View hosts that are clients (server=No)
Administering Platform LSF



Chapter 1
About Platform LSF
Configuration
◆ Client hosts are defined in the lsf.cluster.cluster_name file by 

setting the value of server to 0

Master host Where the master LIM and mbatchd run. An LSF server host that acts as the 
overall coordinator for that cluster. Each cluster has one master host to do all 
job scheduling and dispatch. If the master host goes down, another LSF server 
in the cluster becomes the master host.

All LSF daemons run on the master host. The LIM on the master host is the 
master LIM.

Commands
◆ lsid—View the master host name

Configuration
◆ The master host is the first host listed in the 

lsf.cluster.cluster_name file or is defined along with other 
candidate master hosts by LSF_MASTER_LIST in lsf.conf.

LSF daemons

mbatchd Master Batch Daemon running on the master host. Started by sbatchd. 
Responsible for the overall state of jobs in the system.

Receives job submission, and information query requests. Manages jobs held 
in queues. Dispatches jobs to hosts as determined by mbschd.

Configuration
◆ Port number defined in lsf.conf.

mbschd Master Batch Scheduler Daemon running on the master host. Works with 
mbatchd. Started by mbatchd. 

Makes scheduling decisions based on job requirements and policies.

sbatchd Slave Batch Daemon running on each server host. Receives the request to run 
the job from mbatchd and manages local execution of the job. Responsible for 
enforcing local policies and maintaining the state of jobs on the host.

sbatchd forks a child sbatchd for every job. The child sbatchd runs an 
instance of res to create the execution environment in which the job runs. The 
child sbatchd exits when the job is complete.

Commands
◆ badmin hstartup—Starts sbatchd

◆ badmin hshutdown—Shuts down sbatchd

mbatchd

mbschd

lim

pim

job requests and dispatch

job scheduling

job execution

job process information

host information

res

sbatchd
Administering Platform LSF 33



Cluster Concepts

34
◆ badmin hrestart—Restarts sbatchd

Configuration
◆ Port number defined in lsf.conf

res Remote Execution Server running on each server host. Accepts remote 
execution requests to provide, transparent and secure remote execution of jobs 
and tasks.

Commands
◆ lsadmin resstartup—Starts res

◆ lsadmin resshutdown—Shuts down res

◆ lsadmin resrestart—Restarts res

Configuration
◆ Port number defined in lsf.conf

lim Load Information Manager running on each server host. Collects host load and 
configuration information and forwards it to the master LIM running on the 
master host. Reports the information displayed by lsload and lshosts.

Static indices are reported when the LIM starts up or when the number of CPUs 
(ncpus) change. Static indices are:

◆ Number of CPUs (ncpus)

◆ Number of disks (ndisks)

◆ Total available memory (maxmem)

◆ Total available swap (maxswp)

◆ Total available temp (maxtmp)

Dynamic indices for host load collected at regular intervals are:

◆ Hosts status (status) 

◆ 15 second, 1 minute, and 15 minute run queue lengths (r15s, r1m, and 
r15m) 

◆ CPU utilization (ut)

◆ Paging rate (pg)

◆ Number of login sessions (ls) 

◆ Interactive idle time (it) 

◆ Available swap space (swp)

◆ Available memory (mem) 

◆ Available temp space (tmp)

◆ Disk IO rate (io)

Commands
◆ lsadmin limstartup—Starts lim

◆ lsadmin limshutdown—Shuts down lim

◆ lsadmin limrestart—Restarts lim

◆ lsload—View dynamic load values 

◆ lshosts—View static host load values

Configuration
◆ Port number defined in lsf.conf.
Administering Platform LSF



Chapter 1
About Platform LSF
Master LIM The LIM running on the master host. Receives load information from the LIMs 
running on hosts in the cluster.

Forwards load information to mbatchd, which forwards this information to 
mbschd to support scheduling decisions. If the master LIM becomes 
unavailable, a LIM on another host automatically takes over.

Commands
◆ lsadmin limstartup—Starts lim

◆ lsadmin limshutdown—Shuts down lim

◆ lsadmin limrestart—Restarts lim

◆ lsload—View dynamic load values 

◆ lshosts—View static host load values

Configuration
◆ Port number defined in lsf.conf.

ELIM External LIM (ELIM) is a site-definable executable that collects and tracks 
custom dynamic load indices. An ELIM can be a shell script or a compiled 
binary program, which returns the values of the dynamic resources you define. 
The ELIM executable must be named elim and located in LSF_SERVERDIR.

pim Process Information Manager running on each server host. Started by LIM, 
which periodically checks on pim and restarts it if it dies.

Collects information about job processes running on the host such as CPU and 
memory used by the job, and reports the information to sbatchd.

Commands
◆ bjobs—View job information

Batch jobs and tasks
You can either run jobs through the batch system where jobs are held in 
queues, or you can interactively run tasks without going through the batch 
system, such as tests for example.

Job A unit of work run in the LSF system. A job is a command submitted to LSF for 
execution, using the bsub command. LSF schedules, controls, and tracks the 
job according to configured policies.

Jobs can be complex problems, simulation scenarios, extensive calculations, 
anything that needs compute power.

Commands
◆ bjobs—View jobs in the system

◆ bsub—Submit jobs 

Interactive batch
job

A batch job that allows you to interact with the application and still take 
advantage of LSF scheduling policies and fault tolerance. All input and output 
are through the terminal that you used to type the job submission command.

When you submit an interactive job, a message is displayed while the job is 
awaiting scheduling. A new job cannot be submitted until the interactive job is 
completed or terminated.
Administering Platform LSF 35



Cluster Concepts

36
The bsub command stops display of output from the shell until the job 
completes, and no mail is sent to you by default. Use Ctrl-C at any time to 
terminate the job.

Commands
◆ bsub -I—Submit an interactive job

Interactive task A command that is not submitted to a batch queue and scheduled by LSF, but 
is dispatched immediately. LSF locates the resources needed by the task and 
chooses the best host among the candidate hosts that has the required 
resources and is lightly loaded. Each command can be a single process, or it 
can be a group of cooperating processes.

Tasks are run without using the batch processing features of LSF but still with 
the advantage of resource requirements and selection of the best host to run 
the task based on load. 

Commands
◆ lsrun—Submit an interactive task

◆ lsgrun—Submit an interactive task to a group of hosts

◆ See also LSF utilities such as ch, lsacct, lsacctmrg, lslogin, lsplace, 
lsload, lsloadadj, lseligible, lsmon, lstcsh

Local task An application or command that does not make sense to run remotely. For 
example, the ls command on UNIX.

Commands
◆ lsltasks—View and add tasks

Configuration
◆ lsf.task—Configure systemwide resource requirements for tasks

◆ lsf.task.cluster—Configure clusterwide resource requirements for 
tasks 

◆ .lsftasks—Configure user-specific tasks

Remote task An application or command that can be run on another machine in the cluster.

Commands
◆ lsrtasks—View and add tasks

Configuration
◆ lsf.task—Configure systemwide resource requirements for tasks

◆ lsf.task.cluster—Configure clusterwide resource requirements for 
tasks

◆ .lsftasks—Configure user-specific tasks
Administering Platform LSF



Chapter 1
About Platform LSF
Host types and host models
Hosts in LSF are characterized by host type and host model.

The following example has HP hosts. The host type is HPPA. Host models can 
be HPN4000, HPJ210, etc.

Host type The combination of operating system version and host CPU architecture. 

All computers that run the same operating system on the same computer 
architecture are of the same type—in other words, binary-compatible with 
each other.

Each host type usually requires a different set of LSF binary files.

Commands
◆ lsinfo -t—View all host types defined in lsf.shared

Configuration
◆ Defined in lsf.shared

◆ Mapped to hosts in lsf.cluster.cluster_name

Host model The combination of host type and CPU speed (CPU factor) of the computer. 

All hosts of the same relative speed are assigned the same host model.

The CPU factor is taken into consideration when jobs are being dispatched. 

Commands
◆ lsinfo -m—View a list of currently running models

◆ lsinfo -M—View all models defined in lsf.shared

Configuration
◆ Defined in lsf.shared

◆ Mapped to hosts in lsf.cluster.cluster_name

Users and administrators
LSF user A user account that has permission to submit jobs to the LSF cluster.

LSF administrator In general, you must be an LSF administrator to perform operations that will 
affect other LSF users. Each cluster has one primary LSF administrator, specified 
during LSF installation. You can also configure additional administrators at the 
cluster level and at the queue level.

Primary LSF
administrator

The first cluster administrator specified during installation and first 
administrator listed in lsf.cluster.cluster_name. The primary LSF 
administrator account owns the configuration and log files. The primary LSF 
administrator has permission to perform clusterwide operations, change 
configuration files, reconfigure the cluster, and control jobs submitted by all 
users. 

Host models

Host type HPPA

HPJ210HPN4000 HPC3000HPC200
Administering Platform LSF 37



Cluster Concepts

38
Cluster
administrator

May be specified during LSF installation or configured after installation. Cluster 
administrators can perform administrative operations on all jobs and queues in 
the cluster. Cluster administrators have the same cluster-wide operational 
privileges as the primary LSF administrator except that they do not necessarily 
have permission to change LSF configuration files.

For example, a cluster administrator can create an LSF host group, submit a job 
to any queue, or terminate another user’s job.

Queue
administrator

An LSF administrator user account that has administrative permissions limited 
to a specified queue. For example, an LSF queue administrator can perform 
administrative operations on the specified queue, or on jobs running in the 
specified queue, but cannot change LSF configuration or operate on LSF 
daemons.

Resources
Resource usage The LSF system uses built-in and configured resources to track resource 

availability and usage. Jobs are scheduled according to the resources available 
on individual hosts.

Jobs submitted through the LSF system will have the resources they use 
monitored while they are running. This information is used to enforce resource 
limits and load thresholds as well as fairshare scheduling.

LSF collects information such as:

◆ Total CPU time consumed by all processes in the job

◆ Total resident memory usage in KB of all currently running processes in a 
job

◆ Total virtual memory usage in KB of all currently running processes in a job

◆ Currently active process group ID in a job

◆ Currently active processes in a job

On UNIX, job-level resource usage is collected through PIM.

Commands
◆ lsinfo—View the resources available in your cluster

◆ bjobs -l—View current resource usage of a job

Configuration
◆ SBD_SLEEP_TIME in lsb.params—Configures how often resource usage 

information is sampled by PIM, collected by sbatchd, and sent to mbatchd

Load indices Load indices measure the availability of dynamic, non-shared resources on 
hosts in the cluster. Load indices built into the LIM are updated at fixed time 
intervals.

Commands
◆ lsload -l—View all load indices

◆ bhosts -l—View load levels on a host
Administering Platform LSF



Chapter 1
About Platform LSF
External load
indices

Defined and configured by the LSF administrator and collected by an External 
Load Information Manager (ELIM) program. The ELIM also updates LIM when 
new values are received.

Commands
◆ lsinfo—View external load indices

Static resources Built-in resources that represent host information that does not change over 
time, such as the maximum RAM available to user processes or the number of 
processors in a machine. Most static resources are determined by the LIM at 
start-up time.

Static resources can be used to select appropriate hosts for particular jobs 
based on binary architecture, relative CPU speed, and system configuration.

Load thresholds Two types of load thresholds can be configured by your LSF administrator to 
schedule jobs in queues. Each load threshold specifies a load index value:

◆ loadSched determines the load condition for dispatching pending jobs. If 
a host’s load is beyond any defined loadSched, a job will not be started 
on the host. This threshold is also used as the condition for resuming 
suspended jobs. 

◆ loadStop determines when running jobs should be suspended.

To schedule a job on a host, the load levels on that host must satisfy both the 
thresholds configured for that host and the thresholds for the queue from 
which the job is being dispatched.

The value of a load index may either increase or decrease with load, 
depending on the meaning of the specific load index. Therefore, when 
comparing the host load conditions with the threshold values, you need to use 
either greater than (>) or less than (<), depending on the load index.

Commands
◆ bhosts-l—View suspending conditions for hosts

◆ bqueues -l—View suspending conditions for queues

◆ bjobs -l—View suspending conditions for a particular job and the 
scheduling thresholds that control when a job is resumed

Configuration
◆ lsb.bhosts—Configure thresholds for hosts

◆ lsb.queues—Configure thresholds for queues

Runtime resource
usage limits

Limit the use of resources while a job is running. Jobs that consume more than 
the specified amount of a resource are signalled or have their priority lowered.

Configuration
◆ lsb.queues—Configure resource usage limits for queues

Hard and soft
limits

Resource limits specified at the queue level are hard limits while those 
specified with job submission are soft limits. See setrlimit(2) man page for 
concepts of hard and soft limits.
Administering Platform LSF 39



Cluster Concepts

40
Resource
allocation limits

Restrict the amount of a given resource that must be available during job 
scheduling for different classes of jobs to start, and which resource consumers 
the limits apply to. If all of the resource has been consumed, no more jobs can 
be started until some of the resource is released.

Configuration
◆ lsb.resources—Configure queue-level resource allocation limits for 

hosts, users, queues, and projects

Resource
requirements

(bsub -R)

Restrict which hosts the job can run on. Hosts that match the resource 
requirements are the candidate hosts. When LSF schedules a job, it collects the 
load index values of all the candidate hosts and compares them to the 
scheduling conditions. Jobs are only dispatched to a host if all load values are 
within the scheduling thresholds.

Commands
◆ bsub-R—Specify resource requirement string for a job

Configuration
◆ lsb.queues—Configure resource requirements for queues
Administering Platform LSF



Chapter 1
About Platform LSF
Job Life Cycle

1 Submit a job
You submit a job from an LSF client or server with the bsub command. 

If you do not specify a queue when submitting the job, the job is submitted to 
the default queue.

Jobs are held in a queue waiting to be scheduled and have the PEND state. 
The job is held in a job file in the 
LSF_SHAREDIR/cluster_name/logdir/info/ directory.

Job ID LSF assigns each job a unique job ID when you submit the job. 

Job name You can also assign a name to the job with the -J option of bsub. Unlike the 
job ID, the job name is not necessarily unique.

2 Schedule job
1 mbatchd looks at jobs in the queue and sends the jobs for scheduling to 

mbschd at a preset time interval (defined by the parameter 
JOB_SCHEDULING_INTERVAL in lsb.params).

2 mbschd evaluates jobs and makes scheduling decisions based on:

❖ Job priority

❖ Scheduling policies

❖ Available resources

3 mbschd selects the best hosts where the job can run and sends its decisions 
back to mbatchd.

Resource information is collected at preset time intervals by the master LIM 
from LIMs on server hosts. The master LIM communicates this information to 
mbatchd, which in turn communicates it to mbschd to support scheduling 
decisions.

Submission Host

Master lim

mbschd

sbatchd

Commands

respim

mbatchdQueues

Master Host
Server Host

1 2

3
5

Submit job (bsub) dispatch job

lim

sbatchd

Commands

respim

Execution Host
Server Host

job report (output, errors, info)

Job
PEND

Job RUN

2

4

6 email job report
Administering Platform LSF 41



Job Life Cycle

42
3 Dispatch job
As soon as mbatchd receives scheduling decisions, it immediately dispatches 
the jobs to hosts.

4 Run job
sbatchd handles job execution. It:

1 Receives the request from mbatchd

2 Creates a child sbatchd for the job

3 Creates the execution environment

4 Starts the job using res

The execution environment is copied from the submission host to the 
execution host and includes the following:

◆ Environment variables needed by the job

◆ Working directory where the job begins running

◆ Other system-dependent environment settings, for example:

❖ On UNIX, resource limits and umask

❖ On Windows, desktop and Windows root directory

The job runs under the user account that submitted the job and has the status 
RUN.

5 Return output
When a job is completed, it is assigned the DONE status if the job was 
completed without any problems. The job is assigned the EXIT status if errors 
prevented the job from completing.

sbatchd communicates job information including errors and output to 
mbatchd. 

6 Send email to client
mbatchd returns the job output, job error, and job information to the 
submission host through email. Use the -o and -e options of bsub to send job 
output and errors to a file.

Job report A job report is sent by email to the LSF client and includes: 

◆ Job information such as:

❖ CPU use

❖ Memory use

❖ Name of the account that submitted the job

◆ Job output

◆ Errors
Administering Platform LSF



C H A P T E R

2
How the System Works

LSF can be configured in different ways that affect the scheduling of jobs. By 
default, this is how LSF handles a new job:

1 Receive the job. Create a job file. Return the job ID to the user.

2 Schedule the job and select the best available host.

3 Dispatch the job to a selected host.

4 Set the environment on the host.

5 Start the job.

Contents ◆ “Job Submission” on page 44

◆ “Job Scheduling and Dispatch” on page 46

◆ “Host Selection” on page 48

◆ “Job Execution Environment” on page 49

◆ “Fault Tolerance” on page 51
Administering Platform LSF 43



Job Submission

44
Job Submission
The life cycle of a job starts when you submit the job to LSF. On the command 
line, bsub is used to submit jobs, and you can specify many options to bsub 
to modify the default behavior. Jobs must be submitted to a queue.

Queues
Queues represent a set of pending jobs, lined up in a defined order and waiting 
for their opportunity to use resources. Queues implement different job 
scheduling and control policies. All jobs submitted to the same queue share 
the same scheduling and control policy. Queues do not correspond to 
individual hosts; each queue can use all server hosts in the cluster, or a 
configured subset of the server hosts.

A queue is a network-wide holding place for jobs. Jobs enter the queue via the 
bsub command. LSF can be configured to have one or more default queues. 
Jobs that are not submitted to a specific queue will be assigned to the first 
default queue that accepts them. Queues have the following attributes 
associated with them:

◆ Priority, where a larger integer is a higher priority

◆ Name, which uniquely identifies the queue

◆ Queue limits, that restrict hosts, number of jobs, users, groups, processors, 
etc.

◆ Standard UNIX limits: memory, swap, process, CPU, etc.

◆ Scheduling policies: FCFS, fairshare, preemptive, exclusive

◆ Administrators

◆ Run conditions

◆ Load-sharing threshold conditions, which apply load sharing to the queue

◆ UNIX nice(1) value, which sets the UNIX scheduler priority

Example queue:

Begin Queue
QUEUE_NAME = normal
PRIORITY = 30
STACKLIMIT= 2048
DESCRIPTION = For normal low priority jobs, running only if 
hosts are lightly loaded.
QJOB_LIMIT = 60 # job limit of the queue
PJOB_LIMIT = 2 # job limit per processor
ut = 0.2
io = 50/240
USERS = all
HOSTS = all 
NICE = 20
End Queue
Administering Platform LSF



Chapter 2
How the System Works
Queue priority Defines the order in which queues are searched to determine which job will 
be processed. Queues are assigned a priority by the LSF administrator, where 
a higher number has a higher priority. Queues are serviced by LSF in order of 
priority from the highest to the lowest. If multiple queues have the same 
priority, LSF schedules all the jobs from these queues in first-come, first-served 
order.

Automatic queue selection
Typically, a cluster has multiple queues. When you submit a job to LSF you 
might define which queue the job will enter. If you submit a job without 
specifying a queue name, LSF considers the requirements of the job and 
automatically chooses a suitable queue from a list of candidate default queues. 
If you did not define any candidate default queues, LSF will create a new 
queue using all the default settings, and submit the job to that queue.

Viewing default
queues

Use bparams to display default queues:

% bparams
Default Queues: normal
...

The user can override this list by defining the environment variable 
LSB_DEFAULTQUEUE.

How automatic
queue selection

works

LSF selects a suitable queue according to:

◆ User access restriction—Queues that do not allow this user to submit jobs 
are not considered.

◆ Host restriction—If the job explicitly specifies a list of hosts on which the 
job can be run, then the selected queue must be configured to send jobs 
to all hosts in the list.

◆ Queue status—Closed queues are not considered.

◆ Exclusive execution restriction—If the job requires exclusive execution, 
then queues that are not configured to accept exclusive jobs are not 
considered.

◆ Job’s requested resources—These must be within the resource allocation 
limits of the selected queue.

If multiple queues satisfy the above requirements, then the first queue listed in 
the candidate queues (as defined by the DEFAULT_QUEUE parameter or the 
LSB_DEFAULTQUEUE environment variable) that satisfies the requirements is 
selected.

Job files
When a batch job is submitted to a queue, LSF Batch holds it in a job file until 
conditions are right for it to be executed. Then the job file is used to execute 
the job.

UNIX The job file is a Bourne shell script run at execution time.

Windows The job file is a batch file processed at execution time.
Administering Platform LSF 45



Job Scheduling and Dispatch

46
Job Scheduling and Dispatch
Submitted jobs sit in queues until they are scheduled and dispatched to a host 
for execution. When a job is submitted to LSF, many factors control when and 
where the job starts to run:

◆ Active time window of the queue or hosts

◆ Resource requirements of the job

◆ Availability of eligible hosts

◆ Various job slot limits

◆ Job dependency conditions

◆ Fairshare constraints

◆ Load conditions

Scheduling policies
First-Come, First-

Served (FCFS)
scheduling

By default, jobs in a queue are dispatched in first-come, first-served (FCFS) 
order. This means that jobs are dispatched according to their order in the 
queue. Since jobs are ordered according to job priority, this does not 
necessarily mean that jobs will be dispatched in the order of submission. The 
order of jobs in the queue can also be modified by the user or administrator.

Fairshare
scheduling and

other policies

If a fairshare scheduling policy has been specified for the queue or if host 
partitions have been configured, jobs are dispatched in accordance with these 
policies instead. To solve diverse problems, LSF allows multiple scheduling 
policies in the same cluster. LSF has several queue scheduling policies such as 
exclusive, preemptive, fairshare, and hierarchical fairshare.

Scheduling and dispatch
Jobs are scheduled at regular intervals (5 seconds by default, configured by the 
parameter JOB_SCHEDULING_INTERVAL in lsb.params). Once jobs are 
scheduled, they can be immediately dispatched to hosts.

To prevent overloading any host, LSF waits a short time between dispatching 
jobs to the same host. The delay is configured by the JOB_ACCEPT_INTERVAL 
parameter in lsb.params or lsb.queues; the default is 60 seconds. If 
JOB_ACCEPT_INTERVAL is set to zero, more than one job can be started on a 
host at a time.
Administering Platform LSF



Chapter 2
How the System Works
Dispatch order
Jobs are not necessarily dispatched in order of submission.

Each queue has a priority number set by an LSF Administrator when the queue 
is defined. LSF tries to start jobs from the highest priority queue first.

By default, LSF considers jobs for dispatch in the following order:

◆ For each queue, from highest to lowest priority. If multiple queues have 
the same priority, LSF schedules all the jobs from these queues in first-
come, first-served order.

◆ For each job in the queue, according to FCFS order

◆ If any host is eligible to run this job, start the job on the best eligible host, 
and mark that host ineligible to start any other job until 
JOB_ACCEPT_INTERVAL has passed

Jobs can be dispatched out of turn if pre-execution conditions are not met, 
specific hosts or resources are busy or unavailable, or a user has reached the 
user job slot limit.

Viewing job order
in queue

Use bjobs to see the order in which jobs in a queue will actually be dispatched 
for the FCFS policy.

Changing job
order in queue

(btop and bbot)

Use the btop and bbot commands to change the job order in the queue.

See “Changing Job Order Within Queues” on page 117 for more information.
Administering Platform LSF 47



Host Selection

48
Host Selection
Each time LSF attempts to dispatch a job, it checks to see which hosts are 
eligible to run the job. A number of conditions determine whether a host is 
eligible:

◆ Host dispatch windows

◆ Resource requirements of the job

◆ Resource requirements of the queue

◆ Host list of the queue

◆ Host load levels

◆ Job slot limits of the host.

A host is only eligible to run a job if all the conditions are met. If a job is 
queued and there is an eligible host for that job, the job is placed on that host. 
If more than one host is eligible, the job is started on the best host based on 
both the job and the queue resource requirements.

Host load levels
A host is available if the values of the load indices (such as r1m, pg, mem) of 
the host are within the configured scheduling thresholds. There are two sets of 
scheduling thresholds: host and queue. If any load index on the host exceeds 
the corresponding host threshold or queue threshold, the host is not eligible 
to run any job.

Viewing host load
levels

◆ Use the bhosts -l command to display the host thresholds.

◆ Use the bqueues -l command to display the queue thresholds.

Eligible hosts
When LSF tries to place a job, it obtains current load information for all hosts.

The load levels on each host are compared to the scheduling thresholds 
configured for that host in the Host section of lsb.hosts, as well as the per-
queue scheduling thresholds configured in lsb.queues.

If any load index exceeds either its per-queue or its per-host scheduling 
threshold, no new job is started on that host.

Viewing eligible
hosts

The bjobs -lp command displays the names of hosts that cannot accept a 
job at the moment together with the reasons the job cannot be accepted.

Resource requirements
Resource requirements at the queue level can also be used to specify 
scheduling conditions (for example, r1m<0.4 && pg<3).

A higher priority or earlier batch job is only bypassed if no hosts are available 
that meet the requirements of that job.

If a host is available but is not eligible to run a particular job, LSF looks for a 
later job to start on that host. LSF starts the first job found for which that host 
is eligible.
Administering Platform LSF



Chapter 2
How the System Works
Job Execution Environment
When LSF runs your jobs, it tries to make it as transparent to the user as 
possible. By default, the execution environment is maintained to be as close to 
the submission environment as possible. LSF will copy the environment from 
the submission host to the execution host. The execution environment 
includes the following:

◆ Environment variables needed by the job

◆ Working directory where the job begins running

◆ Other system-dependent environment settings; for example, resource 
usage limits and umask:

Since a network can be heterogeneous, it is often impossible or undesirable to 
reproduce the submission host’s execution environment on the execution host. 
For example, if home directory is not shared between submission and 
execution host, LSF runs the job in the /tmp on the execution host. If the 
DISPLAY environment variable is something like Unix:0.0, or :0.0, then it 
must be processed before using on the execution host. These are automatically 
handled by LSF.

To change the default execution environment, use:

◆ A job starter
◆ bsub -L

For resource control, LSF also changes some of the execution environment of 
jobs. These include nice values, resource usage limits, or any other 
environment by configuring a job starter.

Shared user directories
LSF works best when user home directories are shared across all hosts in the 
cluster. To provide transparent remote execution, you should share user home 
directories on all LSF hosts.

To provide transparent remote execution, LSF commands determine the user’s 
current working directory and use that directory on the remote host.

For example, if the command cc file.c is executed remotely, cc only finds 
the correct file.c if the remote command runs in the same directory.

LSF automatically creates an .lsbatch subdirectory in the user’s home 
directory on the execution host. This directory is used to store temporary input 
and output files for jobs.
Administering Platform LSF 49



Job Execution Environment

50
Executables and the PATH environment variable
Search paths for executables (the PATH environment variable) are passed to 
the remote execution host unchanged. In mixed clusters, LSF works best when 
the user binary directories (for example, /usr/bin, /usr/local/bin) have 
the same path names on different host types. This makes the PATH variable 
valid on all hosts.

LSF configuration files are normally stored in a shared directory. This makes 
administration easier. There is little performance penalty for this, because the 
configuration files are not frequently read.

See “Default Directory Structures” on page 58 for more information on LSF 
installation directories.
Administering Platform LSF



Chapter 2
How the System Works
Fault Tolerance
LSF is designed to continue operating even if some of the hosts in the cluster 
are unavailable. One host in the cluster acts as the master, but if the master 
host becomes unavailable another host takes over. LSF is available as long as 
there is one available host in the cluster.

LSF can tolerate the failure of any host or group of hosts in the cluster. When 
a host crashes, all jobs running on that host are lost. No other pending or 
running jobs are affected. Important jobs can be submitted to LSF with an 
option to automatically restart if the job is lost because of a host failure.

Dynamic master host
The LSF master host is chosen dynamically. If the current master host becomes 
unavailable, another host takes over automatically. The master host selection 
is based on the order in which hosts are listed in the 
lsf.cluster.cluster_name file. If the first host in the file is available, that 
host acts as the master. If the first host is unavailable, the second host takes 
over, and so on. LSF might be unavailable for a few minutes while hosts are 
waiting to be contacted by the new master.

Running jobs are managed by sbatchd on each server host. When the new 
mbatchd starts, it polls the sbatchd on each host and finds the current status 
of its jobs. If sbatchd fails but the host is still running, jobs running on the 
host are not lost. When sbatchd is restarted it regains control of all jobs 
running on the host.

Network failure
If the cluster is partitioned by a network failure, a master LIM takes over on 
each side of the partition. Interactive load-sharing remains available, as long as 
each host still has access to the LSF executables.

Event log file (lsb.events)
Fault tolerance in LSF depends on the event log file, lsb.events, which is 
kept on the primary file server. Every event in the system is logged in this file, 
including all job submissions and job and host state changes. If the master host 
becomes unavailable, a new master is chosen by lim. sbatchd on the new 
master starts a new mbatchd. The new mbatchd reads the lsb.events file to 
recover the state of the system.

For sites not wanting to rely solely on a central file server for recovery 
information, LSF can be configured to maintain a duplicate event log by 
keeping a replica of lsb.events. The replica is stored on the file server, and 
used if the primary copy is unavailable. When using LSF’s duplicate event log 
function, the primary event log is stored on the first master host, and re-
synchronized with the replicated copy when the host recovers.
Administering Platform LSF 51



Fault Tolerance

52
Partitioned network
If the network is partitioned, only one of the partitions can access 
lsb.events, so batch services are only available on one side of the partition. 
A lock file is used to make sure that only one mbatchd is running in the cluster.

Host failure
If an LSF server host fails, jobs running on that host are lost. No other jobs are 
affected. Jobs can be submitted so that they are automatically rerun from the 
beginning or restarted from a checkpoint on another host if they are lost 
because of a host failure.

If all of the hosts in a cluster go down, all running jobs are lost. When a host 
comes back up and takes over as master, it reads the lsb.events file to get 
the state of all batch jobs. Jobs that were running when the systems went down 
are assumed to have exited, and email is sent to the submitting user. Pending 
jobs remain in their queues, and are scheduled as hosts become available.

Job exception handling
You can configure hosts and queues so that LSF detects exceptional conditions 
while jobs are running, and take appropriate action automatically. You can 
customize what exceptions are detected, and the corresponding actions. By 
default, LSF does not detect any exceptions. 

See “Handling Host-level Job Exceptions” on page 96 and “Handling Job 
Exceptions” on page 109 for more information about job-level exception 
management.
Administering Platform LSF



P A R T

I
Managing Your Cluster

Contents ◆ Chapter 3, “Working with Your Cluster”

◆ Chapter 4, “Working with Hosts”

◆ Chapter 5, “Working with Queues”

◆ Chapter 6, “Managing Jobs”

◆ Chapter 7, “Managing Users and User Groups”





C H A P T E R

3
Working with Your Cluster

Contents ◆ “Viewing Cluster Information” on page 56

◆ “Default Directory Structures” on page 58

◆ “Cluster Administrators” on page 61

◆ “Controlling Daemons” on page 62

◆ “Controlling mbatchd” on page 64

◆ “Reconfiguring Your Cluster” on page 65
Administering Platform LSF 55



Viewing Cluster Information

56
Viewing Cluster Information
LSF provides commands for users to get information about the cluster. Cluster 
information includes the cluster master host, cluster name, cluster resource 
definitions, cluster administrator, and so on.

Viewing LSF version, cluster name, and current master host
Use the lsid command to display the version of LSF, the name of your cluster, 
and the current master host:

% lsid
Platform LSF 6.0, Oct 31 2003
Copyright 1992-2004 Platform Computing Corporation

My cluster name is cluster1
My master name is hostA

Viewing cluster administrators
Use the lsclusters command to find out who your cluster administrator is 
and see a summary of your cluster:

% lsclusters
CLUSTER_NAME   STATUS   MASTER_HOST ADMIN HOSTS SERVERS
cluster1 ok hostA lsfadmin 6  6

If you are using the LSF MultiCluster product, you will see one line for each of 
the clusters that your local cluster is connected to in the output of lsclusters. 

To view the ... Run ...

Version of LSF lsid

Cluster name lsid

Current master host lsid

Cluster administrators lsclusters

Configuration parameters bparams
Administering Platform LSF



Chapter 3
Working with Your Cluster
Viewing configuration parameters
Use the bparams command to display the generic configuration parameters of 
LSF. These include default queues, default host or host model for CPU speed 
scaling, job dispatch interval, job checking interval, job accepting interval, etc. 

% bparams
Default Queues: normal idle
Default Host Specification: DECAXP
Job Dispatch Interval: 20 seconds
Job Checking Interval: 15 seconds
Job Accepting Interval: 20 seconds

Use the -l option of bparams to display the information in long format, which 
gives a brief description of each parameter as well as the name of the 
parameter as it appears in lsb.params. 

% bparams -l

System default queues for automatic queue selection:
DEFAULT_QUEUE = normal idle

The interval for dispatching jobs by master batch daemon:
MBD_SLEEP_TIME = 20 (seconds)

The interval for checking jobs by slave batch daemon:
SBD_SLEEP_TIME = 15 (seconds)

The interval for a host to accept two batch jobs subsequently:
JOB_ACCEPT_INTERVAL = 1 (* MBD_SLEEP_TIME)

The idle time of a host for resuming pg suspended jobs:
PG_SUSP_IT = 180 (seconds)

The amount of time during which finished jobs are kept in core:
CLEAN_PERIOD = 3600 (seconds)

The maximum number of finished jobs that are logged in current event file:
MAX_JOB_NUM = 2000

The maximum number of retries for reaching a slave batch daemon:
MAX_SBD_FAIL = 3

The number of hours of resource consumption history:
HIST_HOURS = 5

The default project assigned to jobs.
DEFAULT_PROJECT = default
Administering Platform LSF 57



Default Directory Structures

58
Default Directory Structures

UNIX
The following diagram shows a typical directory structure for a new UNIX 
installation. Depending on which products you have installed and platforms 
you have selected, your directory structure may vary.

version

cluster_name

LSF_TOP

lsbatch

configdir
...

cluster_name

lsf_cmdir

lsf_indir

lsb.event.lock

man aix4 sparc-sol7-64logdir

badmin
bjobs
lsadmin
…

lim
res
sbatchd
…

libetcbin

uid

ckpt_crt0.o
libampi.a
…

locale

make.def
make.misc
…

conf_tmpl

misc

examples

instlib

lsfinstall
hostsetup
...

scripts

install

lsf

lsbatch.h
lsf.h

include

1 2 3 4

5

6

78

9 10 11

7

12

conf work log

lsb.hosts
lsb.params
lsb.queues
…

license.dat
lsf.cluster.cluster_name
lsf.conf
lsf.shared
lsf.task

cshrc.lsf
profile.lsf

info

LSF_CONFDIR = LSF_ENVDIR1

LSB_SHAREDIR2

LSF_LOGDIR3

LSF_VERSION4

LSB_CONFDIR5

LSF_MANDIR6

Machine-dependent directory7

LSF_INCLUDEDIR8

LSF_BINDIR9

LSF_SERVERDIR10

LSF_LIBDIR11

LSF_MISC12

Key

files

directories
Administering Platform LSF



Chapter 3
Working with Your Cluster
Pre-4.2 UNIX installation directory structure
The following diagram shows a cluster installed with lsfsetup. It uses the 
pre-4.2 directory structure.
Administering Platform LSF 59



Default Directory Structures

60
Windows
The following diagram shows the directory structure for a default Windows 
installation.

lsbatch.h
lsf.h

lsf

bin conf examples include

lsf

logdir

cluster_name

lib logs scripts work

badmin
bjobs
lsadmin
�
xbmod
xlsadmin
xlsbatch
�

lsbatch

cluster_name

configdir

lsb.alarms
lsb.calendar
lsb.hosts
lsb.nqsmaps
lsb.params
lsb.queues
lsb.users

license.dat
lsf.cluster.cluster_name
lsf.install
lsf.shared
lsf.task
passwd.lsfuser

directories

files

Key

etc

lsf.conf

lim
res
sbatchd
�

html
Administering Platform LSF



Chapter 3
Working with Your Cluster
Cluster Administrators
Primary cluster

administrator
Required. The first cluster administrator, specified during installation. The 
primary LSF administrator account owns the configuration and log files. The 
primary LSF administrator has permission to perform clusterwide operations, 
change configuration files, reconfigure the cluster, and control jobs submitted 
by all users.

Cluster
administrators

Optional. May be configured during or after installation. 

Cluster administrators can perform administrative operations on all jobs and 
queues in the cluster. Cluster administrators have the same cluster-wide 
operational privileges as the primary LSF administrator except that they do not 
have permission to change LSF configuration files.

Adding cluster administrators
1 In the ClusterAdmins section of lsf.cluster.cluster_name, specify 

the list of cluster administrators following ADMINISTRATORS, separated by 
spaces. The first administrator in the list is the primary LSF administrator. 
All others are cluster administrators. You can specify user names and group 
names. For example:
Begin ClusterAdmins
ADMINISTRATORS = lsfadmin admin1 admin2
End ClusterAdmins

2 Save your changes.

3 Run lsadmin reconfig to reconfigure LIM.

4 Run badmin mbdrestart to restart mbatchd.
Administering Platform LSF 61



Controlling Daemons

62
Controlling Daemons

Prerequisites
To control all daemons in the cluster, you must:

◆ Be logged on as root or a user listed in the /etc/lsf.sudoers file

See the Platform LSF Reference for configuration details of 
lsf.sudoers.

◆ Be able to run the rsh or ssh commands across all LSF hosts without 
having to enter a password.

See your operating system documentation for information about 
configuring the rsh and ssh commands.

The shell command specified by LSF_RSH in lsf.conf is used before rsh 
is tried.

Daemon commands 
The following is an overview of commands you use to control LSF daemons.

Daemon Action Command Permissions

All in cluster Start lsfstartup Must be root or a user listed in 
lsf.sudoers for all these 
commands

Shut down lsfshutdown

sbatchd Start badmin hstartup [host_name ...|all] Must be root or a user listed in 
lsf.sudoers for the startup 
command

Restart badmin hrestart [host_name ...|all] Must be root or the LSF 
administrator for other 
commands.

Shut down badmin hshutdown [host_name ...|all]

mbatchd
mbschd

Restart badmin mbdrestart Must be root or the LSF 
administrator for these 
commands

Shut down 1 badmin hshutdown
2 badmin mbdrestart

Reconfigure badmin reconfig

RES Start lsadmin resstartup [host_name ...|all] Must be root or a user listed in 
lsf.sudoers for the startup 
command

Shut down lsadmin resshutdown [host_name ...|all] Must be the LSF administrator for 
other commandsRestart lsadmin resrestart [host_name ...|all]

LIM Start lsadmin limstartup [host_name ...|all] Must be root or a user listed in 
lsf.sudoers for the startup 
command

Shut down lsadmin limshutdown [host_name ...|all] Must be the LSF administrator for 
other commandsRestart lsadmin limrestart [host_name ...|all]

Restartall
in cluster

lsadmin reconfig 
Administering Platform LSF



Chapter 3
Working with Your Cluster
sbatchd
Restarting sbatchd on a host does not affect jobs that are running on that host.

If sbatchd is shut down, the host is not available to run new jobs. Existing 
jobs running on that host continue, but the results are not sent to the user until 
sbatchd is restarted.

LIM and RES
Jobs running on the host are not affected by restarting the daemons. 

If a daemon is not responding to network connections, lsadmin displays an 
error message with the host name. In this case you must kill and restart the 
daemon manually.

If the LIM on the current master host is shut down, another host automatically 
takes over as master.

If the RES is shut down while remote interactive tasks are running on the host, 
the running tasks continue but no new tasks are accepted.
Administering Platform LSF 63



Controlling mbatchd

64
Controlling mbatchd
When you reconfigure the cluster with the command badmin reconfig, 
mbatchd is not restarted. Only configuration files are reloaded.

If you add a host to a host group, or a host to a queue, the new host is not 
recognized by jobs that were submitted before you reconfigured. If you want 
the new host to be recognized, you must restart mbatchd.

Restarting mbatchd
Run badmin mbdrestart. LSF checks configuration files for errors and prints 
the results to stderr. If no errors are found, the following occurs:

◆ Configuration files are reloaded.

◆ mbatchd is restarted.

◆ Events in lsb.events are reread and replayed to recover the running state 
of the last mbatchd.

Whenever mbatchd is restarted, it is unavailable to service requests. In large 
clusters where there are many events in lsb.events, restarting mbatchd can 
take some time. To avoid replaying events in lsb.events, use the command 
badmin reconfig. 

Logging a comment when restarting mbatchd
Use the -C option of badmin mbdrestart to log an administrator comment in 
lsb.events. For example,

% badmin mbdrestart -C "Configuration change"

The comment text Configuration change is recorded in lsb.events.

Use badmin hist or badmin mbdhist to display administrator comments for 
mbatchd restart.

Shutting down mbatchd
1 Run badmin hshutdown to shut down sbatchd on the master host. For 

example:
% badmin hshutdown hostD
Shut down slave batch daemon on <hostD> .... done

2 Run badmin mbdrestart:
% badmin mbdrestart
Checking configuration files ...
No errors found.

This causes mbatchd and mbschd to exit. mbatchd cannot be restarted, 
because sbatchd is shut down. All LSF services are temporarily 
unavailable, but existing jobs are not affected. When mbatchd is later 
started by sbatchd, its previous status is restored from the event log file 
and job scheduling continues.
Administering Platform LSF



Chapter 3
Working with Your Cluster
Reconfiguring Your Cluster
After changing LSF configuration files, you must tell LSF to reread the files to 
update the configuration. The commands you can use to reconfigure a cluster 
are:

◆ lsadmin reconfig
◆ badmin reconfig
◆ badmin mbdrestart

The reconfiguration commands you use depend on which files you change in 
LSF. The following table is a quick reference.

Reconfiguring the cluster with lsadmin and badmin
1 Log on to the host as root or the LSF administrator.

2 Run lsadmin reconfig to reconfigure LIM:
% lsadmin reconfig
Checking configuration files ...
No errors found.

Do you really want to restart LIMs on all hosts? [y/n] y
Restart LIM on <hosta> ...... done
Restart LIM on <hostc> ...... done
Restart LIM on <hostd> ...... done

The lsadmin reconfig command checks for configuration errors.

If no errors are found, you are asked to confirm that you want to restart 
lim on all hosts and lim is reconfigured. If fatal errors are found, 
reconfiguration is aborted.

After making changes to ... Use ... Which ...

hosts badmin reconfig reloads configuration files

lsb.hosts badmin reconfig reloads configuration files

lsb.modules badmin reconfig reloads configuration files

lsb.nqsmaps badmin reconfig reloads configuration files

lsb.params badmin reconfig reloads configuration files

lsb.queues badmin reconfig reloads configuration files

lsb.resources badmin reconfig reloads configuration files

lsb.users badmin reconfig reloads configuration files

lsf.cluster.cluster_name lsadmin reconfig AND 
badmin mbdrestart 

reconfigures LIM, reloads configuration 
files, and restarts mbatchd

lsf.conf lsadmin reconfig AND 
badmin mbdrestart 

reconfigures LIM and reloads 
configuration files, and restarts 
mbatchd

lsf.shared lsadmin reconfig AND 
badmin mbdrestart 

reconfigures LIM, reloads configuration 
files, and restarts mbatchd

lsf.sudoers badmin reconfig reloads configuration files

lsf.task lsadmin reconfig AND 
badmin reconfig 

reconfigures LIM and reloads 
configuration files
Administering Platform LSF 65



Reconfiguring Your Cluster

66
3 Run badmin reconfig to reconfigure mbatchd:
% badmin reconfig
Checking configuration files ...
No errors found.
Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command checks for configuration errors. 

If no fatal errors are found, you are asked to confirm reconfiguration. If 
fatal errors are found, reconfiguration is aborted.

Reconfiguring the cluster by restarting mbatchd
Run badmin mbdrestart to restart mbatchd:

% badmin mbdrestart
Checking configuration files ...
No errors found.
Do you want to restart? [y/n] y
MBD restart initiated

The badmin mbdrestart command checks for configuration errors. 

If no fatal errors are found, you are asked to confirm mbatchd restart. If fatal 
errors are found, the command exits without taking any action.

If the lsb.events file is large, or many jobs are running, restarting mbatchd can 
take some time. In addition, mbatchd is not available to service requests while it is 
restarted.

Viewing configuration errors
You can view configuration errors by using the following commands:

◆ lsadmin ckconfig -v
◆ badmin ckconfig -v

This reports all errors to your terminal.

How reconfiguring the cluster affects licenses
If the license server goes down, LSF can continue to operate for a period of 
time until it attempts to renew licenses.

Reconfiguring causes LSF to renew licenses. If no license server is available, 
LSF will not reconfigure the system because the system would lose all its 
licenses and stop working.

If you have multiple license servers, reconfiguration will proceed as long as 
LSF can contact at least one license server. In this case, LSF will still lose the 
licenses on servers that are down, so LSF may have fewer licenses available 
after reconfiguration.
Administering Platform LSF



C H A P T E R

4
Working with Hosts

Contents ◆ “Host States” on page 68

◆ “Viewing Host Information” on page 70

◆ “Controlling Hosts” on page 74

◆ “Adding a Host” on page 76

◆ “Removing a Host” on page 78

◆ “Adding and Removing Hosts Dynamically” on page 79

◆ “Adding Host Types and Host Models to lsf.shared” on page 84

◆ “Registering Service Ports” on page 85

◆ “Host Naming” on page 88

◆ “Hosts with Multiple Addresses” on page 89

◆ “Host Groups” on page 92

◆ “Tuning CPU Factors” on page 94

◆ “Handling Host-level Job Exceptions” on page 96
Administering Platform LSF 67



Host States

68
Host States
Host states describe the ability of a host to accept and run batch jobs in terms 
of daemon states, load levels, and administrative controls. The bhosts and 
lsload commands display host states.

bhosts
Displays the current state of the host:

bhosts -l Displays the closed reasons. A closed host will not accept new batch jobs:

% bhosts
HOST_NAME          STATUS       JL/U    MAX  NJOBS    RUN  SSUSP  USUSP    RSV 
hostA ok -     55      2      2      0      0      0
hostB closed -     20     16     16      0      0      0
...

STATUS Description

ok Host is available to accept and run new batch jobs.

unavail Host is down, or LIM and sbatchd are unreachable.

unreach LIM is running but sbatchd is unreachable.

closed Host will not accept new jobs. Use bhosts -l to display the reasons.

unlicensed Host does not have a valid license.

STATUS Description

closed_Adm An LSF administrator or root explicitly closed the host using badmin 
hclose. Running jobs are not affected.

closed_Busy The value of a load index exceeded a threshold (configured in 
lsb.hosts, displayed by bhosts -l). Running jobs are not affected. 
Indices that exceed thresholds are identified with an asterisk (*).

closed_Excl An exclusive batch job (i.e., bsub -x) is running on the host.

closed_Full The configured maximum number of running jobs has been 
reached. Running jobs will not be affected.

closed_LIM sbatchd is running but LIM is unavailable.

closed_Lock An LSF administrator or root explicitly locked the host using 
lsadmin limlock. Running jobs are suspended (SSUSP).

closed_Wind Host is closed by a dispatch window defined in lsb.hosts. Running 
jobs are not affected.
Administering Platform LSF



Chapter 4
Working with Hosts
% bhosts -l hostB
HOST  hostB
STATUS           CPUF  JL/U    MAX  NJOBS    RUN  SSUSP  USUSP    RSV 
DISPATCH_WINDOW
closed_Adm      23.10     -     55      2      2      0      0      0      -
CURRENT LOAD USED FOR SCHEDULING:

r15s   r1m  r15m    ut    pg    io   ls    it   tmp   swp   mem
Total         1.0  -0.0  -0.0    4%   9.4   148    2     3 4231M  698M  233M
Reserved      0.0   0.0   0.0    0%   0.0     0    0     0    0M    0M    0M
LOAD THRESHOLD USED FOR SCHEDULING:

r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
loadSched   -     -     -     -       -     -    -     -     -      -      -  
loadStop    -     -     -     -       -     -    -     -     -      -      - 

lsload
Displays the current state of the host:

$ lsload
HOST_NAME       status  r15s   r1m  r15m   ut    pg  ls    it   tmp   swp   mem
hostA ok   0.0   0.0   0.0   4%   0.4   0  4316   10G  302M  252M
hostB ok   1.0   0.0   0.0   4%   8.2   2    14 4231M  698M  232M
...

Status Description

ok Host is available to accept and run batch jobs and remote tasks.

-ok LIM is running but RES is unreachable.

busy Does not affect batch jobs, only used for remote task placement 
(i.e., lsrun). The value of a load index exceeded a threshold 
(configured in lsf.cluster.cluster_name, displayed by lshosts -l). 
Indices that exceed thresholds are identified with an asterisk (*).

lockW Does not affect batch jobs, only used for remote task placement 
(i.e., lsrun). Host is locked by a run window (configured in 
lsf.cluster.cluster_name, displayed by lshosts -l).

lockU Will not accept new batch jobs or remote tasks. An LSF 
administrator or root explicitly locked the host (i.e., lsadmin 
limlock) or an exclusive batch job (i.e., bsub -x) is running on the 
host. Running jobs are not affected.

unavail Host is down, or LIM is unavailable.

unlicensed The host does not have a valid license.
Administering Platform LSF 69



Viewing Host Information

70
Viewing Host Information
LSF uses some or all of the hosts in a cluster as execution hosts. The host list 
is configured by the LSF administrator. Use the bhosts command to view host 
information. Use the lsload command to view host load information.

Viewing all hosts in the cluster and their status
Run bhosts to display information about all hosts and their status. For 
example:

% bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP

RSV
hostA ok 2 2 0 0 0 0

0
hostD ok 2 4 2 1 0 0

1
hostB ok 1 2 2 1 0 1

0

Viewing detailed server host information
Run bhosts -l host_name and lshosts -l host_name to display all 
information about each server host such as the CPU factor and the load 
thresholds to start, suspend, and resume jobs. For example:

% bhosts -l hostB
HOST  hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDO
WS
ok 20.20 - - 0 0 0 0 0 -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
Total 0.1 0.1 0.1 9% 0.7 24 17 0 394M 396M 12M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M
LOAD THRESHOLD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

To view... Run...

All hosts in the cluster and their status bhosts

Detailed server host information bhosts -l and lshosts -l

Host load by host lsload

Host architecture information lshosts

Host history badmin hhist

Host model and type information lsinfo

Viewing job exit rate and load for hosts bhosts -l and bhosts -x
Administering Platform LSF



Chapter 4
Working with Hosts
% lshosts -l hostB
HOST_NAME:  hostB
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri serve
r
Sun4 Ultra2 20.2 2 1 256M 710M 466M 0 Ye
s

RESOURCES: Not defined
RUN_WINDOWS:  (always open)

LICENSES_ENABLED: (LSF_Base LSF_Manager LSF_MultiCluster LSF_Make LSF_Parallel)

LOAD_THRESHOLDS:
r15s r1m r15m ut pg io ls it tmp swp mem

- 1.0 - - - - - - - - 4M

Viewing host load by host
The lsload command reports the current status and load levels of hosts in a 
cluster. The lshosts -l command shows the load thresholds. 

The lsmon command provides a dynamic display of the load information. The 
LSF administrator can find unavailable or overloaded hosts with these tools.

Run lsload to see load levels for each host. For example:

% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 88M
hostB -ok 0.1 0.3 0.7 0% 0.0 1 67 45M 25M 34M
hostA busy 8.0 *7.0 4.9 84% 4.6 6 17 1M 81M 27M

The first line lists the load index names, and each following line gives the load 
levels for one host.

Viewing host architecture information
An LSF cluster may consist of hosts of differing architectures and speeds. The 
lshosts command displays configuration information about hosts. All these 
parameters are defined by the LSF administrator in the LSF configuration files, 
or determined by the LIM directly from the system.

Host types represent binary compatible hosts; all hosts of the same type can 
run the same executable. Host models give the relative CPU performance of 
different processors. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostD SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)
hostB ALPHA DEC3000 10.0 1 94M 168M Yes (alpha cserver)
hostM RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)
hostC SGI6 R10K 14.0 16 1024M 1896M Yes (irix cserver)
hostA HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

In the above example, the host type SUNSOL represents Sun SPARC systems 
running Solaris, and SGI6 represents an SGI server running IRIX 6. The 
lshosts command also displays the resources available on each host. 
Administering Platform LSF 71



Viewing Host Information

72
type The host CPU architecture. Hosts that can run the same binary programs 
should have the same type.

An UNKNOWN type or model indicates the host is down, or LIM on the host is 
down. See “UNKNOWN host type or model” on page 532 for instructions on 
measures to take.

When automatic detection of host type or model fails, the type or model is set 
to DEFAULT. LSF will work on the host. A DEFAULT model may be inefficient 
because of incorrect CPU factors. A DEFAULT type may cause binary 
incompatibility because a job from a DEFAULT host type can be migrated to 
another DEFAULT host type. 

Viewing host history
Run badmin hhist to view the history of a host such as when it is opened or 
closed. For example:

% badmin hhist hostB
Wed Nov 20 14:41:58: Host <hostB> closed by administrator 
<lsf>.
Wed Nov 20 15:23:39: Host <hostB> opened by administrator 
<lsf>.

Viewing host model and type information
Run lsinfo -m to display information about host models that exist in the 
cluster:

% lsinfo -m
MODEL_NAME      CPU_FACTOR      ARCHITECTURE
PC1133               23.10      x6_1189_PentiumIIICoppermine
HP9K735               4.50      HP9000735_125
HP9K778               5.50      HP9000778
Ultra5S              10.30      SUNWUltra510_270_sparcv9
Ultra2               20.20      SUNWUltra2_300_sparc
Enterprise3000       20.00      SUNWUltraEnterprise_167_sparc

Run lsinfo -M to display all host models defined in lsf.shared:

% lsinfo -M
MODEL_NAME      CPU_FACTOR      ARCHITECTURE
UNKNOWN_AUTO_DETECT      1.00      UNKNOWN_AUTO_DETECT
DEFAULT               1.00      
LINUX133              2.50      x586_53_Pentium75
PC200                 4.50      i86pc_200
Intel_IA64           12.00      ia64
Ultra5S              10.30      SUNWUltra5_270_sparcv9
PowerPC_G4           12.00      x7400G4
HP300                 1.00      
SunSparc             12.00 

Run lim -t to display the model of the current host. You must be the LSF 
administrator to use this command:
Administering Platform LSF



Chapter 4
Working with Hosts
% lim -t
Host Type             : SOL732
Host Architecture     : SUNWUltra2_200_sparcv9
Matched Type          : SOL732
Matched Architecture  : SUNWUltra2_300_sparc
Matched Model         : Ultra2
CPU Factor            : 20.2

Viewing job exit rate and load for hosts
Use bhosts to display the exception threshold for job exit rate and the current 
load value for hosts. For example, EXIT_RATE for hostA is configured as 4 jobs 
per minute. hostA does not currently exceed this rate:

% bhosts -l hostA
HOST  hostA
STATUS           CPUF  JL/U    MAX  NJOBS    RUN  SSUSP  USUSP    RSV 
DISPATCH_WINDOW
ok              18.60     -      1      0      0      0      0      0      -

 CURRENT LOAD USED FOR SCHEDULING:
              r15s   r1m  r15m    ut    pg    io   ls    it   tmp   swp   mem
 Total         0.0   0.0   0.0    0%   0.0     0    1     2  646M  648M  115M
 Reserved      0.0   0.0   0.0    0%   0.0     0    0     0    0M    0M    0M

             share_rsrc host_rsrc
 Total              3.0       2.0
 Reserved           0.0       0.0

 LOAD THRESHOLD USED FOR SCHEDULING:
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  

 THRESHOLD AND LOAD USED FOR EXCEPTIONS:
            JOB_EXIT_RATE
 Threshold    4.00
 Load         0.00

Use bhosts -x to see hosts whose job exit rate has exceeded the threshold 
for longer than JOB_EXIT_RATE_DURATION, and are still high. By default, 
these hosts will be closed the next time LSF checks host exceptions and 
invokes eadmin.

If no hosts exceed the job exit rate, bhosts -x displays:
There is no exceptional host found
Administering Platform LSF 73



Controlling Hosts

74
Controlling Hosts
Hosts are opened and closed by an LSF Administrator or root issuing a 
command or through configured dispatch windows.

Closing a host
Run badmin hclose:

% badmin hclose hostB
Close <hostB> ...... done

If the command fails, it may be because the host is unreachable through 
network problems, or because the daemons on the host are not running.

Opening a host
Run badmin hopen:

% badmin hopen hostB
Open <hostB> ...... done

Dispatch Windows
A dispatch window specifies one or more time periods during which a host 
will receive new jobs. The host will not receive jobs outside of the configured 
windows. Dispatch windows do not affect job submission and running jobs 
(they are allowed to run until completion). By default, dispatch windows are 
not configured.

To configure dispatch windows:

1 Edit lsb.hosts.

2 Specify on or more time windows in the DISPATCH_WINDOW column. 
For example:
Begin Host
HOST_NAME     r1m      pg    ls     tmp    DISPATCH_WINDOW
...
hostB 3.5/4.5  15/   12/15  0 (4:30-12:00)
...
End Host

3 Reconfigure the cluster:

a Run lsadmin reconfig to reconfigure LIM.

b Run badmin reconfig to reconfigure mbatchd.

4 Run bhosts -l to display the dispatch windows. 

Logging a comment when closing or opening a host
Use the -C option of badmin hclose and badmin hopen to log an 
administrator comment in lsb.events. For example,

% badmin hclose -C "Weekly backup" hostB

The comment text Weekly backup is recorded in lsb.events. If you close or 
open a host group, each host group member displays with the same comment 
string.
Administering Platform LSF



Chapter 4
Working with Hosts
A new event record is recorded for each host open or host close event. For 
example:

% badmin hclose -C "backup" hostA

followed by

% badmin hclose -C "Weekly backup" hostA

will generate records in lsb.events:

"HOST_CTRL" "6.0 1050082346 1 "hostA" 32185 "lsfadmin" "backup"
"HOST_CTRL" "6.0 1050082373 1 "hostA" 32185 "lsfadmin" "Weekly backup"

Use badmin hist or badmin hhist to display administrator comments for 
closing and opening hosts. For example:

% badmin hhist
Fri Apr  4 10:35:31: Host <hostB> closed by administrator 
<lsfadmin> Weekly backup.

bhosts -l also displays the comment text:

% bhosts -l

HOST  hostA
STATUS     CPUF  JL/U    MAX  NJOBS    RUN  SSUSP  USUSP    RSV DISPATCH_WINDOW
closed_Adm 1.00     -      -      0      0      0      0      0      -

 CURRENT LOAD USED FOR SCHEDULING:
              r15s   r1m  r15m    ut    pg    io   ls    it   tmp   swp   mem
 Total         0.0   0.0   0.0    2%   0.0    64    2    11 7117M  512M  432M
 Reserved      0.0   0.0   0.0    0%   0.0     0    0     0    0M    0M    0M

 LOAD THRESHOLD USED FOR SCHEDULING:
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -
 loadStop    -     -     -     -       -     -    -     -     -      -      -

 THRESHOLD AND LOAD USED FOR EXCEPTIONS:
            JOB_EXIT_RATE
 Threshold    2.00
 Load         0.00
 ADMIN ACTION COMMENT: "Weekly backup"

How events are displayed and recorded in MultiCluster lease model
In the MultiCluster resource lease model, host control administrator comments 
are recorded only in the lsb.events file on the local cluster. badmin hist 
and badmin hhist display only events that are recorded locally. Host control 
messages are not passed between clusters in the MultiCluster lease model. For 
example. if you close an exported host in both the consumer and the provider 
cluster, the host close events are recorded separately in their local 
lsb.events.
Administering Platform LSF 75



Adding a Host

76
Adding a Host
Use lsfinstall to add a host to an LSF cluster.

Contents ◆ “Adding a host of an existing type using lsfinstall” on page 76

◆ “Adding a host of a new type using lsfinstall” on page 77

See the Platform LSF Reference for more information about lsfinstall.

Adding a host of an existing type using lsfinstall
Compatibility

notice
lsfinstall is not compatible with clusters installed with lsfsetup. To add a 
host to a cluster originally installed with lsfsetup, you must upgrade your 
cluster. 

1 Verify that the host type already exists in your cluster:

a Log on to any host in the cluster. You do not need to be root.

b List the contents of the LSF_TOP/6.0 directory. The default is 
/usr/share/lsf/6.0. If the host type currently exists, there will be a 
subdirectory with the name of the host type. If it does not exist, go to 
“Adding a host of a new type using lsfinstall” on page 77.

2 Add the host information to lsf.cluster.cluster_name:

a Log on to the LSF master host as root.

b Edit LSF_CONFDIR/lsf.cluster.cluster_name, and specify the 
following in the Host section: 

i The name of the host.

ii The model and type, or specify ! to automatically detect the type or 
model.

iii Specify 1 for LSF server or 0 for LSF client. For example:
Begin Host
HOSTNAME model type server r1m mem RESOURCES REXPRI
hosta ! SUNSOL6 1 1.0 4 () 0
hostb ! SUNSOL6 0 1.0 4 () 0
hostc ! HPPA1132 1 1.0 4 () 0
hostd ! HPPA1164 1 1.0 4 () 0
End Host

c Save your changes.

3 Run lsadmin reconfig to reconfigure LIM. 

4 Run badmin mbdrestart to restart mbatchd.

5 Run hostsetup to set up the new host and configure the daemons to start 
automatically at boot from /usr/share/lsf/6.0/install:
# ./hostsetup --top="/usr/share/lsf" --boot="y"

6 Start LSF on the new host:
# lsadmin limstartup
# lsadmin resstartup
# badmin hstartup

7 Run bhosts and lshosts to verify your changes.
Administering Platform LSF



Chapter 4
Working with Hosts
❖ If any host type or host model is UNKNOWN, follow the steps in 
“UNKNOWN host type or model” on page 532 to fix the problem.

❖ If any host type or host model is DEFAULT, follow the steps in 
“DEFAULT host type or model” on page 532 to fix the problem.

Adding a host of a new type using lsfinstall
Compatibility

Notice
lsfinstall is not compatible with clusters installed with lsfsetup. To add a 
host to a cluster originally installed with lsfsetup, you must upgrade your 
cluster. 

1 Verify that the host type does not already exist in your cluster:

a Log on to any host in the cluster. You do not need to be root.

b List the contents of the LSF_TOP/6.0 directory. The default is 
/usr/share/lsf/6.0. If the host type currently exists, there will be a 
subdirectory with the name of the host type. If the host type already 
exists, go to “Adding a host of an existing type using lsfinstall” on 
page 76.

2 Get the LSF distribution tar file for the host type you want to add. 

3 Log on as root to any host that can access the LSF install directory.

4 Change to the LSF install directory. The default is
/usr/share/lsf/6.0/install

5 Edit install.config:

a For LSF_TARDIR, specify the path to the tar file. For example:
LSF_TARDIR="/usr/share/lsf_distrib/6.0"

b For LSF_ADD_SERVERS, list the new host names enclosed in quotes 
and separated by spaces. For example:
LSF_ADD_SERVERS="hosta hostb"

c Run ./lsfinstall -f install.config. This automatically creates 
the host information in lsf.cluster.cluster_name.

6 Run lsadmin reconfig to reconfigure LIM. 

7 Run badmin reconfig to reconfigure mbatchd.

8 Run hostsetup to set up the new host and configure the daemons to start 
automatically at boot from /usr/share/lsf/6.0/install:
# ./hostsetup --top="/usr/share/lsf" --boot="y"

9 Start LSF on the new host:
# lsadmin limstartup
# lsadmin resstartup
# badmin hstartup

10 Run bhosts and lshosts to verify your changes.

❖ If any host type or host model is UNKNOWN, follow the steps in 
“UNKNOWN host type or model” on page 532 to fix the problem.

❖ If any host type or host model is DEFAULT, follow the steps in 
“DEFAULT host type or model” on page 532 to fix the problem.
Administering Platform LSF 77



Removing a Host

78
Removing a Host 
Removing a host from LSF involves preventing any additional jobs from 
running on the host, removing the host from LSF, and removing the host from 
the cluster.

CAUTION Never remove the master host from LSF. If you want to remove your current 
default master from LSF, change lsf.cluster.cluster_name to assign a 
different default master host. Then remove the host that was once the 
master host.

1 Log on to the LSF host as root.

2 Run badmin hclose to close the host. This prevents jobs from being 
dispatched to the host and allows running jobs to finish. 

3 When all dispatched jobs are finished, run lsfshutdown to stop the LSF 
daemons.

4 Remove any references to the host in the Host section of 
LSF_CONFDIR/lsf.cluster.cluster_name. 

5 Remove any other references to the host, if applicable, from the following 
LSF configuration files: 
❖ LSF_CONFDIR/lsf.shared
❖ LSB_CONFDIR/lsb.hosts

❖ LSB_CONFDIR/lsb.queues 

6 Log off the host to be removed, and log on as root or the primary LSF 
administrator to any other host in the cluster.

7 Run lsadmin reconfig to reconfigure LIM.

8 Run badmin mbdrestart to restart mbatchd.

9 If you configured LSF daemons to start automatically at system startup, 
remove the LSF section from the host’s system startup files.

10 If any users of the host use lstcsh as their login shell, change their login 
shell to tcsh or csh. Remove lstcsh from the /etc/shells file.
Administering Platform LSF



Chapter 4
Working with Hosts
Adding and Removing Hosts Dynamically
By default, all configuration changes made to LSF are static. You must manually 
change the configuration and restart the cluster (or at least all master 
candidates). Dynamic host configuration allows you to add hosts to the cluster 
or remove them without manually changing the configuration.

WARNING When the dynamic host configuration is enabled, any host will be able to 
join the cluster. You can limit which hosts can be LSF hosts with the 
parameter LSF_HOST_ADDR_RANGE in lsf.cluster.cluster_name. 

How dynamic host configuration works
Master LIM For dynamic host configuration, the master LIM: 

◆ Receives request to add hosts

◆ Informs other master candidates to refresh themselves when a host is 
added or removed

◆ Detects host unavailability and, if LSF_DYNAMIC_HOST_TIMEOUT is 
defined, removes unavailable hosts that are not master candidates

Master candidate LIMs (LSF_MASTER_LIST)

To enable dynamic host configuration, you must define LSF_MASTER_LIST in 
lsf.conf. Specify a list of hosts that are candidates to become the master 
host for the cluster. 

This set of hosts reads the LSF configuration files when a new host is added to 
the cluster; other hosts (slave hosts) only receive the host configuration from 
master LIM. LSF_MASTER_LIST also identifies the hosts that need to be 
reconfigured after configuration change.

Master candidate hosts are informed when a new host is added. When a master 
candidate becomes master host, its LIM receives requests from dynamic hosts 
to add them to the cluster.

Master candidate hosts should share LSF configuration and binaries.

Slave LIMs Dynamically added LSF hosts that will not be master candidates are slave 
hosts. Each dynamic slave host has its own LSF binaries and local lsf.conf 
and shell environment scripts (cshrc.lsf and profile.lsf). You must 
install LSF on each slave host.

If LSF_STRICT_CHECKING is defined in lsf.conf to protect your cluster in 
untrusted environments, and your cluster has slave hosts that are 
dynamically added, LSF_STRICT_CHECKING must be configured in the local 
lsf.conf on all slave hosts.

Slave LIMs report their availability to the master LIM when they start. When 
each slave host starts, it first contacts the master LIM to add itself to the cluster. 
The master host adds the host if it is not in its host table, or returns ok if the 
host has already been added.
Administering Platform LSF 79



Adding and Removing Hosts Dynamically

80
Local resources
for slave hosts

Use LSF_LOCAL_RESOURCES in a localized lsf.conf to define instances of 
local resources residing on the slave host:

◆ For numeric resources, defined name-value pairs:
[resourcemap value*resource_name]

◆ For Boolean resources, the value will be the resource name in the form:
[resource resource_name]

When the slave host calls the master host to add itself, it also reports its local 
resources. The local resources to be added must be defined in lsf.shared.

If the same resource is already defined in lsf.cluster.cluster_name as 
default or all, it cannot be added as a local resource. The shared resource 
overrides the local one.

Resources must already be mapped to hosts in the ResourceMap section of 
lsf.cluster.cluster_name. If the ResourceMap section does not exist, local 
resources are not added.

LSF_LOCAL_RESOURCES is usually set in the slave.config file during installation. 
If LSF_LOCAL_RESOURCES are already defined in a local lsf.conf on the slave host, 
lsfinstall does not add resources you define in LSF_LOCAL_RESOURCES in 
slave.config. You should not have duplicate LSF_LOCAL_RESOURCES entries in 
lsf.conf. If local resources are defined more than once, only the last definition is valid.

lsadmin command The lsadmin command is now able to run on a non-LSF host. Use 
lsadmin limstartup to start LIM on a newly added dynamic host.

Master failover If the master LIM dies, the next master candidate will have the same knowledge 
as the master LIM about dynamically added hosts in the cluster.

mbatchd mbatchd gets host information from master LIM; when it detects that a host has 
been added or removed dynamically, mbatchd automatically reconfigures 
itself.

After adding a batch host dynamically, you may have to wait a few moments for 
mbatchd to detect the host and reconfigure. Depending on system load, mbatchd 
may wait up to a maximum of 10 minutes before reconfiguring.

Host configuration in lsb.hosts and lsb.queues
For host configuration in lsb.hosts and lsb.queues to apply to dynamically 
added hosts, use default or all, as appropriate, to enable configuration to 
apply to all hosts in the cluster.
Administering Platform LSF



Chapter 4
Working with Hosts
Adding dynamic hosts in a shared file system
If the new dynamically added hosts share the same set of configuration and 
binary files with normal hosts, you only need to start the LSF daemons on that 
host and the host is recognized by the master as an LSF host.

New installation 1 Specify the installation options in install.config.

The following parameters are required:

❖ LSF_TOP="/path"

❖ LSF_ADMINS="user_name [user_name ...]"

❖ LSF_CLUSTER_NAME="cluster_name"

❖ LSF_MASTER_LIST="host_name [host_name ...]" 

List the hosts that are candidates to become the master host for the 
cluster.

2 Use lsfinstall -f install.config to install LSF. 

Existing
installation

1 On the master host, configure the following parameters:

❖ lsf.conf:

✧ LSF_MASTER_LIST="host_name [host_name ...]" 

List the hosts that are candidates to become the master host for the 
cluster.

✧ LSF_DYNAMIC_HOST_TIMEOUT=timeout[m | M] (optional)

Set an optional timeout value in hours or minutes. If the dynamic 
host is unavailable for longer than the time specified, it is removed 
from the cluster. To specify a value in minutes, append “m” or “M” 
to the timeout value.

❖ lsf.cluster.cluster_name (optional)

✧ LSF_HOST_ADDR_RANGE=IP_address ...

2 Log on as root to each host you want to join a cluster.

3 Use one of the following to set the LSF environment:

❖ For csh or tcsh:
% source LSF_TOP/conf/cshrc.lsf

❖ For sh, ksh, or bash:
$ . LSF_TOP/conf/profile.lsf

4 Optionally, run hostsetup on each LSF server host. 

You only need to run hostsetup if you want LSF to automatically start 
when the host is rebooted. For example:

# cd /usr/share/lsf/5.1/install
# ./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

5 Use the following commands start LSF:
# lsadmin limstartup
# lsadmin resstartup
# badmin hstartup
Administering Platform LSF 81



Adding and Removing Hosts Dynamically

82
Adding dynamic hosts in a non-shared file system (slave hosts)
If each dynamic slave host has its own LSF binaries and local lsf.conf and 
shell environment scripts (cshrc.lsf and profile.lsf), you must install LSF 
on each slave host.

1 Specify installation options in the slave.config file. 

The following parameters are required:

❖ LSF_SERVER_HOSTS="host_name [host_name ...]"

❖ LSF_TARDIR="/path"

❖ LSF_TOP="/path"

The following parameters are optional:

❖ LSF_LIM_PORT=port_number 

If the master host does not use the default LSF_LIM_PORT, you must 
specify the same LSF_LIM_PORT defined in lsf.conf on the master 
host.

❖ LSF_LOCAL_RESOURCES=resource ...

Defines the local resources for a dynamic host.

✧ For numeric resources, defined name-value pairs:
[resourcemap value*resource_name]

✧ For Boolean resources, the value will be the resource name in the 
form:
[resource resource_name]

For example:

LSF_LOCAL_RESOURCES=[resourcemap 1*verilog] [resource 
linux]

If LSF_LOCAL_RESOURCES are already defined in a local lsf.conf on the slave 
host, lsfinstall does not add resources you define in LSF_LOCAL_RESOURCES 
in slave.config.

2 Use lsfinstall -s -f slave.config to install a dynamic slave host.

lsfinstall creates a local lsf.conf for the slave host, which sets the 
following parameters: 

❖ LSF_CONFDIR="/path"

❖ LSF_GET_CONF=lim

❖ LSF_LIM_PORT=port_number (same as the Master LIM port number)

❖ LSF_LOCAL_RESOURCES=resource ...

❖ LSF_SERVER_HOSTS="host_name [host_name ...]"

❖ LSF_VERSION=6.0

3 Use one of the following to set the LSF environment:

❖ For csh or tcsh:
% source LSF_TOP/conf/cshrc.lsf

❖ For sh, ksh, or bash:
$ . LSF_TOP/conf/profile.lsf
Administering Platform LSF



Chapter 4
Working with Hosts
4 Optionally, run hostsetup on each LSF server host. 

You only need to run hostsetup if you want LSF to automatically start 
when the host is rebooted. For example:

# cd /usr/local/lsf/5.1/install
# ./hostsetup --top="/usr/local/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

5 Use the following commands start LSF:
# lsadmin limstartup
# lsadmin resstartup
# badmin hstartup

Limitation The first time a non-shared slave host joins the cluster, daemons on the new 
host can only be started on local host. For example, the LSF administrator 
cannot start daemons on hostB from hostA by using lsadmin limstartup 
hostB. Instead, the first time the host joins the cluster, use:

# rsh hostB lsadmin limstartup

Allowing only certain hosts to join the cluster
By default, any host can be dynamically added to the cluster. To avoid having 
unauthorized hosts join the cluster, you can optionally use 
LSF_HOST_ADDR_RANGE in lsf.cluster.cluster_name to identify a 
range of IP addresses to identify hosts that are allowed to be dynamically 
added as LSF hosts. 

LSF_HOST_ADDR_RANGE (lsf.cluster.cluster_name)
If a value is defined for LSF_HOST_ADDR_RANGE, security for dynamically 
adding and removing hosts is enabled, and only hosts with IP addresses within 
the specified range can be added to or removed from a cluster dynamically.

Automatic removal of dynamically added hosts
By default, dynamically added hosts remain in the cluster permanently. 
Optionally, you can use LSF_DYNAMIC_HOST_TIMEOUT in lsf.conf to set 
an optional timeout value in hours or minutes.

LSF_DYNAMIC_HOST_TIMEOUT (lsf.conf)
If LSF_DYNAMIC_HOST_TIMEOUT is defined and a host is not a master 
candidate, when the host is unavailable for longer than the value specified, it 
is removed from the cluster.
Administering Platform LSF 83



Adding Host Types and Host Models to lsf.shared

84
Adding Host Types and Host Models to lsf.shared
The lsf.shared file contains a list of host type and host model names for 
most operating systems. You can add to this list or customize the host type and 
host model names. A host type and host model name can be any alphanumeric 
string up to 29 characters long.

Adding a custom host type or model
1 Log on as the LSF administrator on any host in the cluster.

2 Edit lsf.shared:

a For a new host type, modify the HostType section:
Begin HostType
TYPENAME # Keyword
DEFAULT 
CRAYJ
CRAYC
CRAYT
DigitalUNIX
HPPA
IBMAIX4
SGI6
SUNSOL
SONY
WIN95
End HostType

b For a new host model, modify the HostModel section:

Add the new model and its CPU speed factor relative to other models. 
For more details on tuning CPU factors, see “Tuning CPU Factors” on 
page 94.

Begin HostModel
MODELNAME  CPUFACTOR   ARCHITECTURE # keyword
# x86 (Solaris, NT, Linux): approximate values, based on SpecBench results
# for Intel processors (Sparc/NT) and BogoMIPS results (Linux).
PC75             1.5   (i86pc_75  i586_75  x586_30)
PC90             1.7   (i86pc_90  i586_90  x586_34 x586_35 x586_36)
HP9K715          4.2   (HP9000715_100)
SunSparc          12.0         () 
CRAYJ90           18.0         () 
IBM350            18.0         () 
End HostModel

3 Save the changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.

5 Run badmin reconfig to reconfigure mbatchd.
Administering Platform LSF



Chapter 4
Working with Hosts
Registering Service Ports 
LSF uses dedicated UDP and TCP ports for communication. All hosts in the 
cluster must use the same port numbers to communicate with each other.

The service port numbers can be any numbers ranging from 1024 to 65535 that 
are not already used by other services. To make sure that the port numbers 
you supply are not already used by applications registered in your service 
database check /etc/services or use the command ypcat services.

By default, port numbers for LSF services are defined in the lsf.conf file. You 
can also configure ports by modifying /etc/services or the NIS or NIS+ 
database. If you define port numbers lsf.conf, port numbers defined in the 
service database are ignored.

lsf.conf
1 Log on to any host as root.

2 Edit lsf.conf and add the following lines:
LSF_LIM_PORT=3879
LSF_RES_PORT=3878
LSB_MBD_PORT=3881
LSB_SBD_PORT=3882

3 Add the same entries to lsf.conf on every host.

4 Save lsf.conf.

5 Run lsadmin reconfig to reconfigure LIM.

6 Run badmin mbdrestart to restart mbatchd.

7 Run lsfstartup to restart all daemons in the cluster.

/etc/services

During installation, use the hostsetup --boot="y" option to set up the LSF port 
numbers in the service database.

Configuring
services manually

Use the file LSF_TOP/version/install/instlib/example.services file 
as a guide for adding LSF entries to the services database.

If any other service listed in your services database has the same port number 
as one of the LSF services, you must change the port number for the LSF 
service. You must use the same port numbers on every LSF host.

1 Log on to any host as root.

2 Edit the /etc/services file by adding the contents of the 
LSF_TOP/version/install/instlib/example.services file:
Administering Platform LSF 85



Registering Service Ports

86
# /etc/services entries for LSF daemons
#
res 3878/tcp # remote execution server
lim 3879/udp # load information manager
mbatchd 3881/tcp # master lsbatch daemon
sbatchd 3882/tcp # slave lsbatch daemon
#
# Add this if ident is not already defined
# in your /etc/services file
ident 113/tcp auth tap # identd

3 Run lsadmin reconfig to reconfigure LIM.

4 Run badmin reconfig to reconfigure mbatchd.

5 Run lsfstartup to restart all daemons in the cluster.

NIS or NIS+ database
If you are running NIS, you only need to modify the services database once 
per NIS master. On some hosts the NIS database and commands are in the 
/var/yp directory; on others, NIS is found in /etc/yp.

1 Log on to any host as root.

2 Run lsfshutdown to shut down all the daemons in the cluster 

3 To find the name of the NIS master host, use the command:
% ypwhich -m services

4 Log on to the NIS master host as root.

5 Edit the /var/yp/src/services or /etc/yp/src/services file on the 
NIS master host adding the contents of the 
LSF_TOP/version/install/instlib/example.services file:
# /etc/services entries for LSF daemons.
#
res 3878/tcp # remote execution server
lim 3879/udp # load information manager
mbatchd 3881/tcp # master lsbatch daemon
sbatchd 3882/tcp # slave lsbatch daemon
#
# Add this if ident is not already defined
# in your /etc/services file
ident 113/tcp auth tap # identd

Make sure that all the lines you add either contain valid service entries or 
begin with a comment character (#). Blank lines are not allowed.

6 Change the directory to /var/yp or /etc/yp.

7 Use the following command:
% ypmake services

On some hosts the master copy of the services database is stored in a 
different location.

On systems running NIS+ the procedure is similar. Refer to your system 
documentation for more information.
Administering Platform LSF



Chapter 4
Working with Hosts
8 Run lsadmin reconfig to reconfigure LIM.

9 Run badmin reconfig to reconfigure mbatchd.

10 Run lsfstartup to restart all daemons in the cluster.
Administering Platform LSF 87



Host Naming

88
Host Naming
LSF needs to match host names with the corresponding Internet host 
addresses.

LSF looks up host names and addresses the following ways:

◆ In the /etc/hosts file 

◆ Sun Network Information Service/Yellow Pages (NIS or YP)

◆ Internet Domain Name Service (DNS).

DNS is also known as the Berkeley Internet Name Domain (BIND) or 
named, which is the name of the BIND daemon.

Each host is configured to use one or more of these mechanisms.

Network addresses
Each host has one or more network addresses; usually one for each network 
to which the host is directly connected. Each host can also have more than one 
name.

Official host name The first name configured for each address is called the official name.

Host name aliases Other names for the same host are called aliases.

LSF uses the configured host naming system on each host to look up the 
official host name for any alias or host address. This means that you can use 
aliases as input to LSF, but LSF always displays the official name.

Host name services
Digital UNIX On Digital Unix systems, the /etc/svc.conf file controls which host name 

service is used.

Solaris On Solaris systems, the /etc/nsswitch.conf file controls the name service.

Other UNIX
platforms

On other UNIX platforms, the following rules apply:

◆ If your host has an /etc/resolv.conf file, your host is using DNS for 
name lookups

◆ If the command ypcat hosts prints out a list of host addresses and 
names, your system is looking up names in NIS

◆ Otherwise, host names are looked up in the /etc/hosts file

For more information
The man pages for the gethostbyname function, the ypbind and named 
daemons, the resolver functions, and the hosts, svc.conf, 
nsswitch.conf, and resolv.conf files explain host name lookups in more 
detail.
Administering Platform LSF



Chapter 4
Working with Hosts
Hosts with Multiple Addresses
Multi-homed

hosts
Hosts that have more than one network interface usually have one Internet 
address for each interface. Such hosts are called multi-homed hosts. LSF 
identifies hosts by name, so it needs to match each of these addresses with a 
single host name. To do this, the host name information must be configured 
so that all of the Internet addresses for a host resolve to the same name.

There are two ways to do it:

◆ Modify the system hosts file (/etc/hosts) and the changes will affect the 
whole system

◆ Create an LSF hosts file (LSF_CONFDIR/hosts) and LSF will be the only 
application that resolves the addresses to the same host

Multiple network interfaces
Some system manufacturers recommend that each network interface, and 
therefore, each Internet address, be assigned a different host name. Each 
interface can then be directly accessed by name. This setup is often used to 
make sure NFS requests go to the nearest network interface on the file server, 
rather than going through a router to some other interface. Configuring this 
way can confuse LSF, because there is no way to determine that the two 
different names (or addresses) mean the same host. LSF provides a 
workaround for this problem.

All host naming systems can be configured so that host address lookups always 
return the same name, while still allowing access to network interfaces by 
different names. Each host has an official name and a number of aliases, which 
are other names for the same host. By configuring all interfaces with the same 
official name but different aliases, you can refer to each interface by a different 
alias name while still providing a single official name for the host.

Configuring the LSF hosts file
If your LSF clusters include hosts that have more than one interface and are 
configured with more than one official host name, you must either modify the 
host name configuration, or create a private hosts file for LSF to use.

The LSF hosts file is stored in LSF_CONFDIR. The format of 
LSF_CONFDIR/hosts is the same as for /etc/hosts.

In the LSF hosts file, duplicate the system hosts database information, except 
make all entries for the host use the same official name. Configure all the other 
names for the host as aliases so that people can still refer to the host by any 
name.

Example For example, if your /etc/hosts file contains:

AA.AA.AA.AA host-AA host # first interface
BB.BB.BB.BB host-BB # second interface

then the LSF_CONFDIR/hosts file should contain:

AA.AA.AA.AA host host-AA # first interface
BB.BB.BB.BB host host-BB # second interface
Administering Platform LSF 89



Hosts with Multiple Addresses

90
Example /etc/hosts entries 
No unique official

name
The following example is for a host with two interfaces, where the host does 
not have a unique official name.

# Address Official name Aliases
# Interface on network A
AA.AA.AA.AA host-AA.domain host.domain host-AA host
# Interface on network B
BB.BB.BB.BB host-BB.domain host-BB host

Looking up the address AA.AA.AA.AA finds the official name host-
AA.domain. Looking up address BB.BB.BB.BB finds the name host-
BB.domain. No information connects the two names, so there is no way for 
LSF to determine that both names, and both addresses, refer to the same host.

To resolve this case, you must configure these addresses using a unique host 
name. If you cannot make this change to the system file, you must create an 
LSF hosts file and configure these addresses using a unique host name in that 
file.

Both addresses
have the same

official name

Here is the same example, with both addresses configured for the same official 
name.

# Address Official name Aliases
# Interface on network A
AA.AA.AA.AA host.domain host-AA.domain host-
AA host
# Interface on network B
BB.BB.BB.BB host.domain host-BB.domain host-
BB host

With this configuration, looking up either address returns host.domain as the 
official name for the host. LSF (and all other applications) can determine that 
all the addresses and host names refer to the same host. Individual interfaces 
can still be specified by using the host-AA and host-BB aliases.

Sun’s NIS uses the /etc/hosts file on the NIS master host as input, so the 
format for NIS entries is the same as for the /etc/hosts file.

Since LSF can resolve this case, you do not need to create an LSF hosts file.

DNS configuration
The configuration format is different for DNS. The same result can be produced 
by configuring two address (A) records for each Internet address. Following 
the previous example:

# name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BB.BB.BB.BB
host-AA.domain IN A AA.AA.AA.AA
host-BB.domain IN A BB.BB.BB.BB

Looking up the official host name can return either address. Looking up the 
interface-specific names returns the correct address for each interface.
Administering Platform LSF



Chapter 4
Working with Hosts
PTR records in
DNS

Address-to-name lookups in DNS are handled using PTR records. The PTR 
records for both addresses should be configured to return the official name:

# address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BB.BB.BB.BB.in-addr.arpa IN PTR host.domain

If it is not possible to change the system host name database, create the hosts 
file local to the LSF system, and configure entries for the multi-homed hosts 
only. Host names and addresses not found in the hosts file are looked up in 
the standard name system on your host.
Administering Platform LSF 91



Host Groups

92
Host Groups
You can define a host group within LSF or use an external executable to 
retrieve host group members.

Use bhosts to view a list of existing hosts. Use bmgroup to view host group 
membership use.

Where to use host groups
LSF host groups can be used in defining the following parameters in LSF 
configuration files:

◆ HOSTS in lsb.queues for authorized hosts for the queue

◆ HOSTS in lsb.hosts in the HostPartition section to list host groups 
that are members of the host partition

Configuring host groups
1 Log in as the LSF administrator to any host in the cluster.

2 Open lsb.hosts.

3 Add the HostGroup section if it does not exist.
Begin HostGroup
GROUP_NAME GROUP_MEMBER
groupA (all)
groupB (groupA ~hostA ~hostB)
groupC (hostX hostY hostZ)
groupD (groupC ~hostX)
groupE (all ~groupC ~hostB)
groupF (hostF groupC hostK)
desk_tops (hostD hostE hostF hostG)
Big_servers (!)
End HostGroup

4 Enter a group name under the GROUP_NAME column.

External host groups must be defined in the egroup executable.

5 Specify hosts in the GROUP_MEMBER column.

(Optional) To tell LSF that the group members should be retrieved using 
egroup, put an exclamation mark (!) in the GROUP_MEMBER column.

6 Save your changes.

7 Run badmin ckconfig to check the group definition. If any errors are 
reported, fix the problem and check the configuration again.

8 Do one of the following:

a Run badmin reconfig if you do not want the new group to be 
recognized by jobs that were submitted before you reconfigured.

b Run badmin mbdrestart if you want the new host to be recognized 
by jobs that were submitted before you reconfigured.
Administering Platform LSF



Chapter 4
Working with Hosts
External host group requirements (egroup)
An external host group is a host group for which membership is not statically 
configured, but is instead retrieved by running an external executable with the 
name egroup. The egroup executable must be in the directory specified by 
LSF_SERVERDIR.

This feature allows a site to maintain group definitions outside LSF and import 
them into LSF configuration at initialization time.

The egroup executable is an executable you create yourself that lists group 
names and hosts that belong to the group.

This executable must have the name egroup. When mbatchd is restarted, it 
invokes the egroup executable and retrieves groups and group members. The 
external executable egroup runs under the same account as mbatchd.

The egroup executable must write host names for the host groups to its 
standard output, each name separated by white space.

The egroup executable must recognize the following command, since 
mbatchd invokes external host groups with this command:

egroup -m host_group_name

where host_group_name is the name of the host group defined in the 
executable egroup along with its members, and the host group is specified in 
lsb.hosts.
Administering Platform LSF 93



Tuning CPU Factors

94
Tuning CPU Factors
CPU factors are used to differentiate the relative speed of different machines. 
LSF runs jobs on the best possible machines so that response time is 
minimized.

To achieve this, it is important that you define correct CPU factors for each 
machine model in your cluster.

How CPU factors affect performance
Incorrect CPU factors can reduce performance the following ways.

◆ If the CPU factor for a host is too low, that host may not be selected for job 
placement when a slower host is available. This means that jobs would not 
always run on the fastest available host.

◆ If the CPU factor is too high, jobs are run on the fast host even when they 
would finish sooner on a slower but lightly loaded host. This causes the 
faster host to be overused while the slower hosts are underused.

Both of these conditions are somewhat self-correcting. If the CPU factor for a 
host is too high, jobs are sent to that host until the CPU load threshold is 
reached. LSF then marks that host as busy, and no further jobs will be sent 
there. If the CPU factor is too low, jobs may be sent to slower hosts. This 
increases the load on the slower hosts, making LSF more likely to schedule 
future jobs on the faster host.

Guidelines for setting CPU factors
CPU factors should be set based on a benchmark that reflects your workload. 
If there is no such benchmark, CPU factors can be set based on raw CPU 
power.

The CPU factor of the slowest hosts should be set to 1, and faster hosts should 
be proportional to the slowest.

Example Consider a cluster with two hosts: hostA and hostB. In this cluster, hostA 
takes 30 seconds to run a benchmark and hostB takes 15 seconds to run the 
same test. The CPU factor for hostA should be 1, and the CPU factor of hostB 
should be 2 because it is twice as fast as hostA.

Viewing normalized ratings
Run lsload -N to display normalized ratings. LSF uses a normalized CPU 
performance rating to decide which host has the most available CPU power. 
Hosts in your cluster are displayed in order from best to worst. Normalized 
CPU run queue length values are based on an estimate of the time it would 
take each host to run one additional unit of work, given that an unloaded host 
with CPU factor 1 runs one unit of work in one unit of time.
Administering Platform LSF



Chapter 4
Working with Hosts
Tuning CPU factors
1 Log in as the LSF administrator on any host in the cluster.

2 Edit lsf.shared, and change the HostModel section:
Begin HostModel
MODELNAME  CPUFACTOR   ARCHITECTURE # keyword
#HPUX (HPPA)
HP9K712S 2.5 (HP9000712_60)
HP9K712M 2.5 (HP9000712_80)
HP9K712F 4.0 (HP9000712_100)

See the Platform LSF Reference for information about the lsf.shared 
file.

3 Save the changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.

5 Run badmin reconfig to reconfigure mbatchd.
Administering Platform LSF 95



Handling Host-level Job Exceptions

96
Handling Host-level Job Exceptions
You can configure hosts so that LSF detects exceptional conditions while jobs 
are running, and take appropriate action automatically. You can customize 
what exceptions are detected, and the corresponding actions. By default, LSF 
does not detect any exceptions. 

eadmin script
When an exception is detected, LSF takes appropriate action by running the 
script LSF_SERVERDIR/eadmin on the master host. You can customize eadmin 
to suit the requirements of your site. For example, eadmin could find out the 
owner of the problem jobs and use bstop -u to stop all jobs that belong to 
the user.

Host exceptions LSF can detect
If you configure exception handling, LSF can detect jobs that exit repeatedly 
on a host. The host can still be available to accept jobs, but some other 
problem prevents the jobs from running. Typically jobs dispatched to such 
“black hole”, or “job-eating” hosts exit abnormally. LSF monitors the job exit 
rate for hosts, and closes the host if the rate exceeds a threshold you configure 
(EXIT_RATE in lsb.hosts).

By default, LSF invokes eadmin if the job exit rate for a host remains above the 
configured threshold for longer than 10 minutes. Use 
JOB_EXIT_RATE_DURATION in lsb.params to change how frequently LSF 
checks the job exit rate.

Default eadmin actions
LSF closes the host and sends email to the LSF administrator. The email 
contains the host name, job exit rate for the host, and other host information. 
The message eadmin: JOB EXIT THRESHOLD EXCEEDED is attached to the 
closed host event in lsb.events, and displayed by badmin hist and 
badmin hhist. Only one email is sent for host exceptions.

Configuring host exception handling lsb.hosts)
EXIT_RATE Specifies a threshold for exited jobs. If the job exit rate is exceeded for 10 

minutes or the period specified by JOB_EXIT_RATE_DURATION, LSF invokes 
eadmin to trigger a host exception. 

Example The following Host section defines a job exit rate of 20 jobs per minute for all 
hosts:

Begin Host
HOST_NAME    MXJ      EXIT_RATE  # Keywords
Default      !          20
End Host
Administering Platform LSF



Chapter 4
Working with Hosts
Configuring thresholds for exception handling
JOB_EXIT_RATE_DURATION (lsb.params)

By default, LSF checks the number of exited jobs every 10 minutes. Use 
JOB_EXIT_RATE_DURATION in lsb.params to change this default.

Tuning Tune JOB_EXIT_RATE_DURATION carefully. Shorter values may raise false alarms, 
longer values may not trigger exceptions frequently enough.

Example

In the diagram, the job exit rate of hostA exceeds the configured threshold. 
LSF monitors hostA from time t1 to time t2 (t2=t1 + 
JOB_EXIT_RATE_DURATION in lsb.params). At t2, the exit rate is still high, 
and a host exception is detected. At t3 (EADMIN_TRIGGER_DURATION in 
lsb.params), LSF invokes eadmin and the host exception is handled. By 
default, LSF closes hostA and sends email to the LSF administrator. Since 
hostA is closed and cannot accept any new jobs, the exit rate drops quickly.
Administering Platform LSF 97



Handling Host-level Job Exceptions

98
 Administering Platform LSF



C H A P T E R

5
Working with Queues

Contents ◆ “Queue States” on page 100

◆ “Viewing Queue Information” on page 101

◆ “Controlling Queues” on page 104

◆ “Adding and Removing Queues” on page 107

◆ “Managing Queues” on page 108
Administering Platform LSF 99



Queue States

100
Queue States
Queue states, displayed by bqueues, describe the ability of a queue to accept 
and start batch jobs using a combination of the following states:

◆ Open queues accept new jobs

◆ Closed queues do not accept new jobs

◆ Active queues start jobs on available hosts

◆ Inactive queues hold all jobs

Queue state can be changed by an LSF administrator or root.

Queues can also be activated and inactivated by run and dispatch windows 
(configured in lsb.queues, displayed by bqueues -l).

bqueues -l displays Inact_Adm when explicitly inactivated by an 
Administrator (badmin qinact), and Inact_Win when inactivated by a run or 
dispatch window.

State Description

Open:Active Accepts and starts new jobs—normal processing

Open:Inact Accepts and holds new jobs—collecting

Closed:Active Does not accept new jobs, but continues to start jobs—
draining

Closed:Inact Does not accept new jobs and does not start jobs—all activity 
is stopped
Administering Platform LSF



Chapter 5
Working with Queues
Viewing Queue Information
The bqueues command displays information about queues. The bqueues -l 
option also gives current statistics about the jobs in a particular queue such as 
the total number of jobs in the queue, the number of jobs running, suspended, 
and so on.

In addition to the procedures listed here, see the bqueues(1) man page for 
more details.

Viewing available queues and queue status
Run bqueues. You can view the current status of a particular queue or all 
queues. The bqueues command also displays available queues in the cluster.

% bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
interactive 400 Open:Active - - - - 2 0 2 0
priority 43 Open:Active - - - - 16 4 11 1
night 40 Open:Inactive - - - - 4 4 0 0
short 35 Open:Active - - - - 6 1 5 0
license 33 Open:Active - - - - 0 0 0 0
normal 30 Open:Active - - - - 0 0 0 0
idle 20 Open:Active - - - - 6 3 1 2

A dash (-) in any entry means that the column does not apply to the row. In 
this example some queues have no per-queue, per-user or per-processor job 
limits configured, so the MAX, JL/U and JL/P entries are shown as a dash. 

Viewing detailed queue information
To see the complete status and configuration for each queue, run bqueues -l. 
You can specify queue names on the command-line to select specific queues. 
In the example below, more detail is requested for the queue normal.

% bqueues -l normal
QUEUE: normal
--For normal low priority jobs, running only if hosts are lightly loaded. 

This is the default queue.
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P NJOBS PEND RUN SSUSP USUSP
40 20 Open:Active 100 50 11 1 1 0 0 0
Migration threshold is 30 min.

CPULIMIT RUNLIMIT
20 min of IBM350 342800 min of IBM350

FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT PROCLIMIT
20000 K 20000 K 2048 K 20000 K 5000 K 3

To view the... Run...

Available queues bqueues

Queue status bqueues

Detailed queue information bqueues -l

State change history of a queue badmin qhist

Queue administrators bqueues -l for queue
Administering Platform LSF 101



Viewing Queue Information

102
SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - 0.7 1.0 0.2 4.0 50 - - - - -
loadStop - 1.5 2.5 - 8.0 240 - - - - -

SCHEDULING POLICIES: FAIRSHARE PREEMPTIVE PREEMPTABLE EXCLUSIVE
USER_SHARES: [groupA, 70] [groupB, 15]  [default, 1]

DEFAULT HOST SPECIFICATION : IBM350

RUN_WINDOWS: 2:40-23:00 23:30-1:30
DISPATCH_WINDOWS: 1:00-23:50

USERS: groupA/ groupB/ user5
HOSTS: hostA, hostD, hostB
ADMINISTRATORS: user7
PRE_EXEC: /tmp/apex_pre.x > /tmp/preexec.log 2>&1
POST_EXEC: /tmp/apex_post.x > /tmp/postexec.log 2>&1
REQUEUE_EXIT_VALUES: 45

Viewing the state change history of a queue
Run badmin qhist to display the times when queues are opened, closed, 
activated, and inactivated.

% badmin qhist
Wed Mar 31 09:03:14: Queue <normal> closed by user or 
administrator <root>.

Wed Mar 31 09:03:29: Queue <normal> opened by user or 
administrator <root>.

Viewing queue administrators
Use bqueues -l for the queue.
Administering Platform LSF



Chapter 5
Working with Queues
Viewing exception status for queues (bqueues)
Use bqueues to display the configured threshold for job exceptions and the 
current number of jobs in the queue in each exception state. 

For example, queue normal configures JOB_IDLE threshold of 0.10, 
JOB_OVERRUN threshold of 5 minutes, and JOB_UNDERRUN threshold of 2 
minutes. The following bqueues command shows no overrun jobs, one job 
that finished in less than 2 minutes (underrun) and one job that triggered an 
idle exception (less than idle factor of 0.10):

% bqueues -l normal

QUEUE: normal
  -- For normal low priority jobs, running only if hosts are lightly loaded.  
This is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN SSUSP USUSP  RSV 
 30   20  Open:Active       -    -    -    -     0     0     0     0     0    0

 STACKLIMIT MEMLIMIT
   2048 K     5000 K

SCHEDULING PARAMETERS
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  

JOB EXCEPTION PARAMETERS 
             OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)
 Threshold         5         2          0.10
      Jobs         0         1             1

USERS:  all users
HOSTS:  all allremote 
CHUNK_JOB_SIZE: 3
Administering Platform LSF 103



Controlling Queues

104
Controlling Queues
Queues are controlled by an LSF Administrator or root issuing a command or 
through configured dispatch and run windows.

Closing a queue
Run badmin qclose:

% badmin qclose normal
Queue <normal> is closed

When a user tries to submit a job to a closed queue the following message is 
displayed:

% bsub -q normal ...
normal: Queue has been closed

Opening a queue
Run badmin qopen:

% badmin qopen normal
Queue <normal> is opened

Inactivating a queue
Run badmin qinact:

% badmin qinact normal
Queue <normal> is inactivated

Activating a queue
Run badmin qact:

% badmin qact normal
Queue <normal> is activated

Logging a comment when controlling a queue
Use the -C option of badmin queue commands qclose, qopen, qact, and 
qinact to log an administrator comment in lsb.events. For example,

% badmin qclose -C "change configuration" normal

The comment text change configuration is recorded in lsb.events.

A new event record is recorded for each queue event. For example:

% badmin qclose -C "add user" normal

followed by

% badmin qclose -C "add user user1" normal

will generate records in lsb.events:

"QUEUE_CTRL" "6.0 1050082373 1 "normal" 32185 "lsfadmin" "add user"
"QUEUE_CTRL" "6.0 1050082380 1 "normal" 32185 "lsfadmin" "add user user1"
Administering Platform LSF



Chapter 5
Working with Queues
Use badmin hist or badmin qhist to display administrator comments for 
closing and opening hosts. For example:

% badmin qhist
Fri Apr  4 10:50:36: Queue <normal> closed by administrator 
<lsfadmin> change configuration.

bqueues -l also displays the comment text:

% bqueues -l normal

QUEUE: normal
  -- For normal low priority jobs, running only if hosts are lightly loaded.  
Th
is is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN SSUSP USUSP  RSV
 30   20  Closed:Active     -    -    -    -     0     0     0     0     0    0
Interval for a host to accept two jobs is 0 seconds

 THREADLIMIT
      7

SCHEDULING PARAMETERS
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -
 loadStop    -     -     -     -       -     -    -     -     -      -      -

JOB EXCEPTION PARAMETERS
             OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)
 Threshold         -         2             -
      Jobs         -         0             -

USERS:  all users
HOSTS:  all
RES_REQ:  select[type==any]

ADMIN ACTION COMMENT: "change configuration"
Administering Platform LSF 105



Controlling Queues

106
Dispatch Windows
A dispatch window specifies one or more time periods during which batch jobs 
are dispatched to run on hosts. Jobs are not dispatched outside of configured 
windows. Dispatch windows do not affect job submission and running jobs 
(they are allowed to run until completion). By default, dispatch windows are 
not configured, queues are always Active.

To configure dispatch window:

1 Edit lsb.queues

2 Create a DISPATCH_WINDOW keyword for the queue and specify one or 
more time windows. For example:
Begin Queue
QUEUE_NAME   = queue1
PRIORITY     = 45
DISPATCH_WINDOW = 4:30-12:00
End Queue

3 Reconfigure the cluster using:
a lsadmin reconfig
b badmin reconfig

4 Run bqueues -l to display the dispatch windows.

Run Windows
A run window specifies one or more time periods during which jobs 
dispatched from a queue are allowed to run. When a run window closes, 
running jobs are suspended, and pending jobs remain pending. The 
suspended jobs are resumed when the window opens again. By default, run 
windows are not configured, queues are always Active and jobs can run until 
completion.

To configure a run window:

1 Edit lsb.queues.

2 Create a RUN_WINDOW keyword for the queue and specify one or more 
time windows. For example:
Begin Queue
QUEUE_NAME   = queue1
PRIORITY     = 45
RUN_WINDOW = 4:30-12:00
End Queue

3 Reconfigure the cluster using:
a lsadmin reconfig.
b badmin reconfig.

4 Run bqueues -l to display the run windows.
Administering Platform LSF



Chapter 5
Working with Queues
Adding and Removing Queues

Adding a queue
1 Log in as the LSF administrator on any host in the cluster.

2 Edit lsb.queues to add the new queue definition.

You can copy another queue definition from this file as a starting point; 
remember to change the QUEUE_NAME of the copied queue.

3 Save the changes to lsb.queues.

4 Run badmin reconfig to reconfigure mbatchd.

Adding a queue does not affect pending or running jobs.

Removing a queue
IMPORTANT Before removing a queue, make sure there are no jobs in that queue.

If there are jobs in the queue, move pending and running jobs to another 
queue, then remove the queue. If you remove a queue that has jobs in it, the 
jobs are temporarily moved to a queue named lost_and_found. Jobs in the 
lost_and_found queue remain pending until the user or the LSF 
administrator uses the bswitch command to switch the jobs into regular 
queues. Jobs in other queues are not affected.

Steps 1 Log in as the LSF administrator on any host in the cluster.

2 Close the queue to prevent any new jobs from being submitted. For 
example:
% badmin qclose night
Queue <night> is closed

3 Move all pending and running jobs into another queue. Below, the 
bswitch -q night argument chooses jobs from the night queue, and 
the job ID number 0 specifies that all jobs should be switched:
% bjobs -u all -q night
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME
SUBMIT_TIME
5308 user5 RUN night hostA hostD job5 N
ov 21 18:16
5310 user5 PEND night hostA hostC job10 N
ov 21 18:17

% bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

4 Edit lsb.queues and remove or comment out the definition for the queue 
being removed.

5 Save the changes to lsb.queues.

6 Run badmin reconfig to reconfigure mbatchd.
Administering Platform LSF 107



Managing Queues

108
Managing Queues

Restricting host use by queues
You may want a host to be used only to run jobs submitted to specific queues. 
For example, if you just added a host for a specific department such as 
engineering, you may only want jobs submitted to the queues engineering1 
and engineering2 to be able to run on the host.

1 Log on as root or the LSF administrator on any host in the cluster.

2 Edit lsb.queues, and add the host to the Hosts parameter of specific 
queues.
Begin Queue
QUEUE_NAME = queue1
...
HOSTS=mynewhost hostA hostB

...
End Queue

3 Save the changes to lsb.queues.

4 Use badmin ckconfig to check the new queue definition. If any errors 
are reported, fix the problem and check the configuration again.

5 Run badmin reconfig to reconfigure mbatchd.

6 If you add a host to a queue, the new host will not be recognized by jobs 
that were submitted before you reconfigured. If you want the new host to 
be recognized, you must use the command badmin mbdrestart. For 
more details on badmin mbdrestart, see “Reconfiguring Your Cluster” on 
page 65.

Adding queue administrators
Queue administrators are optionally configured after installation. They have 
limited privileges; they can perform administrative operations (open, close, 
activate, inactivate) on the specified queue, or on jobs running in the specified 
queue. Queue administrators cannot modify configuration files, or operate on 
LSF daemons or on queues they are not configured to administer.

To switch a job from one queue to another, you must have administrator 
privileges for both queues.

In the lsb.queues file, between Begin Queue and End Queue for the 
appropriate queue, specify the ADMINISTRATORS parameter, followed by the 
list of administrators for that queue. Separate the administrator names with a 
space. You can specify user names and group names. For example:

Begin Queue
ADMINISTRATORS = User1 GroupA
End Queue
Administering Platform LSF



Chapter 5
Working with Queues
Handling Job Exceptions
You can configure queues so that LSF detects exceptional conditions while jobs 
are running, and take appropriate action automatically. You can customize 
what exceptions are detected, and the corresponding actions. By default, LSF 
does not detect any exceptions. 

eadmin script
When an exception is detected, LSF takes appropriate action by running the 
script LSF_SERVERDIR/eadmin on the master host. You can customize eadmin 
to suit the requirements of your site. For example, in some environments, a job 
running 1 hour would be an overrun job, while this may be a normal job in 
other environments. If your configuration considers jobs running longer than 
1 hour to be overrun jobs, you may want to close the queue when LSF detects 
a job that has run longer than 1 hour and invokes eadmin. Alternatively, 
eadmin could find out the owner of the problem jobs and use bstop -u to 
stop all jobs that belong to the user.

Job exceptions LSF can detect
If you configure exception handling, LSF detects the following job exceptions:

◆ Job underrun—jobs end too soon (run time is less than expected). 
Underrun jobs are detected when a job exits abnormally

◆ Job overrun—job runs too long (run time is longer than expected)

By default, LSF checks for overrun jobs every 5 minutes. Use 
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently 
LSF checks for job overrun.

◆ Idle job—running job consumes less CPU time than expected (in terms of 
CPU time/runtime)

By default, LSF checks for idle jobs every 5 minutes. Use 
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently 
LSF checks for idle jobs.

Default eadmin actions
LSF sends email to the LSF administrator. The email contains the job ID, 
exception type (overrrun, underrun, idle job), and other job information. 

An email is sent for all detected job exceptions according to the frequency 
configured by EADMIN_TRIGGER_DURATION in lsb.params. For example, 
if EADMIN_TRIGGER_DURATION is set to 10 minutes, and 1 overrun job and 
2 idle jobs are detected, after 10 minutes, eadmin is invoked and only one 
email is sent. If another overrun job is detected in the next 10 minutes, another 
email is sent.
Administering Platform LSF 109



Handling Job Exceptions

110
Configuring job exception handling (lsb.queues)
You can configure your queues to detect job exceptions. Use the following 
parameters:

JOB_IDLE Specifies a threshold for idle jobs. The value should be a number between 0.0 
and 1.0 representing CPU time/runtime. If the job idle factor is less than the 
specified threshold, LSF invokes eadmin to trigger the action for a job idle 
exception.

JOB_OVERRUN Specifies a threshold for job overrun. If a job runs longer than the specified run 
time, LSF invokes eadmin to trigger the action for a job overrun exception.

JOB_UNDERRUN Specifies a threshold for job underrun. If a job exits before the specified 
number of minutes, LSF invokes eadmin to trigger the action for a job underrun 
exception.

Example The following queue defines thresholds for all job exceptions:

Begin Queue
...
JOB_UNDERRUN = 2
JOB_OVERRUN  = 5
JOB_IDLE     = 0.10
...
End Queue

For this queue:

◆ A job underrun exception is triggered for jobs running less than 2 minutes

◆ A job overrun exception is triggered for jobs running longer than 5 minutes

◆ A job idle exception is triggered for jobs with an idle factor 
(CPU time/runtime) less than 0.10

Configuring thresholds for job exception handling
EADMIN_TRIGGER_DURATION (lsb.params)

By default, LSF checks for job exceptions every 5 minutes. Use 
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently LSF 
checks for overrun, underrun, and idle jobs.

Tune EADMIN_TRIGGER_DURATION carefully. Shorter values may raise false alarms, 
longer values may not trigger exceptions frequently enough.
Administering Platform LSF



C H A P T E R

6
Managing Jobs

Contents ◆ “Job States” on page 112

◆ “Viewing Job Information” on page 115

◆ “Changing Job Order Within Queues” on page 117

◆ “Switching Jobs from One Queue to Another” on page 118

◆ “Forcing Job Execution” on page 119

◆ “Suspending and Resuming Jobs” on page 120

◆ “Killing Jobs” on page 121

◆ “Sending a Signal to a Job” on page 122

◆ “Using Job Groups” on page 123
Administering Platform LSF 111



Job States

112
Job States
The bjobs command displays the current state of the job. 

Normal job states Most jobs enter only three states:

Suspended job
states

If a job is suspended, it has three states:

State transitions A job goes through a series of state transitions until it eventually completes its 
task, fails, or is terminated. The possible states of a job during its life cycle are 
shown in the diagram.

Viewing running
jobs

Use the bjobs -r command to display running jobs.

Viewing done jobs Use the bjobs -d command to display recently completed jobs.

Job state Description

PEND Waiting in a queue for scheduling and dispatch

RUN Dispatched to a host and running

DONE Finished normally with a zero exit value

Job state Description

PSUSP Suspended by its owner or the LSF administrator while in PEND 
state

USUSP Suspended by its owner or the LSF administrator after being 
dispatched

SSUSP Suspended by the LSF system after being dispatched

SSUSP

RUN

USUSP

EXIT

PSUSP

PEND
bsub

bstop

bresume

bkill
or abnormal
exit

DONE

suitable host found

migration

normal
completion

host OK host overloaded

bkill

bstop bresume

bkill
Administering Platform LSF



Chapter 6
Managing Jobs
Pending jobs
A job remains pending until all conditions for its execution are met. Some of 
the conditions are:

◆ Start time specified by the user when the job is submitted

◆ Load conditions on qualified hosts

◆ Dispatch windows during which the queue can dispatch and qualified 
hosts can accept jobs

◆ Run windows during which jobs from the queue can run

◆ Limits on the number of job slots configured for a queue, a host, or a user

◆ Relative priority to other users and jobs

◆ Availability of the specified resources

◆ Job dependency and pre-execution conditions

Viewing pending
reasons

Use the bjobs -p command to display the reason why a job is pending.

Suspended jobs
A job can be suspended at any time. A job can be suspended by its owner, by 
the LSF administrator, by the root user (superuser), or by LSF.

After a job has been dispatched and started on a host, it can be suspended by 
LSF. When a job is running, LSF periodically checks the load level on the 
execution host. If any load index is beyond either its per-host or its per-queue 
suspending conditions, the lowest priority batch job on that host is suspended.

If the load on the execution host or hosts becomes too high, batch jobs could 
be interfering among themselves or could be interfering with interactive jobs. 
In either case, some jobs should be suspended to maximize host performance 
or to guarantee interactive response time.

LSF suspends jobs according to the priority of the job’s queue. When a host is 
busy, LSF suspends lower priority jobs first unless the scheduling policy 
associated with the job dictates otherwise. 

Jobs are also suspended by the system if the job queue has a run window and 
the current time goes outside the run window.

A system-suspended job can later be resumed by LSF if the load condition on 
the execution hosts falls low enough or when the closed run window of the 
queue opens again.

Viewing suspension reasons
Use the bjobs -s command to display the reason why a job was suspended.

WAIT state (chunk jobs)
If you have configured chunk job queues, members of a chunk job that are 
waiting to run are displayed as WAIT by bjobs. Any jobs in WAIT status are 
included in the count of pending jobs by bqueues and busers, even though 
the entire chunk job has been dispatched and occupies a job slot. The bhosts 
command shows the single job slot occupied by the entire chunk job in the 
number of jobs shown in the NJOBS column.
Administering Platform LSF 113



Job States

114
You can switch (bswitch) or migrate (bmig) a chunk job member in WAIT 
state to another queue.

Viewing wait
status and wait

reason

Use the bhist -l command to display jobs in WAIT status. Jobs are shown as 
Waiting ...

The bjobs -l command does not display a WAIT reason in the list of pending 
jobs.

See Chapter 24, “Chunk Job Dispatch” for more information about chunk jobs.

Exited jobs
A job might terminate abnormally for various reasons. Job termination can 
happen from any state. An abnormally terminated job goes into EXIT state. The 
situations where a job terminates abnormally include:

◆ The job is cancelled by its owner or the LSF administrator while pending, 
or after being dispatched to a host.

◆ The job is not able to be dispatched before it reaches its termination 
deadline, and thus is aborted by LSF.

◆ The job fails to start successfully. For example, the wrong executable is 
specified by the user when the job is submitted.

The job exits with a non-zero exit status.

You can configure hosts so that LSF detects an abnormally high rate of job exit 
from a host. See “Handling Host-level Job Exceptions” on page 96 for more 
information.

Post-execution states
Some jobs may not be considered complete until some post-job processing is 
performed. For example, a job may need to exit from a post-execution job 
script, clean up job files, or transfer job output after the job completes.

The DONE or EXIT job states do not indicate whether post-processing is 
complete, so jobs that depend on processing may start prematurely. Use the 
post_done and post_err keywords on the bsub -w command to specify job 
dependency conditions for job post-processing. The corresponding job states 
POST_DONE and POST_ERR indicate the state of the post-processing.

After the job completes, you cannot perform any job control on the post-
processing. Post-processing exit codes are not reported to LSF. The post-
processing of a repetitive job cannot be longer than the repetition period.

Viewing post-
execution states

Use the bhist command to display the POST_DONE and POST_ERR states. 
The resource usage of post-processing is not included in the job resource 
usage.

Chapter 28, “Pre-Execution and Post-Execution Commands” for more 
information.
Administering Platform LSF



Chapter 6
Managing Jobs
Viewing Job Information
The bjobs command is used to display job information. By default, bjobs 
displays information for the user who invoked the command. For more 
information about bjobs, see the LSF Reference and the bjobs(1) man page.

Viewing all jobs for all users
Run bjobs -u all to display all jobs for all users. Job information is displayed 
in the following order:

1 Running jobs 

2 Pending jobs in the order in which they will be scheduled 

3 Jobs in high priority queues are listed before those in lower priority queues

For example:

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIM
E
1004 user1 RUN short hostA hostA job0 Dec 16 09:
23
1235 user3 PEND priority hostM job1 Dec 11 13:
55
1234 user2 SSUSP normal hostD hostM job3 Dec 11 10:
09
1250 user1 PEND short hostA job4 Dec 11 13:
59

Viewing jobs for specific users 
Run bjobs -u user_name to display jobs for a specific user. For example:

% bjobs -u user1
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIM
E
2225 user1 USUSP normal hostA job1 Nov 16 
11:55
2226 user1 PSUSP normal hostA job2 Nov 16 
12:30
2227 user1 PSUSP normal hostA job3 Nov 16 
12:31
Administering Platform LSF 115



Viewing Job Information

116
Viewing exception status for jobs (bjobs)
Use bjobs to display job exceptions. bjobs -l shows exception information 
for unfinished jobs, and bjobs -x -l shows finished as well as unfinished 
jobs.

For example, the following bjobs command shows that job 2 is running longer 
than the configured JOB_OVERRUN threshold, and is consuming no CPU time. 
bjobs displays the job idle factor, and both job overrun and job idle 
exceptions. Job 1 finished before the configured JOB_UNDERRUN threshold, 
so bjobs shows exception status of underrun:

% bjobs -x -l -a
Job <2>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Command 
                     <sleep 600>
Wed Aug 13 14:23:35: Submitted from host <hostA>, CWD <$HOME>,
                     Output File </dev/null>, Specified Hosts <hostB>;
Wed Aug 13 14:23:43: Started on <hostB>, Execution Home </home/user1>, 
Execution 
                     CWD </home/user1>;
Resource usage collected.
                     IDLE_FACTOR(cputime/runtime):   0.00
                     MEM: 3 Mbytes;  SWAP: 4 Mbytes;  NTHREAD: 3
                     PGID: 5027;  PIDs: 5027 5028 5029 

 SCHEDULING PARAMETERS:
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  

 EXCEPTION STATUS:  overrun  idle 
------------------------------------------------------------------------------

Job <1>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, 
Command
                     <sleep 20>
Wed Aug 13 14:18:00: Submitted from host <hostA>, CWD <$HOME>,
                     Output File </dev/null>, Specified Hosts <
                     hostB>;
Wed Aug 13 14:18:10: Started on <hostB>, Execution Home </home/user1>, 
Execution 
                     CWD </home/user1>;
Wed Aug 13 14:18:50: Done successfully. The CPU time used is 0.2 seconds.

 SCHEDULING PARAMETERS:
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  

 EXCEPTION STATUS:  underrun 

Use bacct -l -x to trace the history of job exceptions.
Administering Platform LSF



Chapter 6
Managing Jobs
Changing Job Order Within Queues
By default, LSF dispatches jobs in a queue in the order of arrival (that is, 
first-come-first-served), subject to availability of suitable server hosts.

Use the btop and bbot commands to change the position of pending jobs, or 
of pending job array elements, to affect the order in which jobs are considered 
for dispatch. Users can only change the relative position of their own jobs, and 
LSF administrators can change the position of any users’ jobs.

bbot
Moves jobs relative to your last job in the queue.

If invoked by a regular user, bbot moves the selected job after the last job with 
the same priority submitted by the user to the queue.

If invoked by the LSF administrator, bbot moves the selected job after the last 
job with the same priority submitted to the queue.

btop
Moves jobs relative to your first job in the queue.

If invoked by a regular user, btop moves the selected job before the first job 
with the same priority submitted by the user to the queue.

If invoked by the LSF administrator, btop moves the selected job before the 
first job with the same priority submitted to the queue.

Moving a job to the top of the queue
In the following example, job 5311 is moved to the top of the queue. Since job 
5308 is already running, job 5311 is placed in the queue after job 5308.

Note that user1’s job is still in the same position on the queue. user2 cannot 
use btop to get extra jobs at the top of the queue; when one of his jobs moves 
up the queue, the rest of his jobs move down.

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /s500    Oct 23 10:16
5309 user2 PEND night hostA /s200    Oct 23 11:04
5310 user1 PEND night hostB /myjob Oct 23 13:45
5311 user2 PEND night hostA /s700    Oct 23 18:17

% btop 5311
Job <5311> has been moved to position 1 from top.

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /s500    Oct 23 10:16
5311 user2 PEND night hostA /s200    Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45
5309 user2 PEND night hostA /s700    Oct 23 11:04
Administering Platform LSF 117



Switching Jobs from One Queue to Another

118
Switching Jobs from One Queue to Another
You can use the command bswitch to change jobs from one queue to another. 
This is useful if you submit a job to the wrong queue, or if the job is suspended 
because of queue thresholds or run windows and you would like to resume 
the job.

Switching a single job
Run bswitch to move pending and running jobs from queue to queue.

In the following example, job 5309 is switched to the priority queue:

% bswitch priority 5309
Job <5309> is switched to queue <priority>

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /job500 Oct 23 10:16
5309 user2 RUN priority hostA hostB /job200 Oct 23 11:04
5311 user2 PEND night hostA /job700 Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45

Switching all jobs
Run bswitch -q from_queue to_queue 0 to switch all the jobs in a queue 
to another queue. The example below selects jobs from the night queue and 
switches them to the idle queue.

The -q option is used to operate on all jobs in a queue. The job ID number 0 
specifies that all jobs from the night queue should be switched to the idle 
queue:

% bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>
Administering Platform LSF



Chapter 6
Managing Jobs
Forcing Job Execution 
A pending job can be forced to run with the brun command. This operation 
can only be performed by an LSF administrator.

You can force a job to run on a particular host, to run until completion, and 
other restrictions. For more information, see the brun command.

When a job is forced to run, any other constraints associated with the job such 
as resource requirements or dependency conditions are ignored.

In this situation you may see some job slot limits, such as the maximum 
number of jobs that can run on a host, being violated. A job that is forced to 
run cannot be preempted.

Forcing a pending job to run
Run brun -m hostname job_ID to force a pending job to run. You must 
specify the host on which the job will run. For example, the following 
command will force the sequential job 104 to run on hostA:

% brun -m hostA 104
Administering Platform LSF 119



Suspending and Resuming Jobs

120
Suspending and Resuming Jobs
A job can be suspended by its owner or the LSF administrator. These jobs are 
considered user-suspended and are displayed by bjobs as USUSP.

If a user suspends a high priority job from a non-preemptive queue, the load 
may become low enough for LSF to start a lower priority job in its place. The 
load created by the low priority job can prevent the high priority job from 
resuming. This can be avoided by configuring preemptive queues.

Suspending a job
Run bstop job_ID. Your job goes into USUSP state if the job is already 
started, or into PSUSP state if it is pending. For example:

% bstop 3421
Job <3421> is being stopped

suspends job 3421.

UNIX bstop sends the following signals to the job:

◆ SIGTSTP for parallel or interactive jobs

SIGTSTP is caught by the master process and passed to all the slave 
processes running on other hosts.

◆ SIGSTOP for sequential jobs

SIGSTOP cannot be caught by user programs. The SIGSTOP signal can be 
configured with the LSB_SIGSTOP parameter in lsf.conf.

Windows bstop causes the job to be suspended.

Resuming a job
Run bresume job_ID. For example: 

% bresume 3421
Job <3421> is being resumed

resumes job 3421.

Resuming a user-suspended job does not put your job into RUN state 
immediately. If your job was running before the suspension, bresume first puts 
your job into SSUSP state and then waits for sbatchd to schedule it according 
to the load conditions.
Administering Platform LSF



Chapter 6
Managing Jobs
Killing Jobs
The bkill command cancels pending batch jobs and sends signals to running 
jobs. By default, on UNIX, bkill sends the SIGKILL signal to running jobs.

Before SIGKILL is sent, SIGINT and SIGTERM are sent to give the job a chance 
to catch the signals and clean up. The signals are forwarded from mbatchd to 
sbatchd. sbatchd waits for the job to exit before reporting the status. Because 
of these delays, for a short period of time after the bkill command has been 
issued, bjobs may still report that the job is running.

On Windows, job control messages replace the SIGINT and SIGTERM signals, 
and termination is implemented by the TerminateProcess() system call.

Killing a job
Run bkill job_ID:

% bkill 3421
Job <3421> is being terminated

kills job 3421.

Forcing removal of a job from LSF
Run bkill -r to force the removal of the job from LSF. Use this option when 
a job cannot be killed in the operating system. 

The bkill -r command removes a job from the LSF system without waiting 
for the job to terminate in the operating system. This sends the same series of 
signals as bkill without -r, except that the job is removed from the system 
immediately, the job is marked as EXIT, and job resources that LSF monitors 
are released as soon as LSF receives the first signal.
Administering Platform LSF 121



Sending a Signal to a Job

122
Sending a Signal to a Job 
LSF uses signals to control jobs, to enforce scheduling policies, or in response 
to user requests. The principal signals LSF uses are SIGSTOP to suspend a job, 
SIGCONT to resume a job, and SIGKILL to terminate a job.

Occasionally, you may want to override the default actions. For example, 
instead of suspending a job, you might want to kill or checkpoint it. You can 
override the default job control actions by defining the JOB_CONTROLS 
parameter in your queue configuration. Each queue can have its separate job 
control actions.

You can also send a signal directly to a job. You cannot send arbitrary signals 
to a pending job; most signals are only valid for running jobs. However, LSF 
does allow you to kill, suspend and resume pending jobs.

You must be the owner of a job or an LSF administrator to send signals to a job.

You use the bkill -s command to send a signal to a job. If you issue bkill 
without the -s option, a SIGKILL signal is sent to the specified jobs to kill 
them. Twenty seconds before SIGKILL is sent, SIGTERM and SIGINT are sent 
to give the job a chance to catch the signals and clean up.

On Windows, job control messages replace the SIGINT and SIGTERM signals, 
but only customized applications are able to process them. Termination is 
implemented by the TerminateProcess() system call. 

Signals on different platforms
LSF translates signal numbers across different platforms because different host 
types may have different signal numbering. The real meaning of a specific 
signal is interpreted by the machine from which the bkill command is issued.

For example, if you send signal 18 from a SunOS 4.x host, it means SIGTSTP. 
If the job is running on HP-UX and SIGTSTP is defined as signal number 25, 
LSF sends signal 25 to the job.

Sending a signal to a job
Run bkill -s signal job_id, where signal is either the signal name or 
the signal number. For example:

% bkill -s TSTP 3421
Job <3421> is being signaled

sends the TSTP signal to job 3421.

On most versions of UNIX, signal names and numbers are listed in the kill(1) 
or signal(2) man pages. On Windows, only customized applications are able 
to process job control messages specified with the -s option.
Administering Platform LSF



Chapter 6
Managing Jobs
Using Job Groups
A collection of jobs can be organized into job groups for easy management. A 
job group is a container for jobs in much the same way that a directory in a 
file system is a container for files. For example, a payroll application may have 
one group of jobs that calculates weekly payments, another job group for 
calculating monthly salaries, and a third job group that handles the salaries of 
part-time or contract employees. Users can submit, view, and control jobs 
according to their groups rather than looking at individual jobs.

Job group
hierarchy

Jobs in job groups are organized into a hierarchical tree similar to the directory 
structure of a file system. Like a file system, the tree contains groups (which 
are like directories) and jobs (which are like files). Each group can contain 
other groups or individual jobs. Job groups are created independently of jobs, 
and can have dependency conditions which control when jobs within the 
group are considered for scheduling.

Job group path The job group path is the name and location of a job group within the job 
group hierarchy. Multiple levels of job groups can be defined to form a 
hierarchical tree. A job group can contain jobs and sub-groups.

Root job group LSF maintains a single tree under which all jobs in the system are organized. 
The top-most level of the tree is represented by a top-level “root” job group, 
named “/”. The root group is owned by the primary LSF Administrator and 
cannot be removed. Users create new groups under the root group. By default, 
if you do not specify a job group path name when submitting a job, the job is 
created under the top-level “root” job group, named “/”.

Job group owner Each group is owned by the user who created it. The login name of the user 
who creates the job group is the job group owner. Users can add job groups 
into a groups that are owned by other users, and they can submit jobs to 
groups owned by other users.

Job control under
job groups

Job owners can control their own jobs attached to job groups as usual. Job 
group owners can also control any job under the groups they own and below.

For example:

◆ Job group /A is created by user1

◆ Job group /A/B is created by user2

◆ Job group /A/B/C is created by user3

All users can submit jobs to any job group, and control the jobs they own in 
all job groups. For jobs submitted by other users:

◆ user1 can control jobs submitted by other users in all 3 job groups: /A, 
/A/B, and /A/B/C

◆ user2 can control jobs submitted by other users only in 2 job groups: /A/B 
and /A/B/C

◆ user3 can control jobs submitted by other users only in job group /A/B/C

The LSF administrator can control jobs in any job group.
Administering Platform LSF 123



Using Job Groups

124
Creating a job group
Use the bgadd command to create a new job group. You must provide full 
group path name for the new job group. The last component of the path is the 
name of the new group to be created:

◆ % bgadd /risk_group

creates a job group named risk_group under the root group /.

◆ % bgadd /risk_group/portfolio1

creates a job group named portfolio1 under job group /risk_group.

◆ % bgadd /risk_group/portfolio1/current

creates a job group named current under job group 
/risk_group/portfolio1.

If the group hierarchy /risk_group/portfolio1/current does not exist, 
LSF checks its parent recursively, and if no groups in the hierarchy exist, all 
three job groups are created with the specified hierarchy.

Submitting jobs under a job group
Use the -g option of bsub to submit a job into a job group. The job group does 
not have to exist before submitting the job. For example:

% bsub -g /risk_group/portfolio1/current myjob
Job <105> is submitted to default queue.

Submits myjob to the job group /risk_group/portfolio1/current. 

If group /risk_group/portfolio1/current exists, job 105 is attached to 
the job group.

If group /risk_group/portfolio1/current does not exist, LSF checks its 
parent recursively, and if no groups in the hierarchy exist, all three job groups 
are created with the specified hierarchy and the job is attached to group.

-g and -sla options You cannot use the -g option with -sla. A job can either be attached to a job 
group or a service class, but not both.

Viewing jobs in job groups
bjgroup command Use the bjgroup command to see information about jobs in specific job 

groups.

% bjgroup
GROUP_NAME         NJOBS   PEND    RUN    SSUSP  USUSP  FINISH
/fund1_grp          5       4       0      1      0      0
/fund2_grp          11      2       5      0      0      4
/bond_grp           2       2       0      0      0      0
/risk_grp           2       1       1      0      0      0
/admi_grp           4       4       0      0      0      0

bjobs command Use the -g option of bjobs and specify a job group path to view jobs attached 
to the specified group.
Administering Platform LSF



Chapter 6
Managing Jobs
% bjobs -g /risk_group
JOBID   USER    STAT  QUEUE      FROM_HOST   EXEC_HOST   JOB_NAME   SUBMIT_TIME
113     user1   PEND  normal     hostA                   myjob     Jun 17 16:15
111     user2   RUN   normal     hostA       hostA       myjob     Jun 14 15:13
110     user1   RUN   normal     hostB       hostA       myjob     Jun 12 05:03
104     user3   RUN   normal     hostA       hostC       myjob     Jun 11 13:18

bjobs -l displays the full path to the group to which a job is attached:

% bjobs -l -g /risk_group

Job <101>, User <user1>, Project <default>, Job Group 
</risk_group>, Status <RUN>, Queue <normal>, Command <myjob>
Tue Jun 17 16:21:49: Submitted from host <hostA>, CWD 
</home/user1;
Tue Jun 17 16:22:01: Started on <hostA>;
...

Controlling jobs in job groups
Stopping (bstop) Use the -g option of bstop and specify a job group path to suspend jobs in a 

job group

% bstop -g /risk_group 106
Job <106> is being stopped

Use job ID 0 (zero) to suspend all jobs in a job group:

% bstop -g /risk_group/consolidate 0
Job <107> is being stopped
Job <108> is being stopped
Job <109> is being stopped

Resuming
(bresume)

Use the -g option of bresume and specify a job group path to resume 
suspended jobs in a job group:

% bresume -g /risk_group 106
Job <106> is being resumed

Use job ID 0 (zero) to resume all jobs in a job group:

% bresume -g /risk_group 0
Job <109> is being resumed
Job <110> is being resumed
Job <112> is being resumed

Modifying (bmod) Use the -g option of bmod and specify a job group path to move a job or a job 
array from one job group to another. For example:

% bmod -g /risk_group/portfolio2/monthly 105

moves job 105 to job group /risk_group/portfolio2/monthly.

Like bsub -g, if the job group does not exist, LSF creates it.

bmod -g cannot be combined with other bmod options. It can operate on 
finished, running, and pending jobs.

You can modify your own job groups and job groups that other users create 
under your job groups. The LSF administrator can modify job groups of all 
users.
Administering Platform LSF 125



Using Job Groups

126
You cannot move job array elements from one job group to another, only 
entire job arrays. A job array can only belong to one job group at a time. You 
cannot modify the job group of a job attached to a service class.

bhist -l shows job group modification information:

% bhist -l 105

Job <105>, User <user1>, Project <default>, Job Group </risk_group>, Command 
<myjob>
                     
Wed May 14 15:24:07: Submitted from host <hostA>, to Queue <normal>, CWD
<$HOME/lsf51/5.1/sparc-sol7-64/bin>;
Wed May 14 15:24:10: Parameters of Job are changed:
                         Job group changes to: /risk_group/portfolio2/monthly;
Wed May 14 15:24:17: Dispatched to <hostA>;
Wed May 14 15:24:17: Starting (Pid 8602);
...

Terminating (bkill) Use the -g option of bkill and specify a job group path to terminate jobs in 
a job group. For example,

% bkill -g /risk_group 106
Job <106> is being terminated

Use job ID 0 (zero) to terminate all jobs in a job group:

% bkill -g /risk_group 0
Job <1413> is being terminated
Job <1414> is being terminated
Job <1415> is being terminated
Job <1416> is being terminated

bkill only kills jobs in the job group you specify. It does not kill jobs in lower 
level job groups in the path. For example, jobs are attached to job groups 
/risk_group and /risk_group/consolidate:

% bsub -g /risk_group  myjob
Job <115> is submitted to default queue <normal>.

% bsub -g /risk_group/consolidate myjob2
Job <116> is submitted to default queue <normal>.

The following bkill command only kills jobs in /risk_group, not the 
subgroup /risk_group/consolidate:

% bkill -g /risk_group 0
Job <115> is being terminated

% bkill -g /risk_group/consolidate 0
Job <116> is being terminated

Deleting (bgdel) Use bgdel command to remove a job group. The job group cannot contain 
any jobs. For example:

% bgdel /risk_group
Job group /risk_group is deleted.

deletes the job group /risk_group and all its subgroups.
Administering Platform LSF



C H A P T E R

7
Managing Users and User Groups

Contents ◆ “Viewing User and User Group Information” on page 128

◆ “About User Groups” on page 130

◆ “Existing User Groups as LSF User Groups” on page 131

◆ “LSF User Groups” on page 132
Administering Platform LSF 127



Viewing User and User Group Information

128
Viewing User and User Group Information
You can display information about LSF users and user groups using the busers 
and bugroup commands.

The busers command displays information about users and user groups. The 
default is to display information about the user who invokes the command. 
The busers command displays:

◆ Maximum number of jobs a user or group may execute on a single 
processor

◆ Maximum number of job slots a user or group may use in the cluster

◆ Total number of job slots required by all submitted jobs of the user

◆ Number of job slots in the PEND, RUN, SSUSP, and USUSP states

The bugroup command displays information about user groups and which 
users belong to each group.

The busers and bugroup commands have additional options. See the 
busers(1) and bugroup(1) man pages for more details.

Viewing user information
Run busers all. For example:

% busers all
USER/GROUP  JL/P  MAX  NJOBS  PEND  RUN   SSUSP  USUSP  RSV
default 12 - - - - - - -
user9 1 12 34 22 10 2 0 0
groupA - 100 20 7 11 1 1 0

Viewing user group information
Run bugroup. For example:

% bugroup
GROUP_NAME USERS
testers user1 user2 
engineers user3 user4 user10 user9
develop user4 user10 user11 user34 engineers/
system all users
Administering Platform LSF



Chapter 7
Managing Users and User Groups
Viewing user share information
Run bugroup -l, which displays user share group membership information in 
long format. For example:

% bugroup -l
GROUP_NAME: testers   
USERS: user1 user2 
SHARES: [user1, 4] [others, 10] 

GROUP_NAME: engineers   
USERS: user3 user4 user10 user9 
SHARES: [others, 10] [user9, 4] 

GROUP_NAME: system 
USERS: all users
SHARES: [user9, 10] [others, 15] 

GROUP_NAME: develop   
USERS: user4 user10 user11 engineers/ 
SHARES: [engineers, 40] [user4, 15] [user10, 34] [user11, 
16]
Administering Platform LSF 129



About User Groups

130
About User Groups
User groups act as aliases for lists of users. The administrator can also limit the 
total number of running jobs belonging to a user or a group of users. 

You can define user groups in LSF in several ways:

◆ Use existing user groups in the configuration files

◆ Create LSF-specific user groups

◆ Use an external executable to retrieve user group members

If desired, you can use all three methods, provided the user and group names 
are different.
Administering Platform LSF



Chapter 7
Managing Users and User Groups
Existing User Groups as LSF User Groups
User groups already defined in your operating system often reflect existing 
organizational relationships among users. It is natural to control computer 
resource access using these existing groups.

You can specify existing UNIX user groups anywhere an LSF user group can 
be specified.

How LSF recognizes UNIX user groups
Only group members listed in the /etc/group file or the file group.byname 
NIS map are accepted. The user’s primary group as defined in the 
/etc/passwd file is ignored.

The first time you specify a UNIX user group, LSF automatically creates an LSF 
user group with that name, and the group membership is retrieved by 
getgrnam(3) on the master host at the time mbatchd starts. The membership 
of the group might be different from the one on another host. Once the LSF 
user group is created, the corresponding UNIX user group might change, but 
the membership of the LSF user group is not updated until you reconfigure LSF 
(badmin). To specify a UNIX user group that has the same name as a user, use 
a slash (/) immediately after the group name: group_name/.

Requirements UNIX group definitions referenced by LSF configuration files must be uniform 
across all hosts in the cluster. Unexpected results can occur if the UNIX group 
definitions are not homogeneous across machines.

How LSF resolves users and user groups with the same name
If an individual user and a user group have the same name, LSF assumes that 
the name refers to the individual user. To specify the group name, append a 
slash (/) to the group name.

For example, if you have both a user and a group named admin on your 
system, LSF interprets admin as the name of the user, and admin/ as the name 
of the group.

Where to use existing user groups
Existing user groups can be used in defining the following parameters in LSF 
configuration files:

◆ USERS in lsb.queues for authorized queue users

◆ USER_NAME in lsb.users for user job slot limits

◆ USER_SHARES (optional) in lsb.hosts for host partitions or in 
lsb.queues or lsb.users for queue fairshare policies
Administering Platform LSF 131



LSF User Groups

132
LSF User Groups
You can define an LSF user group within LSF or use an external executable to 
retrieve user group members.

Use bugroup to view user groups and members, use busers to view all users 
in the cluster.

Where to use LSF user groups
LSF user groups can be used in defining the following parameters in LSF 
configuration files:

◆ USERS in lsb.queues for authorized queue users

◆ USER_NAME in lsb.users for user job slot limits

◆ USER_SHARES (optional) in lsb.hosts for host partitions or in 
lsb.queues for queue fairshare policies

If you are using existing OS-level user groups instead of LSF-specific user 
groups, you can also specify the names of these groups in the files mentioned 
above.

Configuring user groups
1 Log in as the LSF administrator to any host in the cluster.

2 Open lsb.users.

3 Add the UserGroup section if it does not exist.
Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
financial (user1 user2 user3) ([user1, 4] 
[others, 10])
system (all) ([user2, 10] 
[others, 15])
regular_users (user1 user2 user3 user4) -
part_time_users (!) -
End UserGroup

4 Specify the group name under the GROUP_NAME column.

External user groups must also be defined in the egroup executable.

5 Specify users in the GROUP_MEMBER column.

For external user groups, put an exclamation mark (!) in the 
GROUP_MEMBER column to tell LSF that the group members should be 
retrieved using egroup.

6 (Optional) To enable hierarchical fairshare, specify share assignments in 
the USER_SHARES column.

7 Save your changes.

8 Run badmin ckconfig to check the new user group definition. If any 
errors are reported, fix the problem and check the configuration again.

9 Run badmin reconfig to reconfigure the cluster.
Administering Platform LSF



Chapter 7
Managing Users and User Groups
External user group requirements (egroup)
An external user group is a user group for which membership is not statically 
configured, but is instead retrieved by running an external executable with the 
name egroup. The egroup executable must be in the directory specified by 
LSF_SERVERDIR.

This feature allows a site to maintain group definitions outside LSF and import 
them into LSF configuration at initialization time.

The egroup executable is an executable you create yourself that lists group 
names and users who belong to the group.

This executable must have the name egroup. When mbatchd is restarted, it 
invokes the egroup executable and retrieves groups and group members. The 
external executable egroup runs under the same account as mbatchd.

The egroup executable must write user names for the user groups to its 
standard output, each name separated by white space.

The egroup executable must recognize the following command, since 
mbatchd invokes external user groups with this command:

egroup -u user_group_name

where user_group_name is the name of the user group defined in the 
executable egroup along with its members, and the user group is specified in 
lsb.users.
Administering Platform LSF 133



LSF User Groups

134
 Administering Platform LSF



P A R T

II
Working with Resources

Contents ◆ Chapter 8, “Understanding Resources”

◆ Chapter 9, “Adding Resources”





C H A P T E R

8
Understanding Resources

Contents ◆ “About LSF Resources” on page 138

◆ “How Resources are Classified” on page 140

◆ “How LSF Uses Resources” on page 143

◆ “Load Indices” on page 144

◆ “Static Resources” on page 148

◆ “Automatic Detection of Hardware Reconfiguration” on page 149
Administering Platform LSF 137



About LSF Resources

138
About LSF Resources
The LSF system uses built-in and configured resources to track job resource 
requirements and schedule jobs according to the resources available on 
individual hosts.

Viewing available resources
lsinfo Use lsinfo to list the resources available in your cluster. The lsinfo 

command lists all the resource names and their descriptions:

% lsinfo
RESOURCE_NAME TYPE ORDER DESCRIPTION
r15s Numeric Inc 15-second CPU run queue length
r1m Numeric Inc 1-minute CPU run queue length (alias:cpu)
r15m Numeric Inc 15-minute CPU run queue length
ut Numeric Inc 1-minute CPU utilization (0.0 to 1.0)
pg Numeric Inc Paging rate (pages/second)
io Numeric Inc Disk IO rate (Kbytes/second)
ls Numeric Inc Number of login sessions (alias: login)
it Numeric Dec Idle time (minutes) (alias: idle)
tmp Numeric Dec Disk space in /tmp (Mbytes)
swp Numeric Dec Available swap space (Mbytes) (alias:swap)
mem Numeric Dec Available memory (Mbytes)
ncpus Numeric Dec Number of CPUs
ndisks Numeric Dec Number of local disks
maxmem Numeric Dec Maximum memory (Mbytes)
maxswp Numeric Dec Maximum swap space (Mbytes)
maxtmp Numeric Dec Maximum /tmp space (Mbytes)
cpuf Numeric Dec CPU factor
rexpri Numeric N/A Remote execution priority
server Boolean N/A LSF server host
irix Boolean N/A IRIX UNIX
hpux Boolean N/A HP_UX
solaris Boolean N/A Sun Solaris
cserver Boolean N/A Compute server
fserver Boolean N/A File server
aix Boolean N/A AIX UNIX
type String N/A Host type
model String N/A Host model
status String N/A Host status
hname String N/A Host name
Administering Platform LSF



Chapter 8
Understanding Resources
TYPE_NAME
HPPA
SGI6
ALPHA
SUNSOL
RS6K
NTX86

MODEL_NAME CPU_FACTOR
DEC3000 10.00
R10K 14.00
PENT200 6.00
IBM350 7.00
SunSparc 6.00
HP735 9.00
HP715 5.00

lshosts Use lshosts to get a list of the resources defined on a specific host:

% lshosts hostA
HOST_NAME      type    model  cpuf ncpus maxmem maxswp server RESOURCES
hostA        SOL732   Ultra2  20.2     2   256M   679M    Yes ()

Viewing host load by resource
lshosts Use lshosts -s to view host load by shared resource:

% lshosts -s
RESOURCE VALUE LOCATION
tot_lic 5 host1 host2
tot_scratch 500 host1 host2

The above output indicates that 5 licenses are available, and that the shared 
scratch directory currently contains 500 MB of space.

The VALUE field indicates the amount of that resource. The LOCATION column 
shows the hosts which share this resource. The lshosts -s command 
displays static shared resources. The lsload -s command displays dynamic 
shared resources.
Administering Platform LSF 139



How Resources are Classified

140
How Resources are Classified
By values

By the way values
change

By definitions

By scope

Boolean resources
Boolean resources (for example, server to denote LSF server hosts) have a 
value of one (1) if they are defined for a host, and zero (0) if they are not 
defined for the host. Use Boolean resources to configure host attributes to be 
used in selecting hosts to run jobs. For example:

◆ Machines may have different types and versions of operating systems.

◆ Machines may play different roles in the system, such as file server or 
compute server.

◆ Some machines may have special-purpose devices needed by some 
applications.

◆ Certain software packages or licenses may be available only on some of 
the machines.

Specify a Boolean resource in a resource requirement selection string of a job 
to select only hosts that can run the job. For example, 

Boolean resources Resources that denote the availability of specific features

Numerical resources Resources that take numerical values, such as all the load 
indices, number of processors on a host, or host CPU factor

String resources Resources that take string values, such as host type, host 
model, host status

Dynamic Resources Resources that change their values dynamically: host status 
and all the load indices.

Static Resources Resources that do not change their values: all resources 
except for load indices or host status.

Site-Defined 
Resources

Resources defined by user sites: external load indices and 
resources defined in the lsf.shared file (shared resources).

Built-In Resources Resources that are always defined in LSF, such as load 
indices, number of CPUs, or total swap space.

Host-Based 
Resources

Resources that are not shared among hosts, but are tied to 
individual hosts, such as swap space, CPU, or memory. An 
application must run on a particular host to access the 
resources. Using up memory on one host does not affect the 
available memory on another host.

Shared Resources Resources that are not associated with individual hosts in the 
same way, but are owned by the entire cluster, or a subset of 
hosts within the cluster, such as floating licenses or shared file 
systems. An application can access such a resource from any 
host which is configured to share it, but doing so affects its 
value as seen by other hosts.
Administering Platform LSF



Chapter 8
Understanding Resources
Some examples of Boolean resources:

Shared resources
Shared resources are configured resources that are not tied to a specific host, 
but are associated with the entire cluster, or a specific subset of hosts within 
the cluster. For example:

◆ Floating licenses for software packages

◆ Disk space on a file server which is mounted by several machines

◆ The physical network connecting the hosts

An application may use a shared resource by running on any host from which 
that resource is accessible. For example, in a cluster in which each host has a 
local disk but can also access a disk on a file server, the disk on the file server 
is a shared resource, and the local disk is a host-based resource. In contrast to 
host-based resources such as memory or swap space, using a shared resource 
from one machine affects the availability of that resource as seen by other 
machines. There will be one value for the entire cluster which measures the 
utilization of the shared resource, but each host-based resource is measured 
separately.

LSF does not contain any built-in shared resources. All shared resources must 
be configured by the LSF administrator. A shared resource may be configured 
to be dynamic or static. In the above example, the total space on the shared 
disk may be static while the amount of space currently free is dynamic. A site 
may also configure the shared resource to report numeric, string or Boolean 
values.

The following restrictions apply to the use of shared resources in LSF products.

◆ A shared resource cannot be used as a load threshold in the Hosts section 
of the lsf.cluster.cluster_name file.

◆ A shared resource cannot be used in the loadSched/loadStop thresholds, 
or in the STOP_COND or RESUME_COND parameters in the queue 
definition in the lsb.queues file.

Resource Name Describes Meaning of Example Name

cs Role in cluster Compute server

fs Role in cluster File server

solaris Operating system Solaris operating system

frame Available software FrameMaker license
Administering Platform LSF 141



How Resources are Classified

142
Viewing shared resources for hosts
Run bhosts -s to view shared resources for hosts. For example:

% bhosts -s
RESOURCE TOTAL RESERVED LOCATION
tot_lic 5 0.0 hostA hostB
tot_scratch 00 0.0 hostA hostB
avail_lic 2 3.0 hostA hostB
avail_scratch 100 400.0 hostA hostB

The TOTAL column displays the value of the resource. For dynamic resources, 
the RESERVED column displays the amount that has been reserved by running 
jobs.
Administering Platform LSF



Chapter 8
Understanding Resources
How LSF Uses Resources
Jobs submitted through the LSF system will have the resources they use 
monitored while they are running. This information is used to enforce resource 
usage limits and load thresholds as well as for fairshare scheduling.

LSF collects information such as:

◆ Total CPU time consumed by all processes in the job

◆ Total resident memory usage in KB of all currently running processes in a 
job

◆ Total virtual memory usage in KB of all currently running processes in a job

◆ Currently active process group ID in a job

◆ Currently active processes in a job

On UNIX, job-level resource usage is collected through a special process called 
PIM (Process Information Manager). PIM is managed internally by LSF. 

Viewing job resource usage
The -l option of the bjobs command displays the current resource usage of 
the job. The usage information is sampled by PIM every 30 seconds and 
collected by sbatchd at a maximum frequency of every SBD_SLEEP_TIME 
(configured in the lsb.params file) and sent to mbatchd. The update is done 
only if the value for the CPU time, resident memory usage, or virtual memory 
usage has changed by more than 10 percent from the previous update, or if a 
new process or process group has been created.

Viewing load on a host
Use bhosts -l to check the load levels on the host, and adjust the suspending 
conditions of the host or queue if necessary. The bhosts -l command gives 
the most recent load values used for the scheduling of jobs. A dash (-) in the 
output indicates that the particular threshold is not defined.

% bhosts -l hostB
HOST: hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV
ok 20.00 2 2 0 0 0 0 0

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls t tmp swp mem

Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253M 297M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp me

m
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -
Administering Platform LSF 143



Load Indices

144
Load Indices
Load indices are built-in resources that measure the availability of dynamic, 
non-shared resources on hosts in the LSF cluster.

Load indices built into the LIM are updated at fixed time intervals.

External load indices are defined and configured by the LSF administrator. 
An External Load Information Manager (ELIM) program collects the values of 
site-defined external load indices and updates LIM when new values are 
received.

Load indices collected by LIM
.

Status
The status index is a string indicating the current status of the host. This 
status applies to the LIM and RES.

The possible values for status are:

Index Measures Units Direction Averaged 
over

Update 
Interval

status host status string 15 seconds

r15s run queue length processes increasing 15 seconds 15 seconds

r1m run queue length processes increasing 1 minute 15 seconds

r15m run queue length processes increasing 15 minutes 15 seconds

ut CPU utilization percent increasing 1 minute 15 seconds

pg paging activity pages in + pages out 
per second

increasing 1 minute 15 seconds

ls logins users increasing N/A 30 seconds

it idle time minutes decreasing N/A 30 seconds

swp available swap space MB decreasing N/A 15 seconds

mem available memory MB decreasing N/A 15 seconds

tmp available space in temporary 
file system

MB decreasing N/A 120 seconds

io disk I/O (shown by lsload -l) KB per second increasing 1 minute 15 seconds

name external load index configured by LSF administrator site-defined

Status Description

ok The host is available to accept remote jobs. The LIM can select the 
host for remote execution.

-ok When the status of a host is preceded by a dash (-), it means LIM is 
available but RES is not running on that host or is not responding.

busy The host is overloaded (busy) because a load index exceeded a 
configured threshold. An asterisk (*) marks the offending index. 
LIM will not select the host for interactive jobs.

lockW The host is locked by its run window. Use lshosts to display run 
windows.

lockU The host is locked by an LSF administrator or root.
Administering Platform LSF



Chapter 8
Understanding Resources
CPU run queue lengths (r15s, r1m, r15m)
The r15s, r1m and r15m load indices are the 15-second, 1-minute and 15-
minute average CPU run queue lengths. This is the average number of 
processes ready to use the CPU during the given interval.

On UNIX, run queue length indices are not necessarily the same as the load 
averages printed by the uptime(1) command; uptime load averages on some 
platforms also include processes that are in short-term wait states (such as 
paging or disk I/O).

Effective run
queue length

On multiprocessor systems, more than one process can execute at a time. LSF 
scales the run queue value on multiprocessor systems to make the CPU load 
of uniprocessors and multiprocessors comparable. The scaled value is called 
the effective run queue length.

Use lsload -E to view the effective run queue length.

Normalized run
queue length

LSF also adjusts the CPU run queue based on the relative speeds of the 
processors (the CPU factor). The normalized run queue length is adjusted for 
both number of processors and CPU speed. The host with the lowest 
normalized run queue length will run a CPU-intensive job the fastest.

Use lsload -N to view the normalized CPU run queue lengths.

CPU utilization (ut)
The ut index measures CPU utilization, which is the percentage of time spent 
running system and user code. A host with no process running has a ut value 
of 0 percent; a host on which the CPU is completely loaded has a ut of 100 
percent.

Paging rate (pg)
The pg index gives the virtual memory paging rate in pages per second. This 
index is closely tied to the amount of available RAM memory and the total size 
of the processes running on a host; if there is not enough RAM to satisfy all 
processes, the paging rate will be high. Paging rate is a good measure of how 
a machine will respond to interactive use; a machine that is paging heavily 
feels very slow.

Login sessions (ls)
The ls index gives the number of users logged in. Each user is counted once, 
no matter how many times they have logged into the host.

unavail The host is down or the LIM on the host is not running or is not 
responding.

unlicensed The host does not have a valid license.

Status Description
Administering Platform LSF 145



Load Indices

146
Interactive idle time (it)
On UNIX, the it index is the interactive idle time of the host, in minutes. Idle 
time is measured from the last input or output on a directly attached terminal 
or a network pseudo-terminal supporting a login session. This does not include 
activity directly through the X server such as CAD applications or emacs 
windows, except on Solaris and HP-UX systems.

On Windows NT, the it index is based on the time a screen saver has been 
active on a particular host.

Temporary directories (tmp)
The tmp index is the space available in MB on the file system that contains the 
temporary directory:

◆ /tmp on UNIX

◆ C:\temp on Windows NT

Swap space (swp)
The swp index gives the currently available virtual memory (swap space) in 
MB. This represents the largest process that can be started on the host.

Memory (mem)
The mem index is an estimate of the real memory currently available to user 
processes. This represents the approximate size of the largest process that 
could be started on a host without causing the host to start paging. 

LIM reports the amount of free memory available. LSF calculates free memory 
as a sum of physical free memory, cached memory, buffered memory and an 
adjustment value. The command vmstat also reports free memory but displays 
these values separately. There may be a difference between the free memory 
reported by LIM and the free memory reported by vmstat because of virtual 
memory behavior variations among operating systems. You can write an ELIM 
that overrides the free memory values returned by LIM.

I/O rate (io)
The io index measures I/O throughput to disks attached directly to this host, 
in KB per second. It does not include I/O to disks that are mounted from other 
hosts.
Administering Platform LSF



Chapter 8
Understanding Resources
Viewing information about load indices
lsinfo -l The lsinfo -l command displays all information available about load indices 

in the system. You can also specify load indices on the command line to 
display information about selected indices:

% lsinfo -l swp
RESOURCE_NAME: swp
DESCRIPTION: Available swap space (Mbytes) (alias: swap)
TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE
Numeric Dec 60 Yes Yes NO

lsload -l The lsload -l command displays the values of all load indices. External load 
indices are configured by your LSF administrator:

% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostN ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M
hostK -ok 0.0 0.0 0.0 3% 0.0 3 0 38M 40M 7M
hostF busy 0.1 0.1 0.3 7% *17 6 0 9M 23M 28M
hostG busy *6.2 6.9 9.5 85% 1.1 30 0 5M 400M 385M
hostV unavail
Administering Platform LSF 147



Static Resources

148
Static Resources
Static resources are built-in resources that represent host information that does 
not change over time, such as the maximum RAM available to user processes 
or the number of processors in a machine. Most static resources are determined 
by the LIM at start-up time, or when LSF detects hardware configuration 
changes.

Static resources can be used to select appropriate hosts for particular jobs 
based on binary architecture, relative CPU speed, and system configuration.

The resources ncpus, maxmem, maxswp, and maxtmp are not static on UNIX 
hosts that support dynamic hardware reconfiguration.

Static resources reported by LIM

CPU factor (cpuf)
The CPU factor is the speed of the host’s CPU relative to other hosts in the 
cluster. If one processor is twice the speed of another, its CPU factor should be 
twice as large. The CPU factors are defined by the LSF administrator. For 
multiprocessor hosts, the CPU factor is the speed of a single processor; LSF 
automatically scales the host CPU load to account for additional processors.

Server
The server static resource is Boolean. It has the following values:

◆ 1 if the host is configured to run jobs from other hosts

◆ 0 if the host is an LSF client for submitting jobs to other hosts

Index Measures Units Determined by

type host type string configuration

model host model string configuration

hname host name string configuration

cpuf CPU factor relative configuration

server host can run remote jobs Boolean configuration

rexpri execution priority nice(2) argument configuration

ncpus number of processors processors LIM

ndisks number of local disks disks LIM

maxmem maximum RAM MB LIM

maxswp maximum swap space MB LIM

maxtmp maximum space in /tmp MB LIM
Administering Platform LSF



Chapter 8
Understanding Resources
Automatic Detection of Hardware Reconfiguration
Some UNIX operating systems support dynamic hardware reconfiguration—
that is, the attaching or detaching of system boards in a live system without 
having to reboot the host. 

Supported platforms
LSF is able to recognize changes in ncpus, maxmem, maxswp, maxtmp in the 
following platforms: 

◆ Sun Solaris 2.5+ 

◆ HP-UX 10.10+ 

◆ Compaq Alpha 5.0+

◆ IBM AIX 4.0+

◆ SGI IRIX 6.2+

Dynamic changes in ncpus
LSF is able to automatically detect a change in the number of processors in 
systems that support dynamic hardware reconfiguration. 

The local LIM checks if there is a change in the number of processors at an 
internal interval of 2 minutes. If it detects a change in the number of 
processors, the local LIM also checks maxmem, maxswp, maxtmp. The local LIM 
then sends this new information to the master LIM. 

Dynamic changes in maxmem, maxswp, maxtmp
If you dynamically change maxmem, maxswp, or maxtmp without changing the 
number of processors, you need to restart the local LIM with the command 
lsadmin limrestart so that it can recognize the changes.

If you dynamically change the number of processors and any of maxmem, 
maxswp, or maxtmp, the change will be automatically recognized by LSF. When 
it detects a change in the number of processors, the local LIM also checks 
maxmem, maxswp, maxtmp.

Viewing dynamic hardware changes
lsxxx Commands There may be a 2 minute delay before the changes are recognized by lsxxx 

commands (for example, before lshosts displays the changes).

bxxx Commands There may be at most a 2 + 10 minute delay before the changes are recognized 
by bxxx commands (for example, before bhosts -l displays the changes). 

This is because mbatchd contacts the master LIM at an internal interval of 10 
minutes.

Platform
MultiCluster

Configuration changes from a local cluster are communicated from the master 
LIM to the remote cluster at an interval of 2 * CACHE_INTERVAL. The 
parameter CACHE_INTERVAL is configured in lsf.cluster.cluster_name 
and is by default 60 seconds.

This means that for changes to be recognized in a remote cluster there is a 
maximum delay of 2 minutes + 2*CACHE_INTERVAL.
Administering Platform LSF 149



Automatic Detection of Hardware Reconfiguration

150
How dynamic hardware changes affect LSF
LSF uses ncpus, maxmem, maxswp, maxtmp to make scheduling and load 
decisions. 

When processors are added or removed, LSF licensing is affected because LSF 
licenses are based on the number of processors. 

If you put a processor offline:

◆ Per host or per-queue load thresholds may be exceeded sooner. This is 
because LSF uses the number of CPUS and relative CPU speeds to calculate 
effective run queue length. 

◆ The value of CPU run queue lengths (r15s, r1m, and r15m) increases. 

◆ Jobs may also be suspended or not dispatched because of load thresholds.

◆ Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be 
exceeded sooner.

If you put a new processor online:

◆ Load thresholds may be reached later.

◆ The value of CPU run queue lengths (r15s, r1m, and r15m) is decreased.

◆ Jobs suspended due to load thresholds may be resumed.

Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be reached 
later.
Administering Platform LSF



C H A P T E R

9
Adding Resources

Contents ◆ “About Configured Resources” on page 152

◆ “Adding New Resources to Your Cluster” on page 153

◆ “Static Shared Resource Reservation” on page 157

◆ “External Load Indices and ELIM” on page 158

◆ “Modifying a Built-In Load Index” on page 163
Administering Platform LSF 151



About Configured Resources

152
About Configured Resources
LSF schedules jobs based on available resources. There are many resources 
built into LSF, but you can also add your own resources, and then use them 
same way as built-in resources.

For maximum flexibility, you should characterize your resources clearly 
enough so that users have satisfactory choices. For example, if some of your 
machines are connected to both Ethernet and FDDI, while others are only 
connected to Ethernet, then you probably want to define a resource called 
fddi and associate the fddi resource with machines connected to FDDI. This 
way, users can specify resource fddi if they want their jobs to run on machines 
connected to FDDI.
Administering Platform LSF



Chapter 9
Adding Resources
Adding New Resources to Your Cluster
To add host resources to your cluster, use the following steps:

1 Log in to any host in the cluster as the LSF administrator.

2 Define new resources in the Resource section of lsf.shared. Specify at 
least a name and a brief description, which will be displayed to a user by 
lsinfo.

See “Configuring lsf.shared Resource Section” on page 154.

3 For static Boolean resources, for all hosts that have the new resources, add 
the resource name to the RESOURCES column in the Host section of 
lsf.cluster.cluster_name.

4 For shared resources, for all hosts that have the new resources, associate 
the resources with the hosts (you might also have a reason to configure 
non-shared resources in this section).

See “Configuring lsf.cluster.cluster_name ResourceMap Section” on 
page 155.

5 Reconfigure your cluster.
Administering Platform LSF 153



Configuring lsf.shared Resource Section

154
Configuring lsf.shared Resource Section
Configured resources are defined in the Resource section of lsf.shared. 
There is no distinction between shared and non-shared resources.

You must specify at least a name and description for the resource, using the 
keywords RESOURCENAME and DESCRIPTION.

◆ A resource name cannot begin with a number.

◆ A resource name cannot contain any of the following characters
:  .  (  )  [  +  - *  /  !  &  | <  >  @  =

◆ A resource name cannot be any of the following reserved names:
cpu cpuf io login ls idle maxmem maxswp maxtmp type model 
status it mem ncpus ndisks pg r15m r15s r1m swap swp tmp ut

◆ Resource names are case sensitive

◆ Resource names can be up to 29 characters in length

You can also specify:

◆ The resource type (TYPE = Boolean | String | Numeric)

The default is Boolean.

◆ For dynamic resources, the update interval (INTERVAL, in seconds)

◆ For numeric resources, where a higher value indicates greater load 
(INCREASING = Y)

◆ For numeric shared resources, where LSF releases the resource when a job 
using the resource is suspended (RELEASE = Y)

When the optional attributes are not specified, the resource is treated as static 
and Boolean.

Example

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
mips Boolean () () (MIPS architecture)
dec Boolean () () (DECStation system)
scratch Numeric 30 N (Shared scratch space on server)
synopsys Numeric 30 N (Floating licenses for Synopsys)
verilog Numeric 30 N (Floating licenses for Verilog)
console String 30 N (User Logged in on console)
End Resource
Administering Platform LSF



Chapter 9
Adding Resources
Configuring lsf.cluster.cluster_name ResourceMap 
Section

Resources are associated with the hosts for which they are defined in the 
ResourceMap section of lsf.cluster.cluster_name.

For each resource, you must specify the name and the hosts that have it.

If the ResourceMap section is not defined, then any dynamic resources 
specified in lsf.shared are not tied to specific hosts, but are shared across 
all hosts in the cluster.

Example A cluster consists of hosts host1, host2, and host3.

Begin ResourceMap
RESOURCENAME LOCATION
verilog (5@[all ~host1 ~host2])
synopsys (2@[host1 host2] 2@[others])
console (1@[host1] 1@[host2]1@[host3])
xyz (1@[default])
End ResourceMap

In this example:

◆ 5 units of the verilog resource are defined on host3 only (all hosts 
except host1 and host2).

◆ 2 units of the synopsys resource are shared between host1 and host2. 2 
more units of the synopsys resource are defined on host3 (shared among 
all the remaining hosts in the cluster).

◆ 1 unit of the console resource is defined on each host in the cluster 
(assigned explicitly). 1 unit of the xyz resource is defined on each host in 
the cluster (assigned with the keyword default).

RESOURCENAME
The name of the resource, as defined in lsf.shared.

LOCATION
Defines the hosts that share the resource. For a static resource, you must define 
an initial value here as well. Do not define a value for a dynamic resource.

Possible states of a resource:

◆ Each host in the cluster has the resource

◆ The resource is shared by all hosts in the cluster

◆ There are multiple instances of a resource within the cluster, and each 
instance is shared by a unique subset of hosts.
Administering Platform LSF 155



Configuring lsf.cluster.cluster_name ResourceMap Section

156
Syntax
([resource_value@][host_name... | all [~host_name]... | others | default] 
...)

◆ For static resources, you must include the resource value, which indicates 
the quantity of the resource. Do not specify the resource value for dynamic 
resources because information about dynamic resources is updated by 
ELIM.

◆ Type square brackets around the list of hosts, as shown. You can omit the 
parenthesis if you only specify one set of hosts.

◆ Each set of hosts within square brackets specifies an instance of the 
resource. The same host cannot be in more than one instance of a resource. 
All hosts within the instance share the quantity of the resource indicated 
by its value.

◆ The keyword all refers to all the server hosts in the cluster, collectively. 
Use the not operator (~) to exclude hosts or host groups.

◆ The keyword others refers to all hosts not otherwise listed in the instance.

◆ The keyword default refers to each host in the cluster, individually.

Non-batch configuration
The following items should be taken into consideration when configuring 
resources under LSF Base.

◆ In lsf.cluster.cluster_name, the Host section must precede the 
ResourceMap section, since the ResourceMap section uses the host names 
defined in the Host section.

◆ The RESOURCES column in the Host section of the 
lsf.cluster.cluster_name file should be used to associate static 
Boolean resources with particular hosts. 

◆ Almost all resources specified in the ResourceMap section are interpreted 
by LSF commands as shared resources, which are displayed using 
lsload -s or lshosts -s. The exceptions are:

❖ Non-shared static resources

❖ Dynamic numeric resources specified using the default keyword. 
These are host-based resources and behave like the built-in load 
indices such as mem and swap. They are viewed using lsload -l or 
lsload -I.
Administering Platform LSF



Chapter 9
Adding Resources
Static Shared Resource Reservation
You must use resource reservation to prevent over-committing static shared 
resources when scheduling.

The usual situation is that you configure single-user application licenses as 
static shared resources, and make that resource one of the job requirements. 
You should also reserve the resource for the duration of the job. Otherwise, 
LSF updates resource information, assumes that all the static shared resources 
can be used, and places another job that requires that license. The additional 
job cannot actually run if the license is already taken by a running job.

If every job that requests a license and also reserves it, LSF updates the number 
of licenses at the start of each new dispatch turn, subtracts the number of 
licenses that are reserved, and only dispatches additional jobs if there are 
licenses available that are not already in use.

Reserving a static shared resource
To indicate that a shared resource is to be reserved while a job is running, 
specify the resource name in the rusage section of the resource requirement 
string.

Example You configured licenses for the Verilog application as a resource called 
verilog_lic. To submit a job that will run on a host when there is a license 
available:

% bsub -R "select[defined(verilog_lic)] rusage[verilog_lic=1]" 
myjob

If the job can be placed, the license it uses will be reserved until the job 
completes.
Administering Platform LSF 157



External Load Indices and ELIM

158
External Load Indices and ELIM
The LSF Load Information Manager (LIM) collects built-in load indices that 
reflect the load situations of CPU, memory, disk space, I/O, and interactive 
activities on individual hosts.

While built-in load indices might be sufficient for most jobs, you might have 
special workload or resource dependencies that require custom external load 
indices defined and configured by the LSF administrator. Load and shared 
resource information from external load indices, are used the same as built in 
load indices for job scheduling and host selection.

You can write an External Load Information Manager (ELIM) program that 
collects the values of configured external load indices and updates LIM when 
new values are received.

An ELIM can be as simple as a small script, or as complicated as a sophisticated 
C program. A well-defined protocol allows the ELIM to talk to LIM.

The ELIM executable must be located in LSF_SERVERDIR. 

◆ “How LSF supports multiple ELIMs” on page 158

◆ “Configuring your application-specific SELIM” on page 159

◆ “How LSF uses ELIM for external resource collection” on page 159

◆ “Writing an ELIM” on page 160

◆ “Debugging an ELIM” on page 162

How LSF supports multiple ELIMs
To increase LIM reliability, LSF Version 6.0 supports the configuration of 
multiple ELIM executables.

Master ELIM
(melim)

A master ELIM (melim) is installed in LSF_SERVERDIR.

melim manages multiple site-defined sub-ELIMs (SELIMs) and reports external 
load information to LIM. melim does the following:

◆ Starts and stops SELIMs

◆ Checks syntax of load information reporting on behalf of LIM

◆ Collects load information reported from SELIMs

◆ Merges latest valid load reports from each SELIM and sends merged load 
information back to LIM

ELIM failure Multiple slave ELIMs managed by a master ELIM increases reliability by 
protecting LIM:

◆ ELIM output is buffered

◆ Incorrect resource format or values are checked by ELIM

◆ SELIMs are independent of each other; one SELIM hanging while waiting 
for load information does not affect the other SELIMs

Error logging MELIM logs its own activities and data into the log file 
LSF_LOGDIR/melim.log.host_name. 
Administering Platform LSF



Chapter 9
Adding Resources
Configuring your application-specific SELIM
The master ELIM is installed as LSF_SERVERDIR/melim. After installation:

1 Define the external resources you need.

2 Write your application-specific SELIM to track these resources, as described 
in “Writing an ELIM” on page 160.

3 Put your ELIM in LSF_SERVERIR.

Naming your ELIM Use the following naming conventions:

◆ On UNIX, LSF_SERVERDIR/elim.application

For example, elim.license

◆ On Windows, LSF_SERVERDIR\elim.application.[exe |bat]

For example, elim.license.exe

Existing ELIMs Your existing ELIMs do not need to follow this convention and do not need to be 
renamed. However, since melim invokes any ELIM that follows this convention, you 
should move any backup copies of your ELIM out of LSF_SERVERDIR or choose a name 
that does not follow the convention (for example, use elim_bak instead of elim.bak).

elim.user is
reserved

The name elim.user is reserved for backward compatibility. Do not use the 
name elim.user for your application-specific elim. 

How LSF uses ELIM for external resource collection
The values of static external resources are specified through the 
lsf.cluster.cluster_name configuration file. The values of all dynamic 
resources, regardless of whether they are shared or host-based, are collected 
through an ELIM. 

When an ELIM is
started

An ELIM is started in the following situations:

◆ On every host, if any dynamic resource is configured as host-based. For 
example, if the LOCATION field in the ResourceMap section of 
lsf.cluster.cluster_name is ([default]), then every host will start 
an ELIM.

◆ On the master host, for any cluster-wide resources. For example, if the 
LOCATION field in the ResourceMap section of 
lsf.cluster.cluster_name is ([all]), then an ELIM is started on the 
master host.

◆ On the first host specified for each instance, if multiple instances of the 
resource exist within the cluster. For example, if the LOCATION field in the 
ResourceMap section of lsf.cluster.cluster_name is ([hostA 
hostB hostC] [hostD hostE hostF]), then an ELIM will be stared on 
hostA and hostD to report the value of that resource for that set of hosts.

If the host reporting the value for an instance goes down, then an ELIM is 
started on the next available host in the instance. In above example, if 
hostA became unavailable, an ELIM is started on hostB. If the hostA 
becomes available again then the ELIM on hostB is shut down and the one 
on hostA is started.
Administering Platform LSF 159



External Load Indices and ELIM

160
There is only one ELIM on each host, regardless of the number of resources 
on which it reports. If only cluster-wide resources are to be collected, then an 
ELIM will only be started on the master host.

Environment
variables

When LIM starts, the following environment variables are set for ELIM:

◆ LSF_MASTER: This variable is defined if the ELIM is being invoked on the 
master host. It is undefined otherwise. This can be used to test whether the 
ELIM should report on cluster-wide resources that only need to be 
collected on the master host.

◆ LSF_RESOURCES: This variable contains a list of resource names (separated 
by spaces) on which the ELIM is expected to report. A resource name is 
only put in the list if the host on which the ELIM is running shares an 
instance of that resource.

Writing an ELIM
The ELIM must be an executable program, either an interpreted script or 
compiled code. 

ELIM output The ELIM communicates with the LIM by periodically writing a load update 
string to its standard output. The load update string contains the number of 
indices followed by a list of name-value pairs in the following format:

number_indices [index_name index_value]...

For example,

3 tmp2 47.5 nio 344.0 licenses 5

This string reports three indices: tmp2, nio, and licenses, with values 47.5, 
344.0, and 5 respectively. Index values must be numbers between 
-INFINIT_LOAD and INFINIT_LOAD as defined in the lsf.h header file.

If the ELIM is implemented as a C program, as part of initialization it should 
use setbuf(3) to establish unbuffered output to stdout.

The ELIM should ensure that the entire load update string is written 
successfully to stdout. This can be done by checking the return value of 
printf(3s) if the ELIM is implemented as a C program or as the return code 
of /bin/echo(1) from a shell script. The ELIM should exit if it fails to write 
the load information.

Each LIM sends updated load information to the master every 15 seconds. 
Depending on how quickly your external load indices change, the ELIM 
should write the load update string at most once every 15 seconds. If the 
external load indices rarely change, the ELIM can write the new values only 
when a change is detected. The LIM continues to use the old values until new 
values are received.

ELIM location The executable for the ELIM must be in LSF_SERVERDIR.

Use the following naming conventions:

◆ On UNIX, LSF_SERVERDIR/elim.application

For example, elim.license

◆ On Windows, LSF_SERVERDIR\elim.application.[exe |bat]
Administering Platform LSF



Chapter 9
Adding Resources
For example, elim.license.exe

If LIM expects some resources to be collected by an ELIM according to 
configuration, it invokes the ELIM automatically on startup. The ELIM runs with 
the same user ID and file access permission as the LIM.

ELIM restart The LIM restarts the ELIM if it exits; to prevent problems in case of a fatal error 
in the ELIM, it is restarted at most once every 90 seconds. When the LIM 
terminates, it sends a SIGTERM signal to the ELIM. The ELIM must exit upon 
receiving this signal.

Example 1 Write an ELIM.

The following sample ELIM (LSF_SERVERDIR/elim.mysrc) sets the value 
of myrsc resource to 2. In a real ELIM, you would have a command to 
retrieve whatever value you want to retrieve and set the value. 

#!/bin/sh
while :
do
   # set the value for resource "myrsc"
   val=2

   # create an output string in the format:
   # number_indices index1_name index1_value...

   reportStr="1 myrsc $val"
   echo "$reportStr"

   # wait for 30 seconds before reporting again
   sleep 30
done

2 Test this ELIM by running it from the command line.
% ./elim.myrsc

It should give you the output:

1 myrsc 2

3 Copy the ELIM to LSF_SERVERDIR and make sure it has the name 
elim.myrsrc.

4 Define the myrsc resource in lsf.shared. 

In this case, we are defining the resource as Numeric because we want it 
to accept numbers. The value does not increase with load.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
myrsc Numeric 30 N (custom resource to trigger elim to 
start up)
End Resource

5 Map the myrsc resource to hosts in lsf.cluster.cluster_name. In this 
case, we want this resource to reside only on hostA.
Administering Platform LSF 161



External Load Indices and ELIM

162
Begin ResourceMap
RESOURCENAME LOCATION
myrsc [hostA]
End ResourceMap

6 Reconfigure LSF with the commands:
❖ lsadmin reconfig
❖ badmin mbdrestart

7 Display the resource with the command lsload -l. You should be able 
to see the new resource and value:

HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem myrsc
hostA ok 0.4 0.4 0.4 0% 0.0 0 22 0 24M 26M 6M 2

Additional
examples

Example code for an ELIM is included in the LSF_MISC/examples directory. 
The elim.c file is an ELIM written in C. You can modify this example to collect 
the load indices you want.

Debugging an ELIM
Set the parameter LSF_ELIM_DEBUG=y in the Parameters section of 
lsf.cluster.cluster_name to log all load information received by LIM 
from the ELIM in the LIM log file.

Set the parameter LSF_ELIM_BLOCKTIME=seconds in the Parameters section 
of lsf.cluster.cluster_name to configure how long LIM waits before 
restarting the ELIM.

Use the parameter LSF_ELIM_RESTARTS=integer in the Parameters section 
of lsf.cluster.cluster_name to limit the number of times an ELIM can 
be restarted.

See the Platform LSF Reference for more details on these parameters.
Administering Platform LSF



Chapter 9
Adding Resources
Modifying a Built-In Load Index
The ELIM can return values for the built-in load indices. In this case the value 
produced by the ELIM overrides the value produced by the LIM. 

Considerations
◆ The ELIM must ensure that the semantics of any index it supplies are the 

same as that of the corresponding index returned by the lsinfo(1) 
command.

◆ The name of an external load index must not be one of the resource name 
aliases: cpu, idle, login, or swap. To override one of these indices, use 
its formal name: r1m, it, ls, or swp as the ELIM output.

◆ You must configure an external load index in lsf.shared even if you are 
overriding a built-in load index.

Steps
For example, some sites prefer to use /usr/tmp for temporary files. 

To override the tmp load index:

1 Write a program that periodically measures the space in the /usr/tmp file 
system and writes the value to standard output. For details on format, see 
“Writing an ELIM” on page 160.

For example, the program writes to its standard output:

1 tmp 47.5

2 Name the program elim and store it in the LSF_SERVERDIR directory. 

All default load indices are local resources, so the elim must run locally 
on every machine.

3 Define the resource.

Since the name of built-in load indices is not allowed in lsf.shared, 
define a custom resource to trigger the elim.

For example:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
my_tmp Numeric 30 N (custom resource to trigger elim to 
start up)
End Resource

4 Map the resource to hosts in lsf.cluster.cluster_name.

❖ To override the tmp load index on every host, specify the keyword 
default:
Begin ResourceMap
RESOURCENAME LOCATION
my_tmp [default]
End ResourceMap
Administering Platform LSF 163



Modifying a Built-In Load Index

164
❖ To override the tmp load index only on specific hosts, specify the host 
names:
Begin ResourceMap
RESOURCENAME LOCATION
my_tmp ([host1][host2][host3])
End ResourceMap
Administering Platform LSF



P A R T

III
Scheduling Policies

Contents ◆ Chapter 10, “Time Syntax and Configuration”

◆ Chapter 11, “Deadline Constraint and Exclusive Scheduling”

◆ Chapter 12, “Preemptive Scheduling”

◆ Chapter 13, “Specifying Resource Requirements”

◆ Chapter 14, “Fairshare Scheduling”

◆ Chapter 15, “Goal-Oriented SLA-Driven Scheduling”





C H A P T E R

10
Time Syntax and Configuration

Contents ◆ “Specifying Time Values” on page 168

◆ “Specifying Time Windows” on page 169

◆ “Specifying Time Expressions” on page 170

◆ “Automatic Time-based Configuration” on page 171
Administering Platform LSF 167



Specifying Time Values

168
Specifying Time Values
To specify a time value, a specific point in time, specify at least the hour. Day 
and minutes are optional.

Time value syntax
time = hour | hour:minute | day:hour:minute 

hour integer from 0 to 23, representing the hour of the day.

minute integer from 0 to 59, representing the minute of the hour.

If you do not specify the minute, LSF assumes the first minute of the hour (:00). 

day integer from 0 (Sunday) to 6 (Saturday), representing the day of the week.

If you do not specify the day, LSF assumes every day. If you do specify the 
day, you must also specify the minute. 
Administering Platform LSF



Chapter 10
Time Syntax and Configuration
Specifying Time Windows
To specify a time window, specify two time values separated by a hyphen (-), 
with no space in between.

time_window = time1-time2

Time 1 is the start of the window and time 2 is the end of the window. Both 
time values must use the same syntax. There are 3 different ways to specify a 
time window:

◆ hour-hour

◆ hour:minute-hour:minute

◆ day:hour:minute-day:hour:minute

Examples of time windows
Daily window To specify a daily window omit the day field from the time window. Use either 

the hour-hour or hour:minute-hour:minute format. For example, to 
specify a daily 8:30 a.m. to 6:30 p.m window:

8:30-18:30

Overnight window To specify an overnight window make time1 greater than time2. For 
example, to specify 6:30 p.m. to 8:30 a.m. the following day:

18:30-8:30

Weekend window To specify a weekend window use the day field. For example, to specify Friday 
at 6:30 p.m to Monday at 8:30 a.m.:

5:18:30-1:8:30
Administering Platform LSF 169



Specifying Time Expressions

170
Specifying Time Expressions
Time expressions use time windows to specify when to change configurations. 
For more details on time windows, see “Specifying Time Windows” on 
page 169.

Time expression syntax
A time expression is made up of the time keyword followed by one or more 
space-separated time windows enclosed in parenthesis. Time expressions can 
be combined using the &&, ||, and ! logical operators. 

The syntax for a time expression is:

expression = time(time_window[ time_window ...])
| expression && expression
| expression || expression
| !expression

Example Both of the following expressions specify weekends (Friday evening at 6:30 
p.m. until Monday morning at 8:30 a.m.) and nights (8:00 p.m. to 8:30 a.m. 
daily). 

time(5:18:30-1:8:30 20:00-8:30)

time(5:18:30-1:8:30) || time(20:00-8:30)
Administering Platform LSF



Chapter 10
Time Syntax and Configuration
Automatic Time-based Configuration
Variable configuration is used to automatically change LSF configuration based 
on time windows. It is supported in the following files:

◆ lsb.hosts
◆ lsb.params
◆ lsb.queues
◆ lsb.users

You define automatic configuration changes in configuration files by using if-
else constructs and time expressions. After you change the files, reconfigure 
the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start 
time. When an expression evaluates true, LSF dynamically changes the 
configuration based on the associated configuration statements. 
Reconfiguration is done in real time without restarting mbatchd, providing 
continuous system availability.

lsb.hosts example In the following example, the #if, #else, #endif are not interpreted as 
comments by LSF but as if-else constructs.

Begin Host
HOST_NAME r15s r1m pg
host1 3/5 3/5 12/20
#if time(5:16:30-1:8:30 20:00-8:30)
host2 3/5 3/5 12/20
#else
host2 2/3 2/3 10/12
#endif
host3 3/5 3/5 12/20
End Host

lsb.queues
example

Begin Queue
...
#if time(8:30-18:30)

INTERACTIVE = ONLY # interactive only during day shift
#endif
...
End Queue
Administering Platform LSF 171



Automatic Time-based Configuration

172
Creating if-else constructs
The if-else construct can express single decisions and multi-way decisions by 
including elif statements in the construct.

If-else The syntax for constructing if-else expressions is:

#if time(expression)
statement
#else
statement
#endif

The #endif part is mandatory and the #else part is optional.

For syntax of a time expression, see “Specifying Time Expressions” on 
page 170.

Elif The #elif expressions are evaluated in order. If any expression is true, the 
associated statement is used, and this terminates the whole chain.

The #else part handles the default case where none of the other conditions 
are satisfied.

When you use #elif, the #else and #endif parts are mandatory.

#if time(expression)
statement
#elif time(expression)
statement
#elif time(expression)
statement
#else
statement
#endif

Verifying configuration
Use the following LSF commands to verify configuration:

◆ bparams(1)
◆ busers(1)
◆ bhosts(1)
◆ bqueues(1)
Administering Platform LSF



C H A P T E R

11
Deadline Constraint and

Exclusive Scheduling

Contents ◆ “Deadline Constraint Scheduling” on page 174

◆ “Exclusive Scheduling” on page 175
Administering Platform LSF 173



Deadline Constraint Scheduling

174
Deadline Constraint Scheduling

Deadline constraints
Deadline constraints will suspend or terminate running jobs at a certain time. 
There are 2 kinds of deadline constraints:

◆ A run window, specified at the queue level, suspends a running job

◆ A termination time, specified at the job level (bsub -t), terminates a 
running job

Time-based resource usage limits
◆ A CPU limit, specified at job or queue level, terminates a running job when 

it has used up a certain amount of CPU time.

◆ A run limit, specified at the job or queue level, terminates a running job 
after it has spent a certain amount of time in the RUN state.

How deadline constraint scheduling works
If deadline constraint scheduling is enabled, LSF will not place a job that will 
be interrupted by a deadline constraint before its run limit expires, or before 
its CPU limit expires, if the job has no run limit. In this case, deadline constraint 
scheduling could prevent a job from ever starting. If a job has neither a run 
limit nor a CPU limit, deadline constraint scheduling has no effect.

Deadline constraint scheduling only affects the placement of jobs. Once a job 
starts, if it is still running at the time of the deadline, it will be suspended or 
terminated because of the deadline constraint or resource usage limit.

Disabling deadline constraint scheduling
Deadline constraint scheduling is enabled by default. To disable it for a queue, 
set IGNORE_DEADLINE=y in lsb.queues.

Example LSF will schedule jobs in the liberal queue without observing the deadline 
constraints.

Begin Queue
QUEUE_NAME = liberal
IGNORE_DEADLINE=y
End Queue
Administering Platform LSF



Chapter 11
Deadline Constraint and Exclusive Scheduling
Exclusive Scheduling

About exclusive scheduling
Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF 
dispatches the job to a host that has no other jobs running, and does not place 
any more jobs on the host until the exclusive job is finished.

How exclusive scheduling works
When an exclusive job (bsub -x) is submitted to an exclusive queue 
(EXCLUSIVE = Y in lsb.queues) and dispatched to a host, LSF locks the host 
(lockU status) until the job finishes. 

LSF cannot place an exclusive job unless there is a host that has no jobs 
running on it. 

To make sure exclusive jobs can be placed promptly, configure some hosts to 
run one job at a time. Otherwise, a job could wait indefinitely for a host in a 
busy cluster to become completely idle.

An exclusive job cannot preempt another job, and cannot be preempted by 
another job.

Configuring an exclusive queue
To configure an exclusive queue, set EXCLUSIVE in the queue definition 
(lsb.queues) to Y.

Configuring a host to run one job at a time
To make sure exclusive jobs can be placed promptly, configure some single-
processor hosts to run one job at a time. To do so, set SLOTS=1 and HOSTS=all 
in lsb.resources.

Submitting an exclusive job
To submit an exclusive job, use the -x option of bsub and submit the job to 
an exclusive queue.
Administering Platform LSF 175



Exclusive Scheduling

176
 Administering Platform LSF



C H A P T E R

12
Preemptive Scheduling

Contents ◆ “About Preemptive Scheduling” on page 178

◆ “How Preemptive Scheduling Works” on page 179

◆ “Configuring Preemptive Scheduling” on page 181
Administering Platform LSF 177



About Preemptive Scheduling

178
About Preemptive Scheduling
Preemptive scheduling lets a pending high-priority job take resources away 
from a running job of lower priority. When 2 jobs compete for the same 
resource, LSF automatically suspends the low-priority job to make resources 
available to the high-priority job. The low-priority job is resumed as soon as 
possible.

Use preemptive scheduling if you have long-running low-priority jobs causing 
high-priority jobs to wait an unacceptably long time.

Limitation The following types of jobs cannot be preempted:

◆ Jobs that have been forced to run with the command brun

◆ NQS jobs 

◆ Backfill jobs

◆ Exclusive jobs

Preemptive and preemptable queues
Preemptive

queues
Jobs in a preemptive queue can preempt jobs in any queue of lower priority, 
even if the low-priority queues are not specified as preemptable.

Preemptable
queues

Jobs in a preemptable queue can be preempted by jobs from any queue of a 
higher priority, even if the high-priority queues are not specified as 
preemptive.

Preemptive and preemptable jobs 
Preemptive jobs Preemptive jobs are pending in a high-priority queue and require the specified 

resource. Their queue must be able to preempt the low-priority queue.

Preemptable jobs Preemptable jobs are running in a low-priority queue and are holding the 
specified resource. Their queue must be able to be preempted by the high-
priority queue.
Administering Platform LSF



Chapter 12
Preemptive Scheduling
How Preemptive Scheduling Works
Preemptive scheduling occurs when two jobs compete for the same resource. 
If a high-priority job is pending, LSF can suspend a lower priority job that is 
running, and then start the high-priority job using the job slot that becomes 
available. For this to happen, the high-priority job must be pending in a 
preemptive queue, or the low-priority job must belong to a preemptable 
queue. 

By default, when multiple preemptable jobs exist (low-priority jobs holding the 
required resource), LSF preempts a job from the least-loaded host.

The preempted job is resumed as soon as more resources become available; it 
does not necessarily have to wait for the preempting job to finish.

Queues that can preempt others are more aggressive in scheduling jobs 
because a resource that is not available to a low-priority queue might be 
available (by preemption) to a high-priority queue.

By default, job slot limits are enforced based on the number of job slots taken 
by running and suspended jobs. With preemptive scheduling, the suspended 
jobs don’t count against certain job slot limits. This means that when one job 
is suspended, another job can be started in its place.

LSF makes sure that the number of running jobs never exceeds the job slot 
limits. When LSF tries to place a preemptive job, LSF considers each job slot 
limit, but for certain job slot limits, LSF only counts the job slots used by 
running jobs that are not preemptable. Then, if starting the preemptive job 
would violate job slot limits, LSF suspends one or more low-priority jobs.

Job slot limits affected by preemptive scheduling
When you enable preemptive scheduling, you automatically affect the 
following job slot limits:

◆ Total job slot limit for hosts, specified at the host level (SLOTS and HOSTS 
in lsb.resources)

◆ Total job slot limit for individual users, specified at the user level (SLOTS 
and USERS in lsb.resources); by default, suspended jobs still count 
against the limit for user groups

You can configure preemptive scheduling to affect following limits:

◆ Total job slot limit for user groups, specified at the user level (SLOTS and 
USERS in lsb.resources); if preemptive scheduling is enabled, 
suspended jobs never count against the limit for individual users

◆ Total number of jobs for users and user groups, specified at the host level 
(SLOTS, PER_USER=all, and HOSTS in lsb.resources)

◆ Per-processor job slot limit for individual users, specified at the user level 
(SLOTS_PER_PROCESSOR, USERS, and PER_HOST=all in 
lsb.resources)

◆ Per-processor job slot limit for user groups, specified at the user level 
(SLOTS_PER_PROCESSOR, USERS, and PER_HOST=all in 
lsb.resources)
Administering Platform LSF 179



How Preemptive Scheduling Works

180
Job slot limits specified at the queue level are never affected by preemptive 
scheduling; they are always enforced for both running and suspended jobs.

Preemption of multiple job slots
If multiple resources are required, LSF can preempt multiple jobs, until 
sufficient resources are available. For example, one or more jobs might be 
preempted for a job that needs multiple job slots.

Preemption of parallel jobs
When a high-priority parallel job preempts multiple low-priority parallel jobs, 
sometimes LSF preempts more low-priority jobs than are necessary to release 
sufficient job slots to start the high-priority job.

Use the PREEMPT_FOR parameter in lsb.params to enable the optimized 
preemption of parallel jobs, so LSF preempts fewer of the low-priority parallel 
jobs.

See “Optimized Preemption of Parallel Jobs” on page 460 for more 
information.
Administering Platform LSF



Chapter 12
Preemptive Scheduling
Configuring Preemptive Scheduling
To configure preemptive scheduling, make at least one queue in the cluster 
preemptive (not the lowest-priority queue) or preemptable (not the highest-
priority queue).

To make a queue preemptive or preemptable, set PREEMPTION in the queue 
definition (lsb.queues) to PREEMPTIVE or PREEMPTABLE. A queue can be 
both: its jobs can always preempt jobs in lower priority queues, and can always 
be preempted by jobs from higher priority queues.

Syntax PREEMPTION = PREEMPTIVE[[queue_name[+pref_level]...]] 
PREEMPTABLE[[queue_name...]]

When you specify a list of queues, you must enclose the list in one set of 
square brackets.

PREEMPTIVE[[queue_name[+pref_level] ...]]
Defines a preemptive queue. Jobs in this queue can preempt jobs from 
specified lower priority queues only, or from all lower priority queues by 
default if the parameter is specified with no queue names.

If you specify a list of lower-priority preemptable queues, you must enclose 
the list in one set of square brackets. To indicate an order of preference for the 
lower-priority queues, put a plus sign (+) after the names of queues and a 
preference level as a positive integer. See “Configuring preemptable queue 
preference” on page 182 for more information.

PREEMPTABLE [[queue_name ...]]
Defines a preemptable queue. Jobs in this queue can be preempted by jobs 
from specified higher-priority queues, or from all higher-priority queues by 
default (if the parameter is specified with no queue names), even if the higher-
priority queues are not preemptive.

If you specify a list of higher-priority queues, you must enclose the list in one 
set of square brackets.

Example In these examples, assume Queue 1 has highest priority and Queue 4 the 
lowest.

◆ If the following settings are in lsb.queues:
QUEUE_NAME=Queue1
PREEMPTION=PREEMPTIVE

Queue 1 is preemptive, so it can preempt jobs in all lower-priority queues 
(Queues 2, 3 and 4).

◆ If the following settings are in lsb.queues:
QUEUE_NAME=Queue1
PREEMPTION=PREEMPTIVE[Queue3 Queue4]

Queue 1 is preemptive, but can only preempt jobs in Queues 3 and 4, not 
Queue 2.

◆ If the following settings are in lsb.queues:
QUEUE_NAME=Queue3
PREEMPTION=PREEMPTIVE PREEMPTABLE
Administering Platform LSF 181



Configuring Preemptive Scheduling

182
Queue 3 is preemptive and preemptable, so it can preempt jobs in all 
lower-priority queues (Queue 4), and its jobs can be preempted by all 
higher-priority queues (Queues 1 and 2).

Configuring additional job slot limits for preemptive scheduling
The following job slot limits are always affected by preemptive scheduling:

◆ Total job slot limit for hosts, specified at the host level (SLOTS and HOSTS 
in lsb.resources)

◆ Total job slot limit for individual users, specified at the user level (SLOTS 
and USERS in lsb.resources); by default, suspended jobs still count 
against the limit for user groups

PREEMPT_FOR in
lsb.params

To configure additional job slot limits to be affected by preemptive scheduling, 
set PREEMPT_FOR in lsb.params, and use one or more of the following 
keywords to indicate that suspended jobs do not count against that job slot 
limit:

◆ GROUP_MAX—total job slot limit for user groups, specified at the user 
level (MAX_JOBS in lsb.users); if preemptive scheduling is enabled, 
suspended jobs never count against the limit for individual users

◆ HOST_JLU—total number of jobs for users and user groups, specified at 
the host level (JL/U in lsb.hosts)

◆ USER_JLP—user-processor job slot limit for individual users, specified at 
the user level (JL/P in lsb.users)

◆ GROUP_JLP—per-processor job slot limit for user groups, specified at the 
user level (JL/P in lsb.users)

Job slot limits specified at the queue level are never affected by preemptive 
scheduling.

Configuring preemptable queue preference
For preemptive queues, you can specify which preemptable queues are 
considered first for preemption by configuring queue preference in the queue 
with the highest priority.

To indicate the order of preference for the preemptable queues, put a plus sign 
(+) after the names of the preemptable queues and a preference level as a 
positive integer. Higher numbers indicate higher preferences for preempting a 
job in that queue. If no queue preference is specified, it is assumed to be 0. If 
there are multiple queues, LSF preempts jobs in the queue with the highest 
preference; queues at the same level of preference are ordered by queue 
priority.

When preemtable queue preference is enabled, LSF considers jobs from 
preferred queues first instead of choosing running jobs based on best hosts:

◆ Queues with a preference number are preferred over queues without a 
preference number

◆ Queues with a higher preference number are preferred over queues with 
lower preference number
Administering Platform LSF



Chapter 12
Preemptive Scheduling
◆ For queues without a preference number, the queue with lower-priority is 
preferred than the queue with higher priority

Example Begin Queue
QUEUE_NAME      = high_priority
PRIORITY        = 50     
PREEMPTION      = PREEMPTIVE[low_q1+2   low_q2    low_q3]
End Queue

Jobs from low_q1 are preferred first for preemption before jobs from low_q2 
and low_q3. 

If preemptable queue preference and preemption on jobs with least run time 
are both enabled, the queue preference for the job is considered first, then the 
job run time.

Preempting jobs with the least run time 
By default, when more than one preemptable job exists (low-priority jobs 
holding the required resource), LSF preempts a job from the least-loaded host.

You can configure LSF to consider the jobs with least run time first instead of 
choosing jobs based on least-loaded host. Run time is wall-clock time, not 
normalized run time.

If preemptable queue preference and preemption on jobs with least run time 
are both enabled, the queue preference for the job is considered first, then the 
job run time.

Configuring
preemption on
least run time

Set PREEMPT_FOR in lsb.params, and use the LEAST_RUN_TIME keyword 
to indicate that jobs with the least run time are to be preempted before other 
jobs.

Preventing preemption by run time 
You can configure LSF to prevent preemption of a job that would finish within 
a specified time or that has been running for a specified time. Run time is wall-
clock time, not normalized run time.

You must define a run limit for the job, either at job level by bsub -W option 
or in the queue by configuring RUNLIMIT in lsb.queues.

NO_PREEMPT_RUN_TIME, NO_PREEMPT_FINISH_TIME (lsb.params)
Set NO_PREEMPT_RUN_TIME in lsb.params, and the jobs have been 
running for the specified number of minutes or longer will not be preempted.

Set NO_PREEMPT_FINISH_TIME in lsb.params, and jobs that will finish 
within the specified number of minutes will not be preempted.
Administering Platform LSF 183



Configuring Preemptive Scheduling

184
 Administering Platform LSF



C H A P T E R

13
Specifying Resource

Requirements

Contents ◆ “About Resource Requirements” on page 186

◆ “Queue-Level Resource Requirements” on page 187

◆ “Job-Level Resource Requirements” on page 189

◆ “About Resource Requirement Strings” on page 190

◆ “Selection String” on page 192

◆ “Order String” on page 194

◆ “Usage String” on page 195

◆ “Span String” on page 198

◆ “Same String” on page 199
Administering Platform LSF 185



About Resource Requirements

186
About Resource Requirements
Resource requirements define which hosts a job can run on. Each job has its 
resource requirements. Hosts that match the resource requirements are the 
candidate hosts. When LSF schedules a job, it uses the load index values of all 
the candidate hosts. The load values for each host are compared to the 
scheduling conditions. Jobs are only dispatched to a host if all load values are 
within the scheduling thresholds.

By default, if a job has no resource requirements, LSF places it on a host of the 
same type as the submission host (i.e., type==any). However, if a job has 
string or Boolean resource requirements specified and the host type has not 
been specified, LSF places the job on any host (i.e., type==any) that satisfies 
the resource requirements.

To override the LSF defaults, specify resource requirements explicitly. Resource 
requirements can be set for queues, for individual applications, or for 
individual jobs.

To best place a job with optimized performance, resource requirements can be 
specified for each application. This way, you do not have to specify resource 
requirements every time you submit a job. The LSF administrator may have 
already configured the resource requirements for your jobs, or you can put 
your executable name together with its resource requirements into your 
personal remote task list.

The bsub command automatically uses the resource requirements of the job 
from the remote task lists.

A resource requirement is an expression that contains resource names and 
operators.
Administering Platform LSF



Chapter 13
Specifying Resource Requirements
Queue-Level Resource Requirements
Each queue can define resource requirements that will be applied to all the 
jobs in the queue.

When resource requirements are specified for a queue, and no job-level 
resource requirement is specified, the queue-level resource requirements 
become the default resource requirements for the job.

Syntax The condition for dispatching a job to a host can be specified through the 
queue-level RES_REQ parameter in the queue definition in lsb.queues.

Examples
RES_REQ=select[((type==ALPHA && r1m < 2.0)||(type==HPPA && r1m < 1.0))]

This will allow a queue, which contains ALPHA and HPPA hosts, to have 
different thresholds for different types of hosts.

RES_REQ=select[((hname==hostA && mem > 50)||(hname==hostB && mem > 100))]

Using the hname resource in the resource requirement string allows you to set 
up different conditions for different hosts in the same queue.

Load thresholds
Load thresholds can be configured by your LSF administrator to schedule jobs 
in queues. Load thresholds specify a load index value. There are two types of 
load thresholds: 

loadSched The scheduling threshold which determines the load condition for dispatching 
pending jobs. If a host’s load is beyond any defined loadSched, a job will not 
be started on the host. This threshold is also used as the condition for resuming 
suspended jobs.

loadStop The suspending condition that determines when running jobs should be 
suspended.

Thresholds can be configured for each queue, for each host, or a combination 
of both. To schedule a job on a host, the load levels on that host must satisfy 
both the thresholds configured for that host and the thresholds for the queue 
from which the job is being dispatched.

The value of a load index may either increase or decrease with load, 
depending on the meaning of the specific load index. Therefore, when 
comparing the host load conditions with the threshold values, you need to use 
either greater than (>) or less than (<), depending on the load index.

See Chapter 27, “Load Thresholds” for information about suspending 
conditions and configuring load thresholds.
Administering Platform LSF 187



Queue-Level Resource Requirements

188
Viewing queue-level resource requirements
Use bqueues -l to view resource requirements (RES_REQ) defined for the 
queue:

% bqueues -l normal

QUEUE: normal
  -- No description provided.  This is the default queue.
...
RES_REQ:  select[type==any] rusage[mem=10,dynamic_rsrc=10:duration=2:decay=1]
...
Administering Platform LSF



Chapter 13
Specifying Resource Requirements
Job-Level Resource Requirements
Each job can specify resource requirements. Job-level resource requirements 
override any resource requirements specified in the remote task list.

In some cases, the queue specification sets an upper or lower bound on a 
resource. If you attempt to exceed that bound, your job will be rejected.

Syntax To specify resource requirements for your job, use bsub -R and specify the 
resource requirement string as usual.

Example % bsub -R "swp > 15 && hpux order[cpu]" myjob

This runs myjob on an HP-UX host that is lightly loaded (CPU utilization) and 
has at least 15 MB of swap memory available.

Viewing job-level resource requirements
Use bjobs -l to view resource requirements defined for the job:

% bsub -R type==any -q normal myjob
Job <2533> is submitted to queue <normal>.

% bjobs -l 2533
Job <2533>, User <user1>, Project <default>, Status <DONE>, 
Queue <normal>,

     Command <myjob>
Fri May 10 17:21:26: Submitted from host <hostA>, CWD <$HOME>, 
Requested Resources <type==any>;
Fri May 10 17:21:31: Started on <hostB>, Execution Home 
</home/user1>,Execution CWD </home/user1>;
Fri May 10 17:21:47: Done successfully. The CPU time used is 
0.3 seconds.
...

After a job is finished, use bhist -l to view resource requirements defined 
for the job:

% bhist -l 2533

Job <2533>, User <user1>, Project <default>, Command <myjob>
Fri May 10 17:21:26: Submitted from host <hostA>, to Queue 
<normal>, CWD

     <$HOME>, Requested Resources <type==any>;
Fri May 10 17:21:31: Dispatched to <hostB>;
Fri May 10 17:21:32: Starting (Pid 1850232);
Fri May 10 17:21:33: Running with execution home 
</home/user1>, Execution

     CWD </home/user1>, Execution Pid <1850232>;
Fri May 10 17:21:45: Done successfully. The CPU time used is 
0.3 seconds;
...
Administering Platform LSF 189



About Resource Requirement Strings

190
About Resource Requirement Strings
Most LSF commands accept a -R res_req argument to specify resource 
requirements. The exact behaviour depends on the command. For example, 
specifying a resource requirement for the lsload command displays the load 
levels for all hosts that have the requested resources. 

Specifying resource requirements for the lsrun command causes LSF to select 
the best host out of the set of hosts that have the requested resources.

A resource requirement string describes the resources a job needs. LSF uses 
resource requirements to select hosts for remote execution and job execution.

Resource requirement string sections
◆ A selection section (select). The selection section specifies the criteria for 

selecting hosts from the system.

◆ An ordering section (order). The ordering section indicates how the hosts 
that meet the selection criteria should be sorted.

◆ A resource usage section (rusage). The resource usage section specifies 
the expected resource consumption of the task.

◆ A job spanning section (span). The job spanning section indicates if a 
parallel batch job should span across multiple hosts.

◆ A same resource section (same). The same section indicates that all 
processes of a parallel job must run on the same type of host.

Which sections
apply

Depending on the command, one or more of these sections may apply. For 
example:

◆ bsub uses all sections

◆ lshosts only selects hosts, but does not order them

◆ lsload selects and orders hosts

◆ lsplace uses the information in select, order, and rusage sections to 
select an appropriate host for a task

◆ lsloadadj uses the rusage section to determine how the load 
information should be adjusted on a host

Syntax select[selection_string] order[order_string] 
rusage[usage_string [, usage_string] ...] span[span_string] 
same[same_string]

The square brackets must be typed as shown.

The section names are select, order, rusage, span, and same. Sections that 
do not apply for a command are ignored.

If no section name is given, then the entire string is treated as a selection string. 
The select keyword may be omitted if the selection string is the first string in 
the resource requirement.

Each section has a different syntax.
Administering Platform LSF



Chapter 13
Specifying Resource Requirements
How queue-level and job-level requirements are resolved
If job-level resource requirements are specified together with queue-level 
resource requirements:

◆ In a select string, a host must satisfy both queue-level and job-level 
requirements for the job to be dispatched.

◆ order and span sections defined at the queue level are ignored if different 
order and span requirements are specified at the job level. The default 
order string is r15s:pg.

◆ For usage strings, the rusage section defined for the job overrides the 
rusage section defined in the queue. The two rusage definitions are 
merged, with the job-level rusage taking precedence. 

For internal load indices and duration, jobs are rejected if they specify 
resource reservation requirements that exceed the requirements specified 
at the queue level.
Administering Platform LSF 191



Selection String

192
Selection String
The selection string specifies the characteristics a host must have to match the 
resource requirement. It is a logical expression built from a set of resource 
names. The selection string is evaluated for each host; if the result is non-zero, 
then that host is selected.

Syntax The selection string can combine resource names with logical and arithmetic 
operators. Non-zero arithmetic values are treated as logical TRUE, and zero (0) 
as logical FALSE. Boolean resources (for example, server to denote LSF server 
hosts) have a value of one (1) if they are defined for a host, and zero (0) if they 
are not defined for the host.

The resource names swap, idle, login, and cpu are accepted as aliases for 
swp, it, ls, and r1m respectively. 

For ut, specify the percentage CPU utilization as an integer between 0-100.

For the string resources type and model, the special value any selects any 
value and local selects the same value as that of the local host. For example, 
type==local selects hosts of the same type as the host submitting the job. If 
a job can run on any type of host, include type==any in the resource 
requirements. 

If no type is specified, the default depends on the command. For bsub, 
lsplace, lsrun, and lsgrun the default is type==local unless a string or 
Boolean resource is specified, in which case it is type==any. For lshosts, 
lsload, lsmon and lslogin the default is type==any. 

Selecting shared
string resources

You must use single quote characters (') around string-type shared resources. 
For example, use lsload -s to see the shared resources defined for the 
cluster:

$ lsload -s
RESOURCE                                VALUE       LOCATION
os_version                                4.2       pc36
os_version                                4.0       pc34
os_version                                4.1       devlinux4
cpu_type                                   ia       pc36
cpu_type                                   ia       pc34
cpu_type                              unknown       devlinux4

Use a select string in lsload -R to specify the shared resources you want to 
view, enclosing the shared resource values in single quotes. For example:

$ lsload -R "select[os_version=='4.2' || cpu_type=='unknown']" 
HOST_NAME       status  r15s   r1m  r15m   ut    pg  ls    it   tmp   swp   mem
pc36                ok   0.0   0.2   0.1   1%   3.4   3     0  895M  517M  123M
devlinux4           ok   0.0   0.1   0.0   0%   2.8   4     0 6348M  504M  205M
Administering Platform LSF



Chapter 13
Specifying Resource Requirements
Operators These operators can be used in selection strings. The operators are listed in 
order of decreasing precedence.

Examples select[(swp > 50 && type == MIPS) || (swp > 35 && type == 
ALPHA)]

select[((2*r15s + 3*r1m + r15m) / 6 < 1.0) && !fs && (cpuf > 
4.0)]

Specifying shared resources with the keyword “defined”
A shared resource may be used in the resource requirement string of any LSF 
command. For example when submitting an LSF job which requires a certain 
amount of shared scratch space, you might submit the job as follows:

% bsub -R "avail_scratch > 200 && swap > 50" myjob

The above assumes that all hosts in the cluster have access to the shared 
scratch space. The job will only be scheduled if the value of the 
"avail_scratch" resource is more than 200 MB and will go to a host with at 
least 50 MB of available swap space.

It is possible for a system to be configured so that only some hosts within the 
LSF cluster have access to the scratch space. In order to exclude hosts which 
cannot access a shared resource, the defined(resource_name) function 
must be specified in the resource requirement string.

For example:

% bsub -R "defined(avail_scratch) && avail_scratch > 100 && 
swap > 100" myjob

would exclude any hosts which cannot access the scratch resource. The LSF 
administrator configures which hosts do and do not have access to a particular 
shared resource.

Syntax Meaning

-a
!a

Negative of a
Logical not: 1 if a==0, 0 otherwise

a * b
a / b

Multiply a and b
Divide a by b

a + b
a - b

Add a and b
Subtract b from a

a > b
a < b
a >= b
a <= b

1 if a is greater than b, 0 otherwise
1 if a is less than b, 0 otherwise
1 if a is greater than or equal to b, 0 otherwise
1 if a is less than or equal to b, 0 otherwise

a == b
a != b

1 if a is equal to b, 0 otherwise
1 if a is not equal to b, 0 otherwise

a && b Logical AND: 1 if both a and b are non-zero, 0 otherwise

a || b Logical OR: 1 if either a or b is non-zero, 0 otherwise
Administering Platform LSF 193



Order String

194
Order String
The order string allows the selected hosts to be sorted according to the values 
of resources. The values of r15s, r1m, and r15m used for sorting are the 
normalized load indices returned by lsload -N.

The order string is used for host sorting and selection. The ordering begins 
with the rightmost index in the order string and proceeds from right to left. The 
hosts are sorted into order based on each load index, and if more hosts are 
available than were requested, the LIM drops the least desirable hosts 
according to that index. The remaining hosts are then sorted by the next index.

After the hosts are sorted by the leftmost index in the order string, the final 
phase of sorting orders the hosts according to their status, with hosts that are 
currently not available for load sharing (that is, not in the ok state) listed at the 
end.

Because the hosts are sorted again for each load index, only the host status 
and the leftmost index in the order string actually affect the order in which 
hosts are listed. The other indices are only used to drop undesirable hosts from 
the list.

When sorting is done on each index, the direction in which the hosts are sorted 
(increasing vs. decreasing values) is determined by the default order returned 
by lsinfo for that index. This direction is chosen such that after sorting, by 
default, the hosts are ordered from best to worst on that index.

Syntax [-]resource_name [:[-]resource_name]...

You can specify any built-in or external load index.

When an index name is preceded by a minus sign ‘-’, the sorting order is 
reversed so that hosts are ordered from worst to best on that index.

Default The default sorting order is r15s:pg (except for lslogin(1): ls:r1m).

Example swp:r1m:tmp:r15s
Administering Platform LSF



Chapter 13
Specifying Resource Requirements
Usage String
This string defines the expected resource usage of the job. It is used to specify 
resource reservations for jobs, or for mapping jobs on to hosts and adjusting 
the load when running interactive jobs.

By default, no resources are reserved.

Batch jobs
The resource usage (rusage) section can be specified at the job level or with 
the queue configuration parameter RES_REQ.

Syntax rusage[usage_string [, usage_string] ...]

where usage_string is:

load_index=value [:load_index=value]... [:duration=minutes[m] | 
:duration=hoursh | :duration=secondss [:decay=0 | :decay=1]]

Load index Internal and external load indices are considered in the resource usage string. 
The resource value represents the initial reserved amount of the resource.

Duration The duration is the time period within which the specified resources should be 
reserved. Specify a duration equal to or greater than the ELIM updating 
interval.

◆ If the value is followed by the letter s, m, or h, the specified time is 
measured in seconds, minutes, or hours respectively.

◆ By default, duration is specified in minutes.

For example, the following specify a duration of 1 hour:

❖ duration=60
❖ duration=1h
❖ duration=3600s

Duration is not supported for static shared resources. If the shared resource is defined 
in an lsb.resources Limit section, then duration is not applied.

Decay The decay value indicates how the reserved amount should decrease over the 
duration.

◆ A value of 1 indicates that system should linearly decrease the amount 
reserved over the duration.

◆ A value of 0 causes the total amount to be reserved for the entire duration.

Values other than 0 or 1 are unsupported. If duration is not specified, decay 
value is ignored.

Decay is not supported for static shared resources. If the shared resource is defined 
in an lsb.resources Limit section, then decay is not applied.

Default If a resource or its value is not specified, the default is not to reserve that 
resource. If duration is not specified, the default is to reserve the total amount 
for the lifetime of the job. The default decay value is 0.
Administering Platform LSF 195



Usage String

196
Example rusage[mem=50:duration=100:decay=1]

This example indicates that 50 MB memory should be reserved for the job. As 
the job runs, the amount reserved will decrease at approximately 0.5 MB per 
minute until the 100 minutes is up.

How queue-level and job-level rusage sections are resolved
Job-level rusage overrides the queue-level specification:

◆ For internal load indices (r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp, 
and mem), the job-level value cannot be larger than the queue-level value.

◆ For external load indices (e.g., licenses), the job-level rusage can be larger 
than the queue-level requirements.

◆ For duration, the job-level value of internal and external load indices 
cannot be larger than the queue-level value.

How queue-level and job-level rusage sections are merged
When both job-level and queue-level rusage sections are defined, the rusage 
section defined for the job overrides the rusage section defined in the queue. 
The two rusage definitions are merged, with the job-level rusage taking 
precedence. For example:

◆ Given a RES_REQ definition in a queue:
RES_REQ = rusage[mem=200:lic=1] ...

and job submission:

bsub -R'rusage[mem=100]' ...

The resulting requirement for the job is 

rusage[mem=100:lic=1]

where mem=100 specified by the job overrides mem=200 specified by the 
queue. However, lic=1 from queue is kept, since job does not specify it.

◆ For the following queue-level RES_REQ (decay and duration defined):
RES_REQ = rusage[mem=200:duration=20:decay=1] ...

and job submission (no decay or duration):

bsub -R'rusage[mem=100]' ...

The resulting requirement for the job is:

rusage[mem=100:duration=20:decay=1]

Queue-level duration and decay are merged with the job-level 
specification, and mem=100 for the job overrides mem=200 specified by the 
queue. However, duration=20 and decay=1 from queue are kept, since 
job does not specify them.
Administering Platform LSF



Chapter 13
Specifying Resource Requirements
Specifying multiple usage strings
Use several comma-separated usage strings to define different duration and 
decay for any number of resources.

A given load index cannot appear more than once in the resource usage string.

Examples ◆ The following job requests 20 MB memory for the duration of the job, and 
1 license for 2 minutes:
% bsub -R "rusage[mem=20, license=1:duration=2]" myjob

◆ A queue with the same resource requirements could specify:
RES_REQ = rusage[mem=20, license=1:duration=2]

◆ The following job requests 20 MB of memory and 50 MB of swap space for 
1 hour, and 1 license for 2 minutes:

% bsub -R "rusage[mem=20:swap=50:duration=1h, license=1:duration=2]" myjob

◆ The following job requests 50 MB of swap space, linearly decreasing the 
amount reserved over a duration of 2 hours, and requests 1 license for 2 
minutes:

% bsub -R "rusage[swp=20:duration=2h:decay=1, license=1:duration=2]" myjob

◆ The following job requests two resources with same duration but different 
decay:

% bsub -R "rusage[mem=20:duration=30:decay=1, lic=1:duration=30] myjob

Non-batch environments
Resource reservation is only available for batch jobs. If you run jobs using only 
LSF Base, such as through lsrun, LIM uses resource usage to determine the 
placement of jobs. Resource usage requests are used to temporarily increase 
the load so that a host is not overloaded. When LIM makes a placement advice, 
external load indices are not considered in the resource usage string. In this 
case, the syntax of the resource usage string is

res[=value]:res[=value]: ... :res[=value]

res is one of the resources whose value is returned by the lsload command.

rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute 
run queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.

If no value is specified, the task is assumed to be intensive in using that 
resource. In this case no more than one task will be assigned to a host 
regardless of how many CPUs it has.

The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This 
indicates a CPU-intensive task which consumes few other resources.
Administering Platform LSF 197



Span String

198
Span String
A span string specifies the locality of a parallel job. If span is omitted, LSF 
allocates the required processors for the job from the available set of 
processors.

Syntax Two kinds of span string are supported:

◆ span[hosts=1]

Indicates that all the processors allocated to this job must be on the same 
host.

◆ span[ptile=value]

Indicates the number of processors on each host that should be allocated 
to the job.

where value is:

❖ Default ptile value, specified by n processors. For example:
span[ptile=4]

The job requests 4 processors on each available host, regardless of how 
many processors the host has.

❖ Predefined ptile value, specified by ’!’. For example:
span[ptile='!']

uses the predefined maximum job slot limit lsb.hosts (MXJ per host 
type/model) as its value.

If the host or host type/model does not define MXJ, the default predefined 
ptile value is 1.

❖ Predefined ptile value with optional multiple ptile values, per host 
type or host model:

✧ For host type, you must specify same[type] in the resource 
requirement. For example:
span[ptile='!',HP:8,SGI:8,LINUX:2] same[type]

The job requests 8 processors on a host of type HP or SGI, and 2 
processors on a host of type LINUX, and the predefined maximum 
job slot limit in lsb.hosts (MXJ) for other host types. 

✧ For host model, you must specify same[model] in the resource 
requirement. For example:
span[ptile='!',PC1133:4,PC233:2] same[model]

The job requests 4 processors on hosts of model PC1133, and 2 
processors on hosts of model PC233, and the predefined maximum 
job slot limit in lsb.hosts (MXJ) for other host models.

See “Controlling Processor Allocation Across Hosts” on page 441 for more 
information about specifying span strings.
Administering Platform LSF



Chapter 13
Specifying Resource Requirements
Same String 
You must have the parallel batch job scheduler plugin installed in order to use the 
same string. 

Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts, 
some processes from a parallel job may for example, run on Solaris and some 
on SGI IRIX. However, for performance reasons you may want all processes of 
a job to run on the same type of host instead of having some processes run on 
one type of host and others on another type of host.

The same string specifies that all processes of a parallel job must run on hosts 
with the same resource. 

You can specify the same string:

◆ At the job level in the resource requirement string of:
❖ bsub
❖ bmod

◆ At the queue-level in lsb.queues in the RES_REQ parameter. 

When both queue-level and job-level same sections are defined, LSF combines 
both requirements to allocate processors.

Syntax resource_name[:resource_name]...

You can specify any static resource.

When you specify for example, resource1:resource2, if hosts always have 
both resources, the string is interpreted as:

◆ Allocate processors only on hosts that have the same value for resource1 
and the same value for resource2

If hosts do not always have both resources, it is interpreted as: 

◆ Allocate processors either on hosts that have the same value for 
resource1, or on hosts that have the same value for resource2, or on 
hosts that have the same value for both resource1 and resource2

Examples % bsub -n 4 -R"select[type==SGI6 || type==SOL7] same[type]" 
myjob

Run all parallel processes on the same host type. Allocate 4 processors on the 
same host type—either SGI IRIX, or Solaris 7, but not both. 

% bsub -n 6 -R"select[type==any] same[type:model]" myjob

Run all parallel processes on the same host type and model. Allocate 6 
processors on any host type or model as long as all the processors are on the 
same host type and model.
Administering Platform LSF 199



Same String

200
 Administering Platform LSF



C H A P T E R

14
Fairshare Scheduling

To configure any kind of fairshare scheduling, you should understand the 
following concepts:

◆ User share assignments

◆ Dynamic share priority

◆ Job dispatch order

You can configure fairshare at either host level or queue level. If you require 
more control, you can implement hierarchical fairshare. You can also set some 
additional restrictions when you submit a job.

To get ideas about how to use fairshare scheduling to do different things, 
“Ways to Configure Fairshare” on page 236.

Contents ◆ Basic Concepts

❖ “About Fairshare Scheduling” on page 202

❖ “User Share Assignments” on page 203

❖ “Dynamic User Priority” on page 205

❖ “How Fairshare Affects Job Dispatch Order” on page 207

◆ Host-based Fairshare

❖ “Host Partition Fairshare” on page 208

◆ User-based Fairshare

❖ “Queue-Level User-based Fairshare” on page 210

❖ “Cross-queue Fairshare” on page 211

❖ “Hierarchical Fairshare” on page 215

◆ Queue-based Fairshare

❖ “Queue-based Fairshare” on page 218

❖ “Configuring Slot Allocation per Queue” on page 220

❖ “Viewing Queue-based Fairshare Allocations” on page 222

◆ Advanced Topics

❖ “Using Historical and Committed Run Time” on page 230

❖ “Users Affected by Multiple Fairshare Policies” on page 234

❖ “Ways to Configure Fairshare” on page 236
Administering Platform LSF 201



About Fairshare Scheduling

202
About Fairshare Scheduling
Fairshare scheduling divides the processing power of the LSF cluster among 
users and groups to provide fair access to resources.

By default, LSF considers jobs for dispatch in the same order as they appear in 
the queue (which is not necessarily the order in which they are submitted to 
the queue). This is called first-come, first-served (FCFS) scheduling.

If your cluster has many users competing for limited resources, the FCFS policy 
might not be enough. For example, one user could submit many long jobs at 
once and monopolize the cluster’s resources for a long time, while other users 
submit urgent jobs that must wait in queues until all the first user’s jobs are all 
done. To prevent this, use fairshare scheduling to control how resources 
should be shared by competing users.

Fairshare is not necessarily equal share: you can assign a higher priority to the 
most important users. If there are two users competing for resources, you can:

◆ Give all the resources to the most important user

◆ Share the resources so the most important user gets the most resources

◆ Share the resources so that all users have equal importance

Queue-level vs. host partition fairshare
You can configure fairshare at either the queue level or the host level. 
However, these types of fairshare scheduling are mutually exclusive. You 
cannot configure queue-level fairshare and host partition fairshare in the same 
cluster.

If you want a user’s priority in one queue to depend on their activity in another 
queue, you must use cross-queue fairshare or host-level fairshare.

Fairshare policies
A fairshare policy defines the order in which LSF attempts to place jobs that 
are in a queue or a host partition. You can have multiple fairshare policies in 
a cluster, one for every different queue or host partition. You can also configure 
some queues or host partitions with fairshare scheduling, and leave the rest 
using FCFS scheduling.

How fairshare scheduling works
Each fairshare policy assigns a fixed number of shares to each user or group. 
These shares represent a fraction of the resources that are available in the 
cluster. The most important users or groups are the ones with the most shares. 
Users who have no shares cannot run jobs in the queue or host partition.

A user’s dynamic priority depends on their share assignment, the dynamic 
priority formula, and the resources their jobs have already consumed.

The order of jobs in the queue is secondary. The most important thing is the 
dynamic priority of the user who submitted the job. When fairshare scheduling 
is used, LSF tries to place the first job in the queue that belongs to the user with 
the highest dynamic priority.
Administering Platform LSF



Chapter 14
Fairshare Scheduling
User Share Assignments
Both queue-level and host partition fairshare use the following syntax to define 
how shares are assigned to users or user groups.

Syntax [user, number_shares]

Enclose each user share assignment in square brackets, as shown. Separate 
multiple share assignments with a space between each set of square brackets.

◆ user

Specify users of the queue or host partition. You can assign the shares:

❖ to a single user (specify user_name)

❖ to users in a group, individually (specify group_name@) or collectively 
(specify group_name)

❖ to users not included in any other share assignment, individually 
(specify the keyword default) or collectively (specify the keyword 
others)

By default, when resources are assigned collectively to a group, the group 
members compete for the resources according to FCFS scheduling. You can 
use hierarchical fairshare to further divide the shares among the group 
members.

When resources are assigned to members of a group individually, the share 
assignment is recursive. Members of the group and of all subgroups always 
compete for the resources according to FCFS scheduling, regardless of 
hierarchical fairshare policies.

◆ number_shares

Specify a positive integer representing the number of shares of cluster 
resources assigned to the user.

The number of shares assigned to each user is only meaningful when you 
compare it to the shares assigned to other users, or to the total number of 
shares. The total number of shares is just the sum of all the shares assigned 
in each share assignment.
Administering Platform LSF 203



User Share Assignments

204
Examples ◆ [User1, 1] [GroupB, 1]

Assigns 2 shares: 1 to User1, and 1 to be shared by the users in GroupB. 
Each user in GroupB has equal importance. User1 is as important as all the 
users in GroupB put together.

In this example, it doesn’t matter if the number of shares is 1, 6 or 600. As 
long as User1 and GroupB are both assigned the same number of shares, 
the relationship stays the same.

◆ [User1, 10] [GroupB@, 1]

If GroupB contains 10 users, assigns 20 shares in total: 10 to User1, and 1 
to each user in GroupB. Each user in GroupB has equal importance. User1 
is ten times as important as any user in GroupB.

◆ [User1, 10] [User2, 9] [others, 8]

Assigns 27 shares: 10 to User1, 9 to User2, and 8 to the remaining users, 
as a group. User1 is slightly more important than User2. Each of the 
remaining users has equal importance.

❖ If there are 3 users in total, the single remaining user has all 8 shares, 
and is almost as important as User1 and User2.

❖ If there are 12 users in total, then 10 users compete for those 8 shares, 
and each of them is significantly less important than User1 and User2.

◆ [User1, 10] [User2, 6] [default, 4]

The relative percentage of shares held by a user will change, depending 
on the number of users who are granted shares by default.

❖ If there are 3 users in total, assigns 20 shares: 10 to User1, 6 to User2, 
and 4 to the remaining user. User1 has half of the available resources 
(5 shares out of 10).

❖ If there are 12 users in total, assigns 56 shares: 10 to User1, 6 to User2, 
and 4 to each of the remaining 10 users. User1 has about a fifth of the 
available resources (5 shares out of 56).
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Dynamic User Priority

About dynamic user priority
LSF calculates a dynamic user priority for individual users or for a group, 
depending on how the shares are assigned. The priority is called dynamic 
because it changes as soon as any variable in formula changes. By default, a 
user’s dynamic priority gradually decreases after a job starts, and the dynamic 
priority immediately increases when the job finishes.

How LSF calculates dynamic priority
By default, LSF calculates the dynamic priority based on the following 
information about each user:

◆ Number of shares assigned to the user

◆ Resources used by jobs belonging to the user:

❖ Number of job slots reserved and in use

❖ Run time of running jobs

❖ Cumulative actual CPU time (not normalized), adjusted so that recently 
used CPU time is weighted more heavily than CPU time used in the 
distant past

If you enable additional functionality, the formula can also involve additional 
resources used by jobs belonging to the user:

◆ Historical run time of finished jobs

◆ Committed run time, specified at job submission with the -W option of 
bsub, or in the queue with the RUNLIMIT parameter in lsb.queues

How LSF measures fairshare resource usage
LSF measures resource usage differently, depending on the type of fairshare:

◆ For queue-level fairshare, LSF measures the resource consumption of all 
the user’s jobs in the queue. This means a user’s dynamic priority can be 
different in every queue.

◆ For host partition fairshare, LSF measures resource consumption for all the 
user’s jobs that run on hosts in the host partition. This means a user’s 
dynamic priority is the same in every queue that uses hosts in the same 
partition.
Administering Platform LSF 205



Dynamic User Priority

206
Default dynamic priority formula
By default, LSF calculates dynamic priority according to the following formula:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + 
run_time * RUN_TIME_FACTOR + (1 + job_slots) * RUN_JOB_FACTOR)

The maximum value of dynamic user priority is 100 times the number of user 
shares (if the denominator in the calculation is less than 0.01, LSF rounds up 
to 0.01).

For cpu_time, run_time, and job_slots, LSF uses the total resource 
consumption of all the jobs in the queue or host partition that belong to the 
user or group.

number_shares The number of shares assigned to the user.

cpu_time The cumulative CPU time used by the user (measured in hours). LSF calculates 
the cumulative CPU time using the actual (not normalized) CPU time and a 
decay factor such that 1 hour of recently-used CPU time decays to 0.1 hours 
after an interval of time specified by HIST_HOURS in lsb.params (5 hours by 
default).

run_time The total run time of running jobs (measured in hours).

job_slots The number of job slots reserved and in use.

Configuring the default dynamic priority
You can give additional weight to the various factors in the priority calculation 
by setting the following parameters in lsb.params.

◆ CPU_TIME_FACTOR

◆ RUN_TIME_FACTOR

◆ RUN_JOB_FACTOR

◆ HIST_HOURS

If you modify the parameters used in the dynamic priority formula, it affects 
every fairshare policy in the cluster.

CPU_TIME_FACTOR
The CPU time weighting factor.

Default: 0.7

RUN_TIME_FACTOR
The run time weighting factor.

Default: 0.7

RUN_JOB_FACTOR The job slots weighting factor.

Default: 3
Administering Platform LSF



Chapter 14
Fairshare Scheduling
How Fairshare Affects Job Dispatch Order
Within a queue, jobs are dispatched according to the queue’s scheduling 
policy.

◆ For FCFS queues, the dispatch order depends on the order of jobs in the 
queue (which depends on job priority and submission time, and can also 
be modified by the job owner).

◆ For fairshare queues, the dispatch order depends on dynamic share 
priority, then order of jobs in the queue (which is not necessarily the order 
in which they are submitted to the queue).

A user’s priority gets higher when they use less than their fair share of the 
cluster’s resources. When a user has the highest priority, LSF considers one of 
their jobs first, even if other users are ahead of them in the queue.

If there are only one user’s jobs pending, and you do not use hierarchical 
fairshare, then there is no resource contention between users, so the fairshare 
policies have no effect and jobs are dispatched as usual.

Job dispatch order among queues of equivalent priority
The order of dispatch depends on the order of the queues in the queue 
configuration file. The first queue in the list is the first to be scheduled.

Jobs in a fairshare queue are always considered as a group, so the scheduler 
attempts to place all jobs in the queue before beginning to schedule the next 
queue.

Jobs in an FCFS queue are always scheduled along with jobs from other FCFS 
queues of the same priority (as if all the jobs belonged to the same queue). 

Example In a cluster, queues A, B, and C are configured in that order and have equal 
queue priority. 

Jobs with equal job priority are submitted to each queue in this order: C B A 
B A.

◆ If all queues are FCFS queues, order of dispatch is C B A B A (queue A is 
first; queues B and C are the same priority as A; all jobs are scheduled in 
FCFS order).

◆ If all queues are fairshare queues, order of dispatch is AA BB C (queue A 
is first; all jobs in the queue are scheduled; then queue B, then C).

◆ If A and C are fairshare, and B is FCFS, order of dispatch is AA B B C 
(queue A jobs are scheduled according to user priority; then queue B jobs 
are scheduled in FCFS order; then queue C jobs are scheduled according 
to user priority) 

◆ If A and C are FCFS, and B is fairshare, order of dispatch is C A A BB 
(queue A is first; queue A and C jobs are scheduled in FCFS order, then 
queue B jobs are scheduled according to user priority)

◆ If any of these queues uses cross-queue fairshare, the other queues must 
also use cross-queue fairshare and belong to the same set, or they cannot 
have the same queue priority. For more information, see “Cross-queue 
Fairshare” on page 211.
Administering Platform LSF 207



Host Partition Fairshare

208
Host Partition Fairshare

About host partition fairshare
Fairshare policy configured at the host level handles resource contention 
across multiple queues.

You can define a different fairshare policy for every host partition. If multiple 
queues use the host partition, a user has the same priority across multiple 
queues.

To run a job on a host that has fairshare, users must have a share assignment 
(USER_SHARES in the HostPartition section of lsb.hosts). Even cluster 
administrators cannot submit jobs to a fairshare host if they do not have a share 
assignment.

Viewing host partition information
Use bhpart to view the following information:

◆ Host partitions configured in your cluster

◆ Number of shares (for each user or group in a host partition)

◆ Dynamic share priority (for each user or group in a host partition)

◆ Number of started jobs

◆ Number of reserved jobs

◆ CPU time, in seconds (cumulative CPU time for all members of the group, 
recursively)

◆ Run time, in seconds (historical and actual run time for all members of the 
group, recursively)

Example % bhpart Partition1

HOST_PARTITION_NAME: Partition1
HOSTS: hostA hostB hostC

SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1 100 5.440 5 0 200.0 1324
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Configuring host partition fairshare scheduling
To configure host partition fairshare, define a host partition in lsb.hosts.

Use the following format.

Begin HostPartition
HPART_NAME = Partition1
HOSTS = hostA hostB ~hostC
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

◆ A host cannot belong to multiple partitions.

◆ Optionally, use the reserved host name all to configure a single partition 
that applies to all hosts in a cluster.

◆ Optionally, use the not operator (~) to exclude hosts or host groups from 
the list of hosts in the host partition.

◆ Hosts in a host partition cannot participate in queue-based fairshare.

Hosts that are not included in any host partition are controlled by FCFS 
scheduling policy instead of fairshare scheduling policy.
Administering Platform LSF 209



Queue-Level User-based Fairshare

210
Queue-Level User-based Fairshare

About queue-level fairshare
Fairshare policy configured at the queue level handles resource contention 
among users in the same queue. You can define a different fairshare policy for 
every queue, even if they share the same hosts. A user’s priority is calculated 
separately for each queue.

To submit jobs to a fairshare queue, users must be allowed to use the queue 
(USERS in lsb.queues) and must have a share assignment (FAIRSHARE in 
lsb.queues). Even cluster and queue administrators cannot submit jobs to a 
fairshare queue if they do not have a share assignment.

Viewing queue-level fairshare information
To find out if a queue is a fairshare queue, run bqueues -l. If you see 
“USER_SHARES” in the output, then a fairshare policy is configured for the 
queue.

Configuring queue-level fairshare
To configure a fairshare queue, define FAIRSHARE in lsb.queues and specify 
a share assignment for all users of the queue.

Syntax FAIRSHARE = USER_SHARES[[user, number_shares]...]

◆ You must specify at least one user share assignment.

◆ Enclose the list in square brackets, as shown.

◆ Enclose each user share assignment in square brackets, as shown.
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Cross-queue Fairshare

Applying the same fairshare policy to several queues
Fairshare policy configured at the queue level handles resource contention 
across multiple queues.

You can define a fairshare policy that applies to several queues at the same 
time. You define the fairshare policy in a master queue and list slave queues 
to which the same fairshare policy applies; slave queues inherit the same 
fairshare policy as your master queue. For job scheduling purposes, this is 
equivalent to having one queue with one fairshare tree.

In this way, if a user submits jobs to different queues, user priority is calculated 
by taking into account all the jobs the user has submitted across the defined 
queues.

To submit jobs to a fairshare queue, users must be allowed to use the queue 
(USERS in lsb.queues) and must have a share assignment (FAIRSHARE in 
lsb.queues). Even cluster and queue administrators cannot submit jobs to a 
fairshare queue if they do not have a share assignment.

User and queue priority
By default, a user has the same priority across the master and slave queues. If 
the same user submits several jobs to these queues, user priority is calculated 
by taking into account all the jobs the user has submitted across the master-
slave set.

If DISPATCH_ORDER=QUEUE is set in the master queue, jobs are dispatched 
according to queue priorities first, then user priority. This avoids having users 
with higher fairshare priority getting jobs dispatched from low-priority queues.

Jobs from users with lower fairshare priorities who have pending jobs in higher 
priority queues are dispatched before jobs in lower priority queues. Jobs in 
queues having the same priority are dispatched according to user priority.

Queues that are not part of the ordered cross-queue fairshare can have any 
priority. Their priority can fall within the priority range of cross-queue fairshare 
queues and they can be inserted between two queues using the same fairshare 
tree.

Viewing cross-queue fairshare information
Run bqueues -l to know if a queue is part of cross-queue fairshare. The 
parameter FAIRSHARE_QUEUES indicates cross-queue fairshare. The first 
queue listed in the FAIRSHARE_QUEUES parameter is the master queue—the 
queue in which fairshare is configured; all other queues listed inherit the 
fairshare policy from the master queue.

All queues that participate in the same cross-queue fairshare will display the 
same fairshare information (SCHEDULING POLICIES, FAIRSHARE_QUEUES, 
USER_SHARES, SHARE_INFO_FOR) when bqueues -l is used. Fairshare 
information applies to all the jobs running in all the queues in the master-slave 
set.
Administering Platform LSF 211



Cross-queue Fairshare

212
bqueues -l also displays DISPATCH_ORDER in the master queue if it is 
defined.

Examples
% bqueues
QUEUE_NAME      PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
normal 30   Open:Active      -    -    -    -     1     1 0 0
short 40   Open:Active      -    4    2    -     1     0     1     0
license  50   Open:Active      10   1    1    -     1     0     1     0

% bqueues -l normal
QUEUE: normal
-- For normal low priority jobs, running only if hosts are lightly loaded.  
This is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN SSUSP USUSP  RSV 
30    20  Open:Inact_Win    -    -    -    -     1     1     0     0     0    
0

SCHEDULING PARAMETERS
r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
loadSched   -     -     -     -       -     -    -     -     -      -      - 
loadStop    -     -     -     -       -     -    -     -     -      -      - 

SCHEDULING POLICIES:  FAIRSHARE
FAIRSHARE_QUEUES:  normal short license
USER_SHARES:  [user1, 100] [default, 1] 

SHARE_INFO_FOR: normal/

USER/GROUP   SHARES  PRIORITY  STARTED  RESERVED  CPU_TIME  RUN_TIME
user1  100      9.645      2        0         0.2     7034

USERS:  all users

HOSTS:  all 

...

% bqueues -l short
QUEUE: short
PARAMETERS/STATISTICS
PRIO NICE STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN SSUSP USUSP  RSV 
40    20  Open:Inact_Win   -    4    2    -  1     0     1     0     0    0

SCHEDULING PARAMETERS
r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
loadSched   -     -     -     -       -     -    -     -     -      -      - 
loadStop    -     -     -     -       -     -    -     -     -      -      - 
Administering Platform LSF



Chapter 14
Fairshare Scheduling
SCHEDULING POLICIES:  FAIRSHARE
FAIRSHARE_QUEUES:  normal short license
USER_SHARES:  [user1, 100] [default, 1] 

SHARE_INFO_FOR: short/

USER/GROUP   SHARES  PRIORITY  STARTED  RESERVED  CPU_TIME  RUN_TIME
user1  100      9.645      2        0         0.2     7034

USERS:  all users

HOSTS:  all 

...

Configuring cross-queue fairshare
Considerations ◆ FAIRSHARE must be defined in the master queue. If it is also defined in the 

queues listed in FAIRSHARE_QUEUES, it will be ignored.

◆ Cross-queue fairshare can be defined more than once within lsb.queues. 
You can define several sets of master-slave queues. However, a queue 
cannot belong to more than one master-slave set. For example, you can 
define:

❖ In master queue normal: FAIRSHARE_QUEUES=short license

❖ In master queue priority: FAIRSHARE_QUEUES= night owners

You cannot, however, define night, owners, or priority as slaves in the 
normal queue; or normal, short and license as slaves in the priority 
queue; or short, license, night, owners as master queues of their own.

◆ Cross-queue fairshare cannot be used with host partition fairshare. It is part 
of queue-level fairshare.

Steps 1 Decide to which queues in your cluster cross-queue fairshare will apply. 
For example, in your cluster you may have the queues normal, priority, 
short, and license and you want cross-queue fairshare to apply only to 
normal, license, and short.

2 Define fairshare policies in your master queue.

In the queue you want to be the master, for example normal, define the 
following in lsb.queues:

❖ FAIRSHARE and specify a share assignment for all users of the queue.

❖ FAIRSHARE_QUEUES and list slave queues to which the defined 
fairshare policy will also apply

❖ PRIORITY to indicate the priority of the queue. 
Begin Queue
QUEUE_NAME   = queue1
PRIORITY     = 30
NICE         = 20
FAIRSHARE    = USER_SHARES[[user1,100] [default,1]]
FAIRSHARE_QUEUES = queue2 queue3
DESCRIPTION  = For normal low priority jobs, running 
only if hosts are lightly loaded.
End Queue
Administering Platform LSF 213



Cross-queue Fairshare

214
3 In all the slave queues listed in FAIRSHARE_QUEUES, define all queue 
values as desired.

For example:

Begin Queue
QUEUE_NAME    = queue2
PRIORITY      = 40
NICE          = 20
UJOB_LIMIT    = 4
PJOB_LIMIT    = 2
End Queue

Begin Queue
QUEUE_NAME    = queue3
PRIORITY      = 50
NICE          = 10
PREEMPTION = PREEMPTIVE
QJOB_LIMIT    = 10
UJOB_LIMIT    = 1
PJOB_LIMIT    = 1
End Queue

Controlling job dispatch order in cross-queue fairshare

DISPATCH_ORDER
parameter

(lsb.queues)

Use DISPATCH_ORDER=QUEUE in the master queue to define an ordered 
cross-queue fairshare set. DISPATCH_ORDER indicates that jobs are dispatched 
according to the order of queue priorities, not user fairshare priority.

Priority range in
cross-queue

fairshare

By default, the range of priority defined for queues in cross-queue fairshare 
cannot be used with any other queues. The priority of queues that are not part 
of the cross-queue fairshare cannot fall between the priority range of cross-
queue fairshare queues.

For example, you have 4 queues: queue1, queue2, queue3, and queue4. You 
configure cross-queue fairshare for queue1, queue2, and queue3, and assign 
priorities of 30, 40, 50 respectively. The priority of queue4 (which is not part 
of the cross-queue fairshare) cannot fall between 30 and 50, but it can be any 
number up to 29 or higher than 50. It does not matter if queue4 is a fairshare 
queue or FCFS queue.

If DISPATCH_ORDER=QUEUE is set in the master queue, queues that are not 
part of the ordered cross-queue fairshare can have any priority. Their priority 
can fall within the priority range of cross-queue fairshare queues and they can 
be inserted between two queues using the same fairshare tree. In the example 
above, queue4 can have any priority, including a priority falling between the 
priority range of the cross-queue fairshare queues (30-50).

Jobs from equal
priority queues

◆ If two or more non-fairshare queues have the same priority, their jobs 
are dispatched first-come, first-served based on submission time or job ID 
as if they come from the same queue.

◆ If two or more fairshare queues have the same priority, jobs are 
dispatched in the order the queues are listed in lsb.queues.
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Hierarchical Fairshare

About hierarchical fairshare
For both queue and host partitions, hierarchical fairshare lets you allocate 
resources to users in a hierarchical manner.

By default, when shares are assigned to a group, group members compete for 
resources according to FCFS policy. If you use hierarchical fairshare, you 
control the way shares that are assigned collectively are divided among group 
members.

If groups have subgroups, you can configure additional levels of share 
assignments, resulting in a multi-level share tree that becomes part of the 
fairshare policy.

How hierarchical fairshare affects dynamic share priority
When you use hierarchical fairshare, the dynamic share priority formula does 
not change, but LSF measures the resource consumption for all levels of the 
share tree. To calculate the dynamic priority of a group, LSF uses the resource 
consumption of all the jobs in the queue or host partition that belong to users 
in the group and all its subgroups, recursively.

How hierarchical fairshare affects job dispatch order
LSF uses the dynamic share priority of a user or group to find out which user's 
job to run next. If you use hierarchical fairshare, LSF works through the share 
tree from the top level down, and compares the dynamic priority of users and 
groups at each level, until the user with the highest dynamic priority is a single 
user, or a group that has no subgroups.

Viewing hierarchical share information for a group
Use bugroup -l to find out if you belong to a group, and what the share 
distribution is.

This command displays all the share trees that are configured, even if they are 
not used in any fairshare policy.

Example % bugroup -l
GROUP_NAME: group1 
USERS: group2/ group3/
SHARES:  [group2,20] [group3,10]

GROUP_NAME: group2
USERS: user1 user2 user3 
SHARES: [others,10] [user3,4]

GROUP_NAME: group3
USERS: all
SHARES: [user2,10] [default,5]
Administering Platform LSF 215



Hierarchical Fairshare

216
Viewing hierarchical share information for a host partition
By default, bhpart only displays the top level share accounts associated with 
the partition.

Use bhpart -r to display the group information recursively. The output lists 
all the groups in the share tree, starting from the top level, and displays the 
following information:

◆ Number of shares

◆ Dynamic share priority (LSF compares dynamic priorities of users who 
belong to same group, at the same level)

◆ Number of started jobs

◆ Number of reserved jobs

◆ CPU time, in seconds (cumulative CPU time for all members of the group, 
recursively)

◆ Run time, in seconds (historical and actual run time for all members of the 
group, recursively)

Example % bhpart -r Partition1
HOST_PARTITION_NAME:  Partition1
HOSTS:  HostA

SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1  40 1.867 5 0 48.4 17618
group2 20 0.775 6 0 607.7 24664

SHARE_INFO_FOR: Partition1/group2/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 8 1.144 1 0 9.6 5108
user2 2 0.667 0 0 0.0 0
others 1 0.046 5 0 598.1 19556

Configuring hierarchical fairshare
To define a hierarchical fairshare policy, configure the top-level share 
assignment in lsb.queues or lsb.hosts, as usual. Then, for any group of 
users affected by the fairshare policy, configure a share tree in the UserGroup 
section of lsb.users. This specifies how shares assigned to the group, 
collectively, are distributed among the individual users or subgroups.

If shares are assigned to members of any group individually, using @, there can 
be no further hierarchical fairshare within that group. The shares are assigned 
recursively to all members of all subgroups, regardless of further share 
distributions defined in lsb.users. The group members and members of all 
subgroups compete for resources according to FCFS policy.

You can choose to define a hierarchical share tree for some groups but not 
others. If you do not define a share tree for any group or subgroup, members 
compete for resources according to FCFS policy.
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Configuring a share tree
Group membership is already defined in the UserGroup section of 
lsb.users. To configure a share tree, use the USER_SHARES column to 
describe how the shares are distributed in a hierachical manner. Use the 
following format.

Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
GroupB (User1 User2) ()
GroupC (User3 User4) ([User3, 3] [User4, 4])
GroupA (GroupB GroupC User5) ([User5, 1] [default, 10])
End UserGroup

◆ User groups must be defined before they can be used (in the 
GROUP_MEMBER column) to define other groups.

◆ Enclose the share assignment list in parentheses, as shown, even if you do 
not specify any user share assignments.

Example An Engineering queue or host partition organizes users hierarchically, and 
divides the shares as shown. It does not matter what the actual number of 
shares assigned at each level is.

The Development group will get the largest share (50%) of the resources in the 
event of contention. Shares assigned to the Development group can be further 
divided among the Systems, Application and Test groups which receive 15%, 
35%, and 50%, respectively. At the lowest level, individual users compete for 
these shares as usual.

One way to measure a user’s importance is to multiply their percentage of the 
resources at every level of the share tree. For example, User1 is entitled to 10% 
of the available resources (.50 x .80 x .25 = .10) and User3 is entitled to 4% 
(.80 x .20 x .25 = .04). However, if Research has the highest dynamic share 
priority among the 3 groups at the top level, and ChipY has a higher dynamic 
priority than ChipX, the next comparison is between User3 and User4, so the 
importance of User1 is not relevant. The dynamic priority of User1 is not even 
calculated at this point.

Engineering

Technical
Support Development Research

Test Application Systems Chip X Chip Y

User 1 User 2 User 3 User 4

25% 50% 25%

50% 35% 15% 80% 20%

50% 50% 80% 20%
Administering Platform LSF 217



Queue-based Fairshare

218
Queue-based Fairshare
When a priority is set in a queue configuration, a high priority queue tries to 
dispatch as many jobs as it can before allowing lower priority queues to 
dispatch any job. Lower priority queues are blocked until the higher priority 
queue cannot dispatch any more jobs. However, it may be desirable to give 
some preference to lower priority queues and regulate the flow of jobs from 
the queue.

Queue-based fairshare allows flexible slot allocation per queue as an 
alternative to absolute queue priorities by enforcing a soft job slot limit on a 
queue. This allows you to organize the priorities of your work and tune the 
number of jobs dispatched from a queue so that no single queue monopolizes 
cluster resources, leaving other queues waiting to dispatch jobs.

You can balance the distribution of job slots among queues by configuring a 
ratio of jobs waiting to be dispatched from each queue. LSF then attempts to 
dispatch a certain percentage of jobs from each queue, and does not attempt 
to drain the highest priority queue entirely first.

When queues compete, the allocated slots per queue is kept within the limits 
of the configured share. If only one queue in the pool has jobs, that queue can 
use all the available resources and can span its usage across all hosts it could 
potentially run jobs on.

Managing pools of queues
You can configure your queues into a pool, which is a named group of queues 
using the same set of hosts. A pool is entitled to a slice of the available job 
slots. You can configure as many pools as you need, but each pool must use 
the same set of hosts. There can be queues in the cluster that do not belong to 
any pool yet share some hosts used by a pool.

How LSF allocates slots for a pool of queues
During job scheduling, LSF orders the queues within each pool based on the 
shares the queues are entitled to. The number of running jobs (or job slots in 
use) is maintained at the percentage level specified for the queue. When a 
queue has no pending jobs, leftover slots are redistributed to other queues in 
the pool with jobs pending.

The total number of slots in each pool is constant; it is equal to the number of 
slots in use plus the number of free slots to the maximum job slot limit 
configured either in lsb.hosts (MXJ) or in lsb.resources. The 
accumulation of slots in use by the queue is used in ordering the queues for 
dispatch.

Job limits and host limits are enforced by the scheduler. For example, if LSF 
determines that a queue is eligible to run 50 jobs, but the queue has a job limit 
of 40 jobs, no more than 40 jobs will run. The remaining 10 job slots are 
redistributed among other queues belonging to the same pool, or make them 
available to other queues that are configured to use them.
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Accumulated slots
in use

As queues run the jobs allocated to them, LSF accumulates the slots each queue 
has used and decays this value over time, so that each queue is not allocated 
more slots than it deserves, and other queues in the pool have a chance to run 
their share of jobs.

Interaction with other scheduling policies
◆ Queues participating in a queue-based fairshare pool cannot be 

preemptive or preemptable.

◆ You should not configure slot reservation (SLOT_RESERVE) in queues that 
use queue-based fairshare.

◆ Cross-queue fairshare (FAIRSHARE_QUEUES) can undo the dispatching 
decisions of queue-based fairshare. Cross-queue fairshare queues should 
not be part of a queue-based fairshare pool.

Examples
◆ Three queues using two hosts each with maximum job slot limit of 6 for a 

total of 12 slots to be allocated:

❖ queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6 slots

❖ queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 -> 4 slots

❖ queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 -> 3 slots; 
however, since the total cannot be more than 12, queue3 is actually 
allocated only 2 slots.

◆ Four queues using two hosts each with maximum job slot limit of 6 for a 
total of 12 slots; queue4 does not belong to any pool.

❖ queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6

❖ queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 -> 4

❖ queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 -> 2

❖ queue4 shares no slots with other queues

queue4 causes the total number of slots to be less than the total free and 
in use by the queue1, queue2, and queue3 that do belong to the pool. It 
is possible that the pool may get all its shares used up by queue4, and jobs 
from the pool will remain pending.

◆ queue1, queue2, and queue3 belong to one pool, queue6, queue7, and 
queue8 belong to another pool, and queue4 and queue5 do not belong to 
any pool. LSF orders the queues in the two pools from higher priority 
queue to lower priority queue (queue1 is highest and queue8 is lowest):
queue1 -> queue2 -> queue3 -> queue6 -> queue7 -> queue8

If the queue belongs to a pool, jobs are dispatched from the highest priority 
queue first. Queues that do not belong to any pool (queue4 and queue5) 
are merged into this ordered list according to their priority, but LSF 
dispatches as many jobs from the non-pool queues as it can:

queue1 -> queue2 -> queue3 -> queue4 -> queue5 -> queue6 -> queue7 -> queue8
Administering Platform LSF 219



Configuring Slot Allocation per Queue

220
Configuring Slot Allocation per Queue
Configure as many pools as you need in lsb.queues.

SLOT_SHARE parameter
The SLOT_SHARE parameter represents the percentage of running jobs (job 
slots) in use from the queue. SLOT_SHARE must be greater than zero (0) and 
less than or equal to 100.

The sum of SLOT_SHARE for all queues in the pool does not need to be 100%. 
It can be more or less, depending on your needs.

SLOT_POOL parameter
The SLOT_POOL parameter is the name of the pool of job slots the queue 
belongs to. A queue can only belong to one pool. All queues in the pool must 
share the same set of hosts.

Host job slot limit
The hosts used by the pool must have a maximum job slot limit, configured 
either in lsb.hosts (MXJ) or lsb.resources (HOSTS and SLOTS).

Steps
1 For each queue that uses queue-based fairshare, define the following in 

lsb.queues:

❖ SLOT_SHARE

❖ SLOT_POOL

2 Optionally, define the following in lsb.queues for each queue that uses 
queue-based fairshare:

❖ HOSTS to list the hosts that can receive jobs from the queue

If no hosts are defined for the queue, the default is all hosts.

Hosts for queue-based fairshare cannot be in a host partition.

❖ PRIORITY to indicate the priority of the queue.

3 For each host used by the pool, define a maximum job slot limit, either in 
lsb.hosts (MXJ) or lsb.resources (HOSTS and SLOTS).

Examples
◆ The following configures a pool named poolA, with three queues with 

different shares, using the hosts in host group groupA:
Begin Queue
QUEUE_NAME = queue1
PRIORITY   = 50
SLOT_POOL  = poolA
SLOT_SHARE = 50
HOSTS      = groupA
...
End Queue
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Begin Queue
QUEUE_NAME = queue2
PRIORITY   = 48
SLOT_POOL  = poolA
SLOT_SHARE = 30
HOSTS      = groupA
...
End Queue

Begin Queue
QUEUE_NAME    =  queue3
PRIORITY      =  46
SLOT_POOL = poolA
SLOT_SHARE  = 20
HOSTS = groupA
...
End Queue

◆ The following configures a pool named poolB, with three queues with 
equal shares, using the hosts in host group groupB:
Begin Queue
QUEUE_NAME    =  queue4
PRIORITY      =  44
SLOT_POOL = poolB
SLOT_SHARE  = 30
HOSTS = groupB
...
End Queue

Begin Queue
QUEUE_NAME    =  queue5
PRIORITY      =  43
SLOT_POOL = poolB
SLOT_SHARE  = 30
HOSTS = groupB
...
End Queue

Begin Queue
QUEUE_NAME    =  queue6
PRIORITY      =  42
SLOT_POOL = poolB
SLOT_SHARE  = 30
HOSTS = groupB
...
End Queue
Administering Platform LSF 221



Viewing Queue-based Fairshare Allocations

222
Viewing Queue-based Fairshare Allocations

Viewing configured job slot share
Use bqueues -l to show the job slot share (SLOT_SHARE) and the hosts 
participating in the share pool (SLOT_POOL):

QUEUE: queue1

PARAMETERS/STATISTICS
PRIO NICE STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN SSUSP USUSP  RSV 
 50   20  Open:Active       -    -    -    -     0     0     0     0     0    0
Interval for a host to accept two jobs is 0 seconds

 STACKLIMIT MEMLIMIT
   2048 K     5000 K

SCHEDULING PARAMETERS
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  

USERS:  all users
HOSTS:  groupA/ 
SLOT_SHARE: 50%
SLOT_POOL: poolA

Viewing slot allocation of running jobs
Use bhosts, bmgroup, and bqueues to verify how LSF maintains the 
configured percentage of running jobs in each queue. 

bmgroup
command

The queues configurations above use the following hosts groups:

% bmgroup -r
GROUP_NAME   HOSTS
groupA       hosta hostb hostc
groupB       hostd hoste hostf

bhosts command Each host has a maximum job slot limit of 5, for a total of 15 slots available to 
be allocated in each group:

% bhosts
HOST_NAME    STATUS    JL/U   MAX  NJOBS    RUN  SSUSP  USUSP    RSV 
hosta          ok       -      5      5      5      0      0      0
hostb          ok       -      5      5      5      0      0      0
hostc          ok       -      5      5      5      0      0      0
hostd          ok       -      5      5      5      0      0      0
hoste          ok       -      5      5      5      0      0      0
hostf          ok       -      5      5      5      0      0      0
Administering Platform LSF



Chapter 14
Fairshare Scheduling
bqueues
command

Pool named poolA contains:

◆ queue1
◆ queue2
◆ queue3

poolB contains:

◆ queue4
◆ queue5
◆ queue6

bqueues shows the number of running jobs in each queue:

% bqueues
QUEUE_NAME   PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
queue1       50   Open:Active      -    -    -    -   492   484     8     0
queue2       48   Open:Active      -    -    -    -   500   495     5     0
queue3       46   Open:Active      -    -    -    -   498   496     2     0
queue4       44   Open:Active      -    -    -    -   985   980     5     0
queue5       43   Open:Active      -    -    -    -   985   980     5     0
queue6       42   Open:Active      -    -    -    -   985   980     5     0

How to interpret
the shares

◆ queue1 has a 50% share—and can run 8 jobs

◆ queue2 has a 30% share—and can run 5 jobs

◆ queue3 has a 20% share—and is entitled 3 slots, but since the total number 
of slots available must be 15, it can run 2 jobs

◆ queue4, queue5, and queue6 all share 30%, so 5 jobs are running in each 
queue.
Administering Platform LSF 223



Typical Slot Allocation Scenarios

224
Typical Slot Allocation Scenarios

3 queues with SLOT_SHARE 50%, 30%, 20%, with 15 job slots
This scenario has three phases:

1 All three queues have jobs running, and LSF assigns the number of slots to 
queues as expected: 8, 5, 2. Though queue Genova deserves 3 slots, the 
total slot assignment must be 15, so Genova is allocated only 2 slots:

% bqueues
QUEUE_NAME    PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
Roma           50   Open:Active      -    -    -    -  1000   992     8     0
Verona         48   Open:Active      -    -    -    -   995   990     5     0
Genova         48   Open:Active      -    -    -    -   996   994     2     0

2 When queue Verona has done its work, queues Roma and Genova get their 
respective shares of 8 and 3.

This leaves 4 slots to be redistributed to queues according to their shares: 
40% (2 slots) to Roma, 20% (1 slot) to Genova. The one remaining slot is 
assigned to queue Roma again:

% bqueues
QUEUE_NAME  PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
Roma         50   Open:Active      -    -    -    -   231   221    10     0
Verona       48   Open:Active      -    -    -    -     0     0     0     0
Genova       48   Open:Active      -    -    -    -   496   491     5     0

3 When queues Roma and Verona have no more work to do, Genova can 
use all the available slots in the cluster:

% bqueues
QUEUE_NAME   PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
Roma          50   Open:Active      -    -    -    -     0     0     0     0
Verona        48   Open:Active      -    -    -    -     0     0     0     0
Genova        48   Open:Active      -    -    -    -   475   460    15     0
Administering Platform LSF



Chapter 14
Fairshare Scheduling
The following figure illustrates phases 1, 2, and 3: 

2 pools, 30 job slots, and 2 queues out of any pool
◆ poolA uses 15 slots and contains queues Roma (50% share, 8 slots), Verona 

(30% share, 5 slots), and Genova (20% share, 2 remaining slots to total 15).

◆ poolB with 15 slots containing queues Pisa (30% share, 5 slots), Venezia 
(30% share, 5 slots), and Bologna (30% share, 5 slots).

◆ Two other queues Milano and Parma do not belong to any pool, but they 
can use the hosts of poolB. The queues from Milano to Bologna all have 
the same priority.

The queues Milano and Parma run very short jobs that get submitted 
periodically in bursts. When no jobs are running in them, the distribution of 
jobs looks like this:

QUEUE_NAME  PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
Roma         50   Open:Active      -    -    -    -  1000   992     8     0
Verona       48   Open:Active      -    -    -    -  1000   995     5     0
Genova       48   Open:Active      -    -    -    -  1000   998     2     0
Pisa         44   Open:Active      -    -    -    -  1000   995     5     0
Milano       43   Open:Active      -    -    -    -     2     2     0     0
Parma        43   Open:Active      -    -    -    -     2     2     0     0
Venezia      43   Open:Active      -    -    -    -  1000   995     5     0
Bologna      43   Open:Active      -    -    -    -  1000   995     5     0
Administering Platform LSF 225



Typical Slot Allocation Scenarios

226
 

When Milano and Parma have jobs, their higher priority reduces the share of 
slots free and in use by Venezia and Bologna:

QUEUE_NAME   PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
Roma          50   Open:Active      -    -    -    -   992   984     8     0
Verona        48   Open:Active      -    -    -    -   993   990     3     0
Genova        48   Open:Active      -    -    -    -   996   994     2     0
Pisa          44   Open:Active      -    -    -    -   995   990     5     0
Milano        43   Open:Active      -    -    -    -    10     7     3     0
Parma         43   Open:Active      -    -    -    -    11     8     3     0
Venezia       43   Open:Active      -    -    -    -   995   995     2     0
Bologna       43   Open:Active      -    -    -    -   995   995     2     0

 

Administering Platform LSF



Chapter 14
Fairshare Scheduling
Round-robin slot distribution—13 queues and 2 pools
◆ Pool poolA has 3 hosts each with 7 slots for a total of 21 slots to be shared. 

The first 3 queues are part of the pool poolA sharing the CPUs with 
proportions 50% (11 slots), 30% (7 slots) and 20% (3 remaining slots to total 
21 slots). 

◆ The other 10 queues belong to pool poolB, which has 3 hosts each with 7 
slots for a total of 21 slots to be shared. Each queue has 10% of the pool 
(3 slots).

The initial slot distribution looks like this:

% bqueues
QUEUE_NAME   PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
Roma          50   Open:Active      -    -    -    -    15     6    11     0
Verona        48   Open:Active      -    -    -    -    25    18     7     0
Genova        47   Open:Active      -    -    -    -   460   455     3     0
Pisa          44   Open:Active      -    -    -    -   264   261     3     0
Milano        43   Open:Active      -    -    -    -   262   259     3     0
Parma         42   Open:Active      -    -    -    -   260   257     3     0
Bologna       40   Open:Active      -    -    -    -   260   257     3     0
Sora          40   Open:Active      -    -    -    -   261   258     3     0
Ferrara       40   Open:Active      -    -    -    -   258   255     3     0
Napoli        40   Open:Active      -    -    -    -   259   256     3     0
Livorno       40   Open:Active      -    -    -    -   258   258     0     0
Palermo       40   Open:Active      -    -    -    -   256   256     0     0
Venezia        4   Open:Active      -    -    -    -   255   255     0     0

Initially, queues Livorno, Palermo, and Venezia in poolB are not assigned 
any slots because the first 7 higher priority queues have used all 21 slots 
available for allocation.

As jobs run and each queue accumulates used slots, LSF favors queues that 
have not run jobs yet. As jobs finish in the first 7 queues of poolB, slots are 
redistributed to the other queues that originally had no jobs (queues Livorno, 
Palermo, and Venezia). The total slot count remains 21 in all queues in 
poolB.

% bqueues
QUEUE_NAME    PRIO STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN  SUSP 
Roma           50   Open:Active      -    -    -    -    15     6     9     0
V              48   Open:Active      -    -    -    -    25    18     7     0
Genova         47   Open:Active      -    -    -    -   460   455     5     0
Pisa           44   Open:Active      -    -    -    -   263   261     2     0
Milano         43   Open:Active      -    -    -    -   261   259     2     0
Parma          42   Open:Active      -    -    -    -   259   257     2     0
Bologna        40   Open:Active      -    -    -    -   259   257     2     0
Sora           40   Open:Active      -    -    -    -   260   258     2     0
Ferrara        40   Open:Active      -    -    -    -   257   255     2     0
Napoli         40   Open:Active      -    -    -    -   258   256     2     0
Livorno        40   Open:Active      -    -    -    -   258   256     2     0
Palermo        40   Open:Active      -    -    -    -   256   253     3     0
Venezia         4   Open:Active      -    -    -    -   255   253     2     0
Administering Platform LSF 227



Typical Slot Allocation Scenarios

228
The following figure illustrates the round-robin distribution of slot allocations 
between queues Livorno and Palermo:
 

How LSF rebalances slot usage
In the following examples, job runtime is not equal, but varies randomly over 
time.

3 queues in one
pool with 50%,

30%, 20% shares

A pool configures 3 queues:

◆ queue1 50% with short-running jobs

◆ queue2 20% with short-running jobs

◆ queue3 30% with longer running jobs
Administering Platform LSF



Chapter 14
Fairshare Scheduling
As queue1 and queue2 finish their jobs, the number of jobs in queue3 
expands, and as queue1 and queue2 get more work, LSF rebalances the usage: 

10 queues sharing
10% each of 50

slots

In this example, queue1 (the curve with the highest peaks) has the longer 
running jobs and so has less accumulated slots in use over time. LSF 
accordingly rebalances the load when all queues compete for jobs to maintain 
a configured 10% usage share.
 

Administering Platform LSF 229



Using Historical and Committed Run Time

230
Using Historical and Committed Run Time
By default, as a job is running, the dynamic priority decreases gradually until 
the job has finished running, then increases immediately when the job finishes.

In some cases this can interfere with fairshare scheduling if two users who 
have the same priority and the same number of shares submit jobs at the same 
time.

To avoid these problems, you can modify the dynamic priority calculation by 
using either or both of the following weighting factors:

◆ Historical run time decay

◆ Committed run time

Historical run time decay
By default, historical run time does not affect the dynamic priority. You can 
configure LSF so that the user’s dynamic priority increases gradually after a 
job finishes. After a job is finished, its run time is saved as the historical run 
time of the job and the value can be used in calculating the dynamic priority, 
the same way LSF considers historical CPU time in calculating priority. LSF 
applies a decaying algorithm to the historical run time to gradually increase the 
dynamic priority over time after a job finishes.

Configuring Specify ENABLE_HST_RUN_TIME=Y in lsb.params. Historical run time is 
added to the calculation of the dynamic priority so that the formula becomes 
the following:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + 
(historical_run_time + run_time) * RUN_TIME_FACTOR + (1 + job_slots) * 
RUN_JOB_FACTOR)

◆ historical_run_time

The historical run time (measured in hours) of finished jobs accumulated 
in the user’s share account file. LSF calculates the historical run time using 
the actual run time of finished jobs and a decay factor such that 1 hour of 
recently-used run time decays to 0.1 hours after an interval of time 
specified by HIST_HOURS in lsb.params (5 hours by default).

How mbatchd reconfiguration and restart affects historical run time
After restarting or reconfiguring mbatchd, the historical run time of finished 
jobs might be different, since it includes jobs that may have been cleaned from 
mbatchd before the restart. mbatchd restart only reads recently finished jobs 
from lsb.events, according to the value of CLEAN_PERIOD in lsb.params. 
Any jobs cleaned before restart are lost and are not included in the new 
calculation of the dynamic priority.

Example The following fairshare parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1

Note that in this configuration, only run time is considered in the calculation 
of dynamic priority. This simplifies the formula to the following:
Administering Platform LSF



Chapter 14
Fairshare Scheduling
dynamic priority = number_shares / (run_time * RUN_TIME_FACTOR)

Without the historical run time, the dynamic priority increases suddenly as 
soon as the job finishes running because the run time becomes zero, which 
gives no chance for jobs pending for other users to start.

When historical run time is included in the priority calculation, the formula 
becomes:

dynamic priority = number_shares / (historical_run_time + run_time) * 
RUN_TIME_FACTOR)

Now the dynamic priority increases gradually as the historical run time decays 
over time.

Committed run time weighting factor
Committed run time is the run time requested at job submission with the -W 
option of bsub, or in the queue configuration with the RUNLIMIT parameter. 
By default, committed run time does not affect the dynamic priority.

While the job is running, the actual run time is subtracted from the committed 
run time. The user’s dynamic priority decreases immediately to its lowest 
expected value, and is maintained at that value until the job finishes. Job run 
time is accumulated as usual, and historical run time, if any, is decayed.

When the job finishes, the committed run time is set to zero and the actual run 
time is added to the historical run time for future use. The dynamic priority 
increases gradually until it reaches its maximum value.

Providing a weighting factor in the run time portion of the dynamic priority 
calculation prevents a “job dispatching burst” where one user monopolizes job 
slots because of the latency in computing run time.

Configuring Set a value for the COMMITTED_RUN_TIME_FACTOR parameter in 
lsb.params. You should also specify a RUN_TIME_FACTOR, to prevent the 
user’s dynamic priority from increasing as the run time increases.

If you have also enabled the use of historical run time, the dynamic priority is 
calculated according to the following formula:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + 
(historical_run_time + run_time) * RUN_TIME_FACTOR + 
(committed_run_time - run_time) * COMMITTED_RUN_TIME_FACTOR + 
(1 + job_slots) * RUN_JOB_FACTOR)

◆ committed_run_time

The run time requested at job submission with the -W option of bsub, or 
in the queue configuration with the RUNLIMIT parameter. This calculation 
measures the committed run time in hours.

In the calculation of a user’s dynamic priority, 
COMMITTED_RUN_TIME_FACTOR determines the relative importance of the 
committed run time in the calculation. If the -W option of bsub is not specified 
at job submission and a RUNLIMIT has not been set for the queue, the 
committed run time is not considered.
Administering Platform LSF 231



Using Historical and Committed Run Time

232
COMMITTED_RUN_TIME_FACTOR can be any positive value between 0.0 and 
1.0. The default value is 0.0. As the value of 
COMMITTED_RUN_TIME_FACTOR approaches 1.0, more weight is given to 
the committed run time in the calculation of the dynamic priority.

Limitation If you use queue-level fairshare, and a running job has a committed run time, 
you should not switch that job to or from a fairshare queue (using bswitch). 
The fairshare calculations will not be correct.

Run time displayed by bqueues and bhpart
The run time displayed by bqueues and bhpart is the sum of the actual, 
accumulated run time and the historical run time, but does not include the 
committed run time.

Example The following fairshare parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1
COMMITTED_RUN_TIME_FACTOR = 1

Without a committed run time factor, dynamic priority for the job owner drops 
gradually while a job is running:
Administering Platform LSF



Chapter 14
Fairshare Scheduling
When a committed run time factor is included in the priority calculation, the 
dynamic priority drops as soon as the job is dispatched, rather than gradually 
dropping as the job runs:
Administering Platform LSF 233



Users Affected by Multiple Fairshare Policies

234
Users Affected by Multiple Fairshare Policies
If you belong to multiple user groups, which are controlled by different 
fairshare policies, each group probably has a different dynamic share priority 
at any given time. By default, if any one of these groups becomes the highest 
priority user, you could be the highest priority user in that group, and LSF 
would attempt to place your job.

To restrict the number of fairshare policies that will affect your job, submit your 
job and specify a single user group that your job will belong to, for the 
purposes of fairshare scheduling. LSF will not attempt to dispatch this job 
unless the group you specified is the highest priority user. If you become the 
highest priority user because of some other share assignment, another one of 
your jobs might be dispatched, but not this one.

Submitting a job and specifying a user group
To associate a job with a user group for the purposes of fairshare scheduling, 
use bsub -G and specify a group that you belong to. If you use hierarchical 
fairshare, you must specify a group that does not contain any subgroups.

Example User1 shares resources with groupA and groupB. User1 is also a member of 
groupA, but not any other groups.

User1 submits a job:

bsub sleep 100

By default, the job could be considered for dispatch if either User1 or GroupA 
has highest dynamic share priority.

User1 submits a job and associates the job with GroupA:

bsub -G groupA sleep 100

If User1 is the highest priority user, this job will not be considered.

◆ User1 can only associate the job with a group that he is a member of.

◆ User1 cannot associate the job with his individual user account, because 
bsub -G only accepts group names.
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Example with
hierarchical

fairshare

In the share tree, User1 shares resources with GroupA at the top level. GroupA 
has 2 subgroups, B and C. GroupC has 1 subgroup, GroupD. User1 also 
belongs to GroupB and GroupC.

User1 submits a job:

% bsub sleep 100

By default, the job could be considered for dispatch if either User1, GroupB, 
or GroupC has highest dynamic share priority.

User1 submits a job and associates the job with GroupB:

% bsub -G groupB sleep 100

If User1 or GroupC is the highest priority user, this job will not be considered.

◆ User1 cannot associate the job with GroupC, because GroupC includes a 
subgroup.

◆ User1 cannot associate the job with his individual user account, because 
bsub -G only accepts group names.
Administering Platform LSF 235



Ways to Configure Fairshare

236
Ways to Configure Fairshare

Global fairshare
Global fairshare balances resource usage across the entire cluster according to 
one single fairshare policy. Resources used in one queue affect job dispatch 
order in another queue.

If 2 users compete for resources, their dynamic share priority is the same in 
every queue.

Configuring To configure global fairshare, you must use host partition fairshare. Use the 
keyword all to configure a single partition that includes all the hosts in the 
cluster.

Example Begin HostPartition
HPART_NAME =GlobalPartition
HOSTS = all
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

Chargeback fairshare
Chargeback fairshare lets competing users share the same hardware resources 
according to a fixed ratio. Each user is entitled to a specified portion of the 
available resources.

If 2 users compete for resources, the most important user is entitled to more 
resources.

Configuring To configure chargeback fairshare, put competing users in separate user 
groups and assign a fair number of shares to each group.

Example Suppose two departments contributed to the purchase of a large system. The 
engineering department contributed 70 percent of the cost, and the accounting 
department 30 percent. Each department wants to get their money’s worth 
from the system.

1 Define 2 user groups in lsb.users, one listing all the engineers, and one 
listing all the accountants.
Begin UserGroup
Group_Name Group_Member
eng_users (user6 user4)
acct_users (user2 user5)
End UserGroup

2 Configure a host partition for the host, and assign the shares appropriately.
Begin HostPartition
HPART_NAME = big_servers
HOSTS = hostH
USER_SHARES = [eng_users, 7] [acct_users, 3]
End HostPartition
Administering Platform LSF



Chapter 14
Fairshare Scheduling
Equal Share
Equal share balances resource usage equally between users. This is also called 
round-robin scheduling, because if users submit identical jobs, LSF runs one 
job from each user in turn.

If 2 users compete for resources, they have equal importance.

Configuring To configure equal share, use the keyword default to define an equal share 
for every user.

Example Begin HostPartition
HPART_NAME = equal_share_partition
HOSTS = all
USER_SHARES = [default, 1]
End HostPartition

Priority user and static priority fairshare
There are two ways to configure fairshare so that a more important user’s job 
always overrides the job of a less important user, regardless of resource use.

◆ Static Priority Fairshare

Dynamic priority is no longer dynamic, because resource use is ignored. 
The user with the most shares always goes first.

This is useful to configure multiple users in a descending order of priority.

◆ Priority User Fairshare

Dynamic priority is calculated as usual, but more important and less 
important users are assigned a drastically different number of shares, so 
that resource use has virtually no effect on the dynamic priority: the user 
with the overwhelming majority of shares always goes first. However, if 
two users have a similar or equal number of shares, their resource use still 
determines which of them goes first.

This is useful for isolating a group of high-priority or low-priority users, 
while allowing other fairshare policies to operate as usual most of the time.

Priority user fairshare
Priority user fairshare gives priority to important users, so their jobs override 
the jobs of other users. You can still use fairshare policies to balance resources 
among each group of users.

If 2 users compete for resources, and one of them is a priority user, the priority 
user’s job always runs first.

Configuring To configure priority users, assign the overwhelming majority of shares to the 
most important users.
Administering Platform LSF 237



Ways to Configure Fairshare

238
Example A queue is shared by key users and other users. As long as there are jobs from 
key users waiting for resources, other users’ jobs will not be dispatched.

1 Define a user group called key_users in lsb.users.

2 Configure fairshare and assign the overwhelming majority of shares to the 
critical users:
Begin Queue
QUEUE_NAME = production 
FAIRSHARE = USER_SHARES[[key_users@, 2000] [others, 1]]
...
End Queue

Key users have 2000 shares each, while other users together have only 1 share. 
This makes it virtually impossible for other users’ jobs to get dispatched unless 
none of the users in the key_users group has jobs waiting to run.

If you want the same fairshare policy to apply to jobs from all queues, 
configure host partition fairshare in a similar way.

Static priority fairshare
Static priority fairshare assigns resources to the user with the most shares. 
Resource usage is ignored.

If 2 users compete for resources, the most important user’s job always runs first.

Configuring To implement static priority fairshare, edit lsb.params and set all the 
weighting factors used in the dynamic priority formula to 0 (zero).

◆ Set CPU_TIME_FACTOR to 0

◆ Set RUN_TIME_FACTOR to 0

◆ Set RUN_JOB_FACTOR to 0

◆ Set COMMITTED_RUN_TIME_FACTOR to 0
Administering Platform LSF



C H A P T E R

15
Goal-Oriented SLA-Driven

Scheduling

Contents ◆ “Using Goal-Oriented SLA Scheduling” on page 240

❖ “Service-level agreements in LSF” on page 240

❖ “Service classes” on page 240

❖ “Service-level goals” on page 240

❖ “How service classes perform goal-oriented scheduling” on page 241

❖ “Submitting jobs to a service class” on page 241

❖ “Modifying SLA jobs (bmod)” on page 242

◆ “Configuring Service Classes for SLA Scheduling” on page 243

❖ “User groups for service classes” on page 243

❖ “Service class priority” on page 243

❖ “Service class configuration examples” on page 244

◆ “Viewing Information about SLAs and Service Classes” on page 246

❖ “Monitoring the progress of an SLA (bsla)” on page 246

❖ “Tracking historical behavior of an SLA (bacct)” on page 247

◆ “Understanding Service Class Behavior” on page 250

❖ “A simple deadline goal” on page 250

❖ “An overnight run with two service classes” on page 251

❖ “When an SLA is missing its goal” on page 253

❖ “Preemption and SLA policies” on page 253

❖ “Chunk jobs and SLA policies” on page 253

❖ “SLA statistics files” on page 254
Administering Platform LSF 239



Using Goal-Oriented SLA Scheduling

240
Using Goal-Oriented SLA Scheduling
Goal-oriented scheduling policies help you configure your workload so that 
your jobs are completed on time and reduce the risk of missed deadlines. They 
enable you to focus on the “what and when” of your projects, not the low-level 
details of “how” resources need to be allocated to satisfy various workloads.

Service-level agreements in LSF
A service-level agreement (SLA) defines how a service is delivered and the 
parameters for the delivery of a service. It specifies what a service provider and 
a service recipient agree to, defining the relationship between the provider and 
recipient with respect to a number of issues, among them:

◆ Services to be delivered

◆ Performance

◆ Tracking and reporting

◆ Problem management

An SLA in LSF is a “just-in-time” scheduling policy that defines an agreement 
between LSF administrators and LSF users. The SLA scheduling policy defines 
how many jobs should be run from each SLA to meet the configured goals.

Service classes
SLA definitions consist of service-level goals that are expressed in individual 
service classes. A service class is the actual configured policy that sets the 
service-level goals for the LSF system. The SLA defines the workload (jobs or 
other services) and users that need the work done, while the service class that 
addresses the SLA defines individual goals, and a time window when the 
service class is active.

Service-level goals
You configure the following kinds of goals:

Deadline goals A specified number of jobs should be completed within a specified time 
window. For example, run all jobs submitted over a weekend.

Velocity goals Expressed as concurrently running jobs. For example: maintain 10 running jobs 
between 9:00 a.m. and 5:00 p.m. Velocity goals are well suited for short jobs 
(run time less than one hour). Such jobs leave the system quickly, and 
configuring a velocity goal ensures a steady flow of jobs through the system.

Throughput goals Expressed as number of finished jobs per hour. For example: finish 15 jobs per 
hour between the hours of 6:00 p.m. and 7:00 a.m. Throughput goals are 
suitable for medium to long running jobs. These jobs stay longer in the system, 
so you typically want to control their rate of completion rather than their flow.

Combining
different types of

goals

You might want to set velocity goals to maximize quick work during the day, 
and set deadline and throughput goals to manage longer running work on 
nights and over weekends.
Administering Platform LSF



Chapter 15
Goal-Oriented SLA-Driven Scheduling
How service classes perform goal-oriented scheduling
Goal-oriented scheduling makes use of other, lower level LSF policies like 
queues and host partitions to satisfy the service-level goal that the service class 
expresses. The decisions of a service class are considered first before any 
queue or host partition decisions. Limits are still enforced with respect to lower 
level scheduling objects like queues, hosts, and users.

Optimum number
of running jobs

As jobs are submitted, LSF determines the optimum number of job slots (or 
concurrently running jobs) needed for the service class to meet its service-level 
goals. LSF schedules a number of jobs at least equal to the optimum number 
of slots calculated for the service class.

LSF attempts to meet SLA goals in the most efficient way, using the optimum 
number of job slots so that other service classes or other types of work in the 
cluster can still progress. For example, in a service class that defines a deadline 
goal, LSF spreads out the work over the entire time window for the goal, which 
avoids blocking other work by not allocating as many slots as possible at the 
beginning to finish earlier than the deadline.

Submitting jobs to a service class
Use the bsub -sla service_class_name to submit a job to a service class for 
SLA-driven scheduling.

You submit jobs to a service class as you would to a queue, except that a 
service class is a higher level scheduling policy that makes use of other, lower 
level LSF policies like queues and host partitions to satisfy the service-level 
goal that the service class expresses.

For example:

% bsub -W 15 -sla Kyuquot sleep 100

submits the UNIX command sleep together with its argument 100 as a job to 
the service class named Kyuquot.

The service class name where the job is to run is configured in 
lsb.serviceclasses. If the SLA does not exist or the user is not a member 
of the service class, the job is rejected.

Outside of the configured time windows, the SLA is not active, and LSF 
schedules jobs without enforcing any service-level goals. Jobs will flow 
through queues following queue priorities even if they are submitted with 
-sla.

Submit with run
limit

You should submit your jobs with a run time limit (-W option) or the queue should 
specify a run time limit (RUNLIMIT in the queue definition in lsb.queues). If you do 
not specify a run time limit, LSF automatically adjusts the optimum number of 
running jobs according to the observed run time of finished jobs.

-sla and -g options You cannot use the -g option with -sla. A job can either be attached to a job 
group or a service class, but not both.
Administering Platform LSF 241



Using Goal-Oriented SLA Scheduling

242
Modifying SLA jobs (bmod)
Use the -sla option of bmod to modify the service class a job is attached to, 
or to attach a submitted job to a service class. Use bmod -slan to detach a job 
from a service class. For example:

% bmod -sla Kyuquot 2307

Attaches job 2307 to the service class Kyuquot.

% bmod -slan 2307

Detaches job 2307 from the service class Kyuquot.

You cannot:

◆ Use -sla with other bmod options

◆ Move job array elements from one service class to another, only entire job 
arrays

◆ Modify the service class of jobs already attached to a job group
Administering Platform LSF



Chapter 15
Goal-Oriented SLA-Driven Scheduling
Configuring Service Classes for SLA Scheduling
Configure service classes in 
LSB_CONFDIR/cluster_name/configdir/lsb.serviceclasses. Each 
service class is defined in a ServiceClass section.

Each service class section begins with the line Begin ServiceClass and ends 
with the line End ServiceClass. You must specify:

◆ A service class name (the name you use cannot be the same as an existing 
host partition name)

◆ At least one goal (deadline, throughput, or velocity) and a time window 
when the goal is active

◆ A service class priority

All other parameters are optional. You can configure as many service class 
sections as you need.

User groups for service classes
You can control access to the SLA by configuring a user group for the service 
class. If LSF user groups are specified in lsb.users, each user in the group 
can submit jobs to this service class. If a group contains a subgroup, the service 
class policy applies to each member in the subgroup recursively. The group 
can define fairshare among its members, and the SLA defined by the service 
class enforces the fairshare policy among the users in the user group 
configured for the SLA.

By default, all users in the cluster can submit jobs to the service class.

Service class priority
A higher value indicates a higher priority, relative to other service classes. 
Similar to queue priority, service classes access the cluster resources in priority 
order.

LSF schedules jobs from one service class at a time, starting with the highest-
priority service class. If multiple service classes have the same priority, LSF run 
all the jobs from these service classes in first-come, first-served order.

Service class priority in LSF is completely independent of the UNIX scheduler’s 
priority system for time-sharing processes. In LSF, the NICE parameter is used 
to set the UNIX time-sharing priority for batch jobs.
Administering Platform LSF 243



Configuring Service Classes for SLA Scheduling

244
Service class configuration examples
◆ The service class Uclulet defines one deadline goal that is active during 

working hours between 8:30 AM and 4:00 PM. All jobs in the service class 
should complete by the end of the specified time window. Outside of this 
time window, the SLA is inactive and jobs are scheduled without any goal 
being enforced:
Begin ServiceClass
NAME = Uclulet
PRIORITY = 20
GOALS = [DEADLINE timeWindow (8:30-16:00)]
DESCRIPTION = "working hours"
End ServiceClass

◆ The service class Nanaimo defines a deadline goal that is active during the 
weekends and at nights.
Begin ServiceClass
NAME = Nanaimo
PRIORITY = 20
GOALS = [DEADLINE timeWindow (5:18:00-1:8:30 20:00-8:30)]
DESCRIPTION = "weekend nighttime regression tests"
End ServiceClass

◆ The service class Inuvik defines a throughput goal of 6 jobs per hour that 
is always active:
Begin ServiceClass
NAME = Inuvik
PRIORITY = 20
GOALS = [THROUGHPUT 6 timeWindow ()]
DESCRIPTION = "constant throughput"
End ServiceClass

To configure a time window that is always open, use the timeWindow keyword 
with empty parentheses.

◆ The service class Tofino defines two velocity goals in a 24 hour period. 
The first goal is to have a maximum of 10 concurrently running jobs during 
business hours (9:00 a.m. to 5:00 p.m). The second goal is a maximum of 
30 concurrently running jobs during off-hours (5:30 p.m. to 8:30 a.m.)
Begin ServiceClass
NAME = Tofino
PRIORITY = 20
GOALS = [VELOCITY 10 timeWindow (9:00-17:00)] \
        [VELOCITY 30 timeWindow (17:30-8:30)]
DESCRIPTION = "day and night velocity"
End ServiceClass
Administering Platform LSF



Chapter 15
Goal-Oriented SLA-Driven Scheduling
◆ The service class Kyuquot defines a velocity goal that is active during 
working hours (9:00 a.m. to 5:30 p.m.) and a deadline goal that is active 
during off-hours (5:30 p.m. to 9:00 a.m.) Only users user1 and user2 can 
submit jobs to this service class.
Begin ServiceClass
NAME = Kyuquot
PRIORITY = 23
USER_GROUP = user1 user2
GOALS = [VELOCITY 8 timeWindow (9:00-17:30)] \
        [DEADLINE timeWindow (17:30-9:00)] 
DESCRIPTION = "Daytime/Nighttime SLA"
End ServiceClass

◆ The service class Tevere defines a combination similar to Kyuquot, but 
with a deadline goal that takes effect overnight and on weekends. During 
the working hours in weekdays the velocity goal favors a mix of short and 
medium jobs.
Begin ServiceClass
NAME = Tevere
PRIORITY = 20
GOALS = [VELOCITY 100 timeWindow (9:00-17:00)] \
        [DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]
DESCRIPTION = "nine to five"
End ServiceClass
Administering Platform LSF 245



Viewing Information about SLAs and Service Classes

246
Viewing Information about SLAs and Service Classes

Monitoring the progress of an SLA (bsla)
Use bsla to display the properties of service classes configured in 
lsb.serviceclasses and dynamic state information for each service class.

Examples ◆ One velocity goal of service class Tofino is active and on time. The other 
configured velocity goal is inactive.
% bsla
SERVICE CLASS NAME: Tofino
 -- day and night velocity
PRIORITY: 20

GOAL:  VELOCITY 30 
ACTIVE WINDOW: (17:30-8:30) 
STATUS:  Inactive
SLA THROUGHPUT:  0.00 JOBS/CLEAN_PERIOD 

GOAL: VELOCITY 10
ACTIVE WINDOW: (9:00-17:00)
STATUS: Active:On time
SLA THROUGHPUT:  10.00 JOBS/CLEAN_PERIOD 

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
    300    280      10        0       0      10

◆ The deadline goal of service class Uclulet is not being met, and bsla 
displays status Active:Delayed:
% bsla
SERVICE CLASS NAME:  Uclulet
 -- working hours
PRIORITY: 20

GOAL:  DEADLINE 
ACTIVE WINDOW: (8:30-19:00) 
STATUS:  Active:Delayed
SLA THROUGHPUT:  0.00 JOBS/CLEAN_PERIOD
ESTIMATED FINISH TIME:  (Tue Oct 28 06:17)
OPTIMUM NUMBER OF RUNNING JOBS:  6

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
     40     39       1        0       0       0

◆ The configured velocity goal of the service class Kyuquot is active and on 
time. The configured deadline goal of the service class is inactive.
% bsla Kyuquot 
SERVICE CLASS NAME:  Kyuquot 
 -- Daytime/Nighttime SLA
PRIORITY:  23
USER_GROUP:  user1 user2
Administering Platform LSF



Chapter 15
Goal-Oriented SLA-Driven Scheduling
GOAL:  VELOCITY 8
ACTIVE WINDOW: (9:00-17:30) 
STATUS:  Active:On time
SLA THROUGHPUT:  0.00 JOBS/CLEAN_PERIOD

GOAL:  DEADLINE 
ACTIVE WINDOW: (17:30-9:00) 
STATUS:  Inactive
SLA THROUGHPUT:  0.00 JOBS/CLEAN_PERIOD

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
      0      0       0        0       0       0

◆ The throughput goal of service class Inuvik is always active. bsla 
displays:

❖ Status as active and on time

❖ An optimum number of 5 running jobs to meet the goal

❖ Actual throughput of 10 jobs per hour based on the last 
CLEAN_PERIOD

% bsla Inuvik
SERVICE CLASS NAME:  Inuvik
 -- constant throughput
PRIORITY:  20

GOAL:  THROUGHPUT 6
ACTIVE WINDOW: Always Open 
STATUS:  Active:On time
SLA THROUGHPUT:  10.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS:  5

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
    110     95       5        0       0      10

Tracking historical behavior of an SLA (bacct)
Use bacct to display historical performance of a service class. For example, 
service classes Inuvik and Tuktoyaktuk configure throughput goals.

% bsla
SERVICE CLASS NAME:  Inuvik
 -- throughput 6 
PRIORITY:  20

GOAL:  THROUGHPUT 6
ACTIVE WINDOW: Always Open 
STATUS:  Active:On time
SLA THROUGHPUT:  10.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS:  5

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
    111     94       5        0       0      12
--------------------------------------------------------------
SERVICE CLASS NAME:  Tuktoyaktuk
Administering Platform LSF 247



Viewing Information about SLAs and Service Classes

248
 -- throughput 3
PRIORITY:  15

GOAL:  THROUGHPUT 3
ACTIVE WINDOW: Always Open 
STATUS:  Active:On time
SLA THROUGHPUT:  4.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS:  4

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
    104     96       4        0       0       4

These two service classes have the following historical performance. For SLA 
Inuvik, bacct shows a total throughput of 8.94 jobs per hour over a period 
of 20.58 hours:

% bacct -sla Inuvik

Accounting information about jobs that are: 
  - submitted by users user1, 
  - accounted on all projects.
  - completed normally or exited
  - executed on all hosts.
  - submitted to all queues.
  - accounted on service classes Inuvik, 
------------------------------------------------------------------------------

SUMMARY:      ( time unit: second ) 
 Total number of done jobs:     183      Total number of exited jobs:     1
 Total CPU time consumed:      40.0      Average CPU time consumed:     0.2
 Maximum CPU time of a job:     0.3      Minimum CPU time of a job:     0.1
 Total wait time in queues: 1947454.0
 Average wait time in queue:10584.0
 Maximum wait time in queue:18912.0      Minimum wait time in queue:    7.0
 Average turnaround time:     12268 (seconds/job)
 Maximum turnaround time:     22079      Minimum turnaround time:      1713
 Average hog factor of a job:  0.00 ( cpu time / turnaround time )
 Maximum hog factor of a job:  0.00      Minimum hog factor of a job:  0.00
 Total throughput:             8.94 (jobs/hour)  during   20.58 hours
 Beginning time:       Oct 11 20:23      Ending time:          Oct 12 16:58

For SLA Tuktoyaktuk, bacct shows a total throughput of 4.36 jobs per hour 
over a period of 19.95 hours:

% bacct -sla Tuktoyaktuk

Accounting information about jobs that are: 
  - submitted by users user1, 
  - accounted on all projects.
  - completed normally or exited
  - executed on all hosts.
  - submitted to all queues.
  - accounted on service classes Tuktoyaktuk, 
Administering Platform LSF



Chapter 15
Goal-Oriented SLA-Driven Scheduling
------------------------------------------------------------------------------

SUMMARY:      ( time unit: second ) 
 Total number of done jobs:      87      Total number of exited jobs:     0
 Total CPU time consumed:      18.0      Average CPU time consumed:     0.2
 Maximum CPU time of a job:     0.3      Minimum CPU time of a job:     0.1
 Total wait time in queues: 2371955.0
 Average wait time in queue:27263.8
 Maximum wait time in queue:39125.0      Minimum wait time in queue:    7.0
 Average turnaround time:     30596 (seconds/job)
 Maximum turnaround time:     44778      Minimum turnaround time:      3355
 Average hog factor of a job:  0.00 ( cpu time / turnaround time )
 Maximum hog factor of a job:  0.00      Minimum hog factor of a job:  0.00
 Total throughput:             4.36 (jobs/hour)  during   19.95 hours
 Beginning time:       Oct 11 20:50      Ending time:          Oct 12 16:47

Because the run times are not uniform, both service classes actually achieve  
higher throughput than configured.
Administering Platform LSF 249



Understanding Service Class Behavior

250
Understanding Service Class Behavior

A simple deadline goal
The following service class configures an SLA with a simple deadline goal with 
a half hour time window.

Begin ServiceClass
NAME = Quadra
PRIORITY = 20
GOALS = [DEADLINE  timeWindow (16:15-16:45)] 
DESCRIPTION = short window
End ServiceClass

Six jobs submitted with a run time of 5 minutes each will use 1 slot for the half 
hour time window. bsla shows that the deadline can be met:

% bsla Quadra
SERVICE CLASS NAME:  Quadra
 -- short window
PRIORITY:  20

GOAL:  DEADLINE 
ACTIVE WINDOW: (16:15-16:45) 
STATUS:  Active:On time
ESTIMATED FINISH TIME:  (Wed Jul  2 16:38)
OPTIMUM NUMBER OF RUNNING JOBS:  1

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
     6      5        1        0      0       0

The following illustrates the progress of the SLA to the deadline. The optimum 
number of running jobs in the service class (nrun) is maintained at a steady 
rate of 1 job at a time until near the completion of the SLA. 
Administering Platform LSF



Chapter 15
Goal-Oriented SLA-Driven Scheduling
When the finished job curve (nfinished) meets the total number of jobs curve 
(njobs) the deadline is met. All jobs are finished well ahead of the actual 
configured deadline, and the goal of the SLA was met.

An overnight run with two service classes
bsla shows the configuration and status of two service classes Qualicum and 
Comox:

◆ Qualicum has a deadline goal with a time window which is active 
overnight:
% bsla Qualicum
SERVICE CLASS NAME:  Qualicum
PRIORITY:  23

GOAL:  VELOCITY 8
ACTIVE WINDOW: (8:00-18:00) 
STATUS:  Inactive
SLA THROUGHPUT:  0.00 JOBS/CLEAN_PERIOD

GOAL:  DEADLINE 
ACTIVE WINDOW: (18:00-8:00) 
STATUS:  Active:On time
ESTIMATED FINISH TIME:  (Thu Jul 10 07:53)
OPTIMUM NUMBER OF RUNNING JOBS:  2

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
     280    278      2         0       0        0
Administering Platform LSF 251



Understanding Service Class Behavior

252
The following illustrates the progress of the deadline SLA Qualicum 
running 280 jobs overnight with random runtimes until the morning 
deadline. As with the simple deadline goal example, when the finished job 
curve (nfinished) meets the total number of jobs curve (njobs) the 
deadline is met with all jobs completed ahead of the configured deadline.

◆ Comox has a velocity goal of 2 concurrently running jobs that is always 
active:
% bsla Comox
SERVICE CLASS NAME:  Comox
PRIORITY:  20

GOAL:  VELOCITY 2
ACTIVE WINDOW: Always Open 
STATUS:  Active:On time
SLA THROUGHPUT:  2.00 JOBS/CLEAN_PERIOD

   NJOBS   PEND    RUN     SSUSP   USUSP   FINISH
   100     98        2        0      0       0
Administering Platform LSF



Chapter 15
Goal-Oriented SLA-Driven Scheduling
The following illustrates the progress of the velocity SLA Comox running 
100 jobs with random runtimes over a 14 hour period.

When an SLA is missing its goal
Use the CONTROL_ACTION parameter in your service class to configure an 
action to be run if the SLA goal is delayed for a specified number of minutes.

CONTROL_ACTION (lsb.serviceclasses)
CONTROL_ACTION=VIOLATION_PERIOD[minutes] CMD [action]

If the SLA goal is delayed for longer than VIOLATION_PERIOD, the action 
specified by CMD is invoked. The violation period is reset and the action runs 
again if the SLA is still active when the violation period expires again. If the 
SLA has multiple active goals that are in violation, the action is run for each of 
them.

Example CONTROL_ACTION=VIOLATION_PERIOD[10] CMD [echo `date`: SLA is 
in violation >> ! /tmp/sla_violation.log]

Preemption and SLA policies
SLA jobs cannot be preempted. You should avoid running jobs belonging to 
an SLA in low priority queues.

Chunk jobs and SLA policies
SLA jobs will not get chunked. You should avoid submitting SLA jobs to a 
chunk job queue.
Administering Platform LSF 253



Understanding Service Class Behavior

254
SLA statistics files
Each active SLA goal generates a statistics file for monitoring and analyzing the 
system. When the goal becomes inactive the file is no longer updated. The files 
are created in the LSB_SHAREDIR/cluster_name/logdir/SLA directory. 
Each file name consists of the name of the service class and the goal type.

For example the file named Quadra.deadline is created for the deadline goal 
of the service class name Quadra. The following file named Tofino.velocity 
refers to a velocity goal of the service class named Tofino:

% cat Tofino.velocity
# service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)
  17/9      15:7:34   1063782454 2 0 0 0 0 
  17/9      15:8:34   1063782514 2 0 0 0 0 
  17/9      15:9:34   1063782574 2 0 0 0 0 
# service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)
  17/9      15:10:10   1063782610 2 0 0 0 0 
Administering Platform LSF



P A R T

IV
Job Scheduling and Dispatch

Contents ◆ Chapter 16, “Resource Allocation Limits”

◆ Chapter 17, “Reserving Resources”

◆ Chapter 18, “Managing Software Licenses with LSF”

◆ Chapter 19, “Dispatch and Run Windows”

◆ Chapter 20, “Job Dependencies”

◆ Chapter 21, “Job Priorities”

◆ Chapter 22, “Job Requeue and Job Rerun”

◆ Chapter 23, “Job Checkpoint, Restart, and Migration”

◆ Chapter 24, “Chunk Job Dispatch”

◆ Chapter 25, “Job Arrays”





C H A P T E R

16
Resource Allocation Limits

Contents ◆ “About Resource Allocation Limits” on page 258

◆ “Configuring Resource Allocation Limits” on page 261
Administering Platform LSF 257



About Resource Allocation Limits

258
About Resource Allocation Limits
Contents ◆ “What resource allocation limits do” on page 258

◆ “How LSF enforces limits” on page 259

◆ “How LSF counts resources” on page 259

◆ “Limits for resource consumers” on page 260

What resource allocation limits do
By default, resource consumers like users, hosts, queues, or projects are not 
limited in the resources available to them for running jobs. Resource 
allocation limits configured in lsb.resources restrict:

◆ The maximum amount of a resource requested by a job that can be 
allocated during job scheduling for different classes of jobs to start

◆ Which resource consumers the limits apply to

If all of the resource has been consumed, no more jobs can be started until 
some of the resource is released.

For example, by limiting maximum amount of memory for each of your hosts, 
you can make sure that your system operates at optimal performance. By 
defining a memory limit for some users submitting jobs to a particular queue 
and a specified set of hosts, you can prevent these users from using up all the 
memory in the system at one time.

Jobs must specify
resource

requirements

For limits to apply, the job must specify resource requirements (bsub -R 
rusage string or RES_REQ in lsb.queues). For example, the a memory 
allocation limit of 4 MB is configured in lsb.resources:

Begin Limit
NAME = mem_limit1
MEM = 4
End Limit

A is job submitted with an rusage resource requirement that exceeds this limit:

% bsub -R"rusage[mem=5]" uname

and remains pending:

% bjobs -p 600
  JOBID  USER   STAT  QUEUE   FROM_HOST  EXEC_HOST  JOB_NAME        SUBMIT_TIME
  600    user1  PEND  normal   suplin02                uname       Aug 12 14:05
Resource (mem) limit defined cluster-wide has been reached;

A job is submitted with a resource requirement within the configured limit:

% bsub -R"rusage[mem=3]" sleep 100

is allowed to run:

% bjobs
  JOBID   USER   STAT  QUEUE   FROM_HOST  EXEC_HOST  JOB_NAME      SUBMIT_TIME
  600    user1   PEND  normal      hostA                uname      Aug 12 14:05
  604    user1    RUN  normal      hostA            sleep 100      Aug 12 14:09
Administering Platform LSF



Chapter 16
Resource Allocation Limits
Resource allocation limits and resource usage limits
Resource allocation limits are not the same as resource usage limits, which 
are enforced during job run time. For example, you set CPU limits, memory 
limits, and other limits that take effect after a job starts running. See Chapter 26, 
“Runtime Resource Usage Limits” for more information.

How LSF enforces limits
Resource allocation limits are enforced so that they apply to:

◆ Several kinds of resources:

❖ Job slots by host

❖ Job slots per processor

❖ Memory (MB or percentage)

❖ Swap space (MB or percentage)

❖ Tmp space (MB or percentage)

❖ Software licenses

❖ Other shared resources

◆ Several kinds of resource consumers:

❖ Users and user groups (all users or per-user)

❖ Hosts and host groups (all hosts or per-host)

❖ Queues (all queues or per-queue)

❖ Projects (all projects or per-project)

◆ All jobs in the cluster

◆ Combinations of consumers:

❖ For jobs running on different hosts in the same queue

❖ For jobs running from different queues on the same host

How LSF counts resources
Resources on a host are not available if they are taken by jobs that have been 
started, but have not yet finished. This means running and suspended jobs 
count against the limits for queues, users, hosts, projects, and processors that 
they are associated with.

Job slot limits Job slot limits often correspond to the maximum number of jobs that can run 
at any point in time. For example, a queue cannot start jobs if it has no job 
slots available, and jobs cannot run on hosts that have no available job slots.

Resource
reservation and

backfill

When processor or memory reservation occurs, the reserved resources count 
against the limits for users, queues, hosts, projects, and processors. When 
backfilling of parallel jobs occurs, the backfill jobs do not count against any 
limits.

MultiCluster Limits apply only to the cluster where lsb.resources is configured. If the 
cluster leases hosts from another cluster, limits are enforced on those hosts as 
if they were local hosts.
Administering Platform LSF 259



About Resource Allocation Limits

260
Limits for resource consumers
Host groups If a limit is specified for a host group, the total amount of a resource used by 

all hosts in that group is counted. If a host is a member of more than one 
group, each job running on that host is counted against the limit for all groups 
to which the host belongs.

Limits for users
and user groups

Jobs are normally queued on a first-come, first-served (FCFS) basis. It is 
possible for some users to abuse the system by submitting a large number of 
jobs; jobs from other users must wait until these jobs complete. Limiting 
resources by user prevents users from monopolizing all the resources.

Users can submit an unlimited number of jobs, but if they have reached their 
limit for any resource, the rest of their jobs stay pending, until some of their 
running jobs finish or resources become available.

If a limit is specified for a user group, the total amount of a resource used by 
all users in that group is counted. If a user is a member of more than one 
group, each of that user’s jobs is counted against the limit for all groups to 
which that user belongs.

Use the keyword all to configure limits that apply to each user or user group 
in a cluster. This is useful if you have a large cluster but only want to exclude 
a few users from the limit definition.

Per-user limits on
users and groups

Per-user limits are enforced on each user or individually to each user in the 
user group listed. If a user group contains a subgroup, the limit also applies to 
each member in the subgroup recursively.

Per-user limits that use the keywords all apply to each user in a cluster. If user 
groups are configured, the limit applies to each member of the user group, not 
the group as a whole.
Administering Platform LSF



Chapter 16
Resource Allocation Limits
Configuring Resource Allocation Limits
Contents ◆ “lsb.resources file” on page 261

◆ “Enabling resource allocation limits” on page 262

◆ “Configuring cluster-wide limits” on page 262

◆ “Compatibility with pre-version 6.0 job slot limits” on page 262

◆ “How resource allocation limits map to pre-version 6.0 job slot limits” on 
page 262

◆ “Example limit configurations” on page 264

lsb.resources file
Configure all resource allocation limits in one or more Limit sections in the 
lsb.resources file. Limit sections set limits for how much of the specified 
resources must be available for different classes of jobs to start, and which 
resource consumers the limits apply to.

Resource
parameters

Consumer
parameters

To limit... Set in a Limit section of lsb.resources...

Total number of job slots that can be used 
by specific jobs

SLOTS

Jobs slots based on the number of 
processors on each host affected by the 
limit

SLOTS_PER_PROCESSOR and 
PER_HOST

Memory—if PER_HOST is set for the limit, 
the amount can be a percentage of 
memory on each host in the limit

MEM (MB or percentage)

Swap space—if PER_HOST is set for the 
limit, the amount can be a percentage of 
swap space on each host in the limit

SWP (MB or percentage)

Tmp space—if PER_HOST is set for the 
limit, the amount can be a percentage of 
tmp space on each host in the limit

TMP (MB or percentage)

Software licenses LICENSE or RESOURCE

Any shared resource RESOURCE

For jobs submitted... Set in a Limit section of lsb.resources...

By all specified users or user groups USERS 

To all specified queues QUEUES

To all specified hosts or host groups HOSTS

For all specified projects PROJECTS

By each specified user or each member of 
the specified user groups

PER_USER

To each specified queue PER_QUEUE

To each specified host or each member of 
the specified host groups

PER_HOST

For each specified project PER_PROJECT
Administering Platform LSF 261



Configuring Resource Allocation Limits

262
Enabling resource allocation limits
Resource allocation limits scheduling plugin

To enable resource allocation limits in your cluster, configure the resource 
allocation limits scheduling plugin schmod_limit in lsb.modules.

Configuring lsb.modules
Begin PluginModule
SCH_PLUGIN               RB_PLUGIN                
SCH_DISABLE_PHASES
schmod_default              ()                              ()
schmod_limit                ()                              ()
End PluginModule

Configuring cluster-wide limits
To configure limits that take effect for your entire cluster, configure limits in 
lsb.resources, but do not specify any consumers.

Compatibility with pre-version 6.0 job slot limits
The Limit section of lsb.resources does not support the keywords or 
format used in lsb.users, lsb.hosts, and lsb.queues. However, any 
existing job slot limit configuration in these files will continue to apply. 

How resource allocation limits map to pre-version 6.0 job slot limits
Job slot limits are the only type of limit you can configure in lsb.users, 
lsb.hosts, and lsb.queues. You cannot configure limits for user groups, 
host groups, and projects in lsb.users, lsb.hosts, and lsb.queues. You 
should not configure any new resource allocation limits in lsb.users, 
lsb.hosts, and lsb.queues. Use lsb.resources to configure all new 
resource allocation limits, including job slot limits.

Job slot resources Resource consumers (lsb.resources) Equivalent 
existing limit 
(file)(lsb.resources) USERS PER_USER QUEUES HOSTS PER_HOST

SLOTS — all — host_name — JL/U (lsb.hosts)

SLOTS_PER_PROCESSOR user_name — — — all JL/P (lsb.users)

SLOTS — all queue_name — — UJOB_LIMIT
(lsb.queues)

SLOTS — all — — — MAX_JOBS 
(lsb.users)

SLOTS — — queue_name — all HJOB_LIMIT 
(lsb.queues)

SLOTS — — — host_name — MXJ (lsb.hosts)

SLOTS_PER_PROCESSOR — — queue_name — all PJOB_LIMIT
 (lsb.queues)

SLOTS — — queue_name — — QJOB_LIMIT
(lsb.queues)
Administering Platform LSF



Chapter 16
Resource Allocation Limits
Limits for the following resources have no corresponding limit in lsb.users, 
lsb.hosts, and lsb.queues:

◆ SWP

◆ TMP

◆ LICENSE

◆ RESOURCE

How conflicting limits are resolved
Similar conflicting

limits
For similar limits configured in lsb.resources, lsb.users, lsb.hosts, or 
lsb.queues, the most restrictive limit is used. For example, a slot limit of 3 for 
all users is configured in lsb.resources:

Begin Limit
NAME  = user_limit1
USERS = all
SLOTS = 3
End Limit

This is similar, but not equivalent to an existing MAX_JOBS limit of 2 is 
configured in lsb.users. 

% busers
USER/GROUP    JL/P    MAX  NJOBS   PEND    RUN  SSUSP  USUSP    
RSV 
user1           -       2      4      2      2      0      0      
0

user1 submits 4 jobs:

% bjobs
JOBID   USER    STAT  QUEUE     FROM_HOST   EXEC_HOST   JOB_NAME   SUBMIT_TIME
816     user1   RUN   normal    hostA       hostA       sleep 1000 Jan 22 16:34
817     user1   RUN   normal    hostA       hostA       sleep 1000 Jan 22 16:34
818     user1   PEND  normal    hostA                   sleep 1000 Jan 22 16:34
819     user1   PEND  normal    hostA                   sleep 1000 Jan 22 16:34

Two jobs (818 and 819) remain pending because the more restrictive limit of 
2 from lsb.users is enforced:

% bjobs -p
JOBID   USER    STAT  QUEUE      FROM_HOST      JOB_NAME           SUBMIT_TIME
818     user1   PEND  normal     hostA          sleep 1000         Jan 22 16:34
The user has reached his/her job slot limit;
819     user1   PEND  normal     hostA          sleep 1000         Jan 22 16:34
The user has reached his/her job slot limit;

If the MAX_JOBS limit in lsb.users is 4:

% busers
USER/GROUP  JL/P   MAX  NJOBS   PEND   RUN  SSUSP  USUSP  RSV
user1         -      4      4      1     3      0      0    0

and user1 submits 4 jobs:
Administering Platform LSF 263



Configuring Resource Allocation Limits

264
% bjobs
JOBID  USER    STAT  QUEUE   FROM_HOST   EXEC_HOST    JOB_NAME     SUBMIT_TIME
824    user1   RUN   normal  hostA       hostA        sleep 1000   Jan 22 16:38
825    user1   RUN   normal  hostA       hostA        sleep 1000   Jan 22 16:38
826    user1   RUN   normal  hostA       hostA        sleep 1000   Jan 22 16:38
827    user1   PEND  normal  hostA                    sleep 1000   Jan 22 16:38

Only one job (827) remains pending because the more restrictive limit of 3 in 
lsb.resources is enforced:

% bjobs -p
JOBID    USER    STAT  QUEUE   FROM_HOST       JOB_NAME           SUBMIT_TIME
827     user1    PEND  normal      hostA     sleep 1000          Jan 22 16:38
Resource (slot) limit defined cluster-wide has been reached;

Equivalent
conflicting limits

New limits in lsb.resources that are equivalent to existing limits in 
lsb.users, lsb.hosts, or lsb.queues, but with a different value override 
the existing limits. The equivalent limits in lsb.users, lsb.hosts, or 
lsb.queues are ignored, and the value of the new limit in lsb.resources is 
used.

For example, a per-user job slot limit in lsb.resources is equivalent to a 
MAX_JOBS limit in lsb.users, so only the lsb.resources limit is enforced, 
the limit in lsb.users is ignored:

Begin Limit
NAME  = slot_limit
PER_USER =all
SLOTS = 3
End Limit

Example limit configurations
Each set of limits is defined in a Limit section enclosed by Begin Limit and 
End Limit.

Example 1 user1 is limited to 2 job slots on hostA, and user2’s jobs on queue normal 
are limited to 20 MB of memory:

Begin Limit
HOSTS     SLOTS  MEM   SWP  TMP   USERS       QUEUES
hostA     2      -      -    -    user1       -
-         -      20     -    -    user2       normal
End Limit

Example 2 Set a job slot limit of 2 for user user1 submitting jobs to queue normal on host 
hosta for all projects, but only one job slot for all queues and hosts for project 
test:

Begin Limit
HOSTS  SLOTS  PROJECTS   USERS     QUEUES
hosta  2         -       user1     normal
  -    1      test       user1       -   
End Limit
Administering Platform LSF



Chapter 16
Resource Allocation Limits
Example 3 Limit usage of hosts in license1 group:

◆ 10 jobs can run from normal queue

◆ Any number can run from short queue, but only can use 200 MB of 
memory in total

◆ Each other queue can run 30 jobs, each queue using up to 300 MB of 
memory in total

Begin Limit
HOSTS       SLOTS   MEM    PER_QUEUE
license1    10      -      normal
license1    -       200    short
license1    30      300    (all ~normal ~short)
End Limit

Example 4 All users in user group ugroup1 except user1 using queue1 and queue2 and 
running jobs on hosts in host group hgroup1 are limited to 2 job slots per 
processor on each host:

Begin Limit
NAME          = limit1
# Resources:
SLOTS_PER_PROCESSOR = 2
#Consumers:
QUEUES       = queue1 queue2
USERS        = ugroup1 ~user1
PER_HOST     = hgroup1
End Limit

Example 5 user1 and user2 can use all queues and all hosts in the cluster with a limit of 
20 MB of available memory:

Begin Limit
NAME  = 20_MB_mem 
# Resources:
MEM   = 20
# Consumers:
USERS = user1 user2
End Limit

Example 6 All users in user group ugroup1 can use queue1 and queue2 and run jobs on 
any host in host group hgroup1 sharing 10 job slots:

Begin Limit
NAME   = 10_slot 
# Resources:
SLOTS  = 10
#Consumers:
QUEUES = queue1 queue2
USERS  = ugroup1
HOSTS  = hgroup1
End Limit

Example 7 All users in user group ugroup1 except user1 can use all queues but queue1 
and run jobs with a limit of 10% of available memory on each host in host 
group hgroup1:
Administering Platform LSF 265



Configuring Resource Allocation Limits

266
Begin Limit
NAME     = 10_percent_mem
# Resources:
MEM      = 10%
QUEUES   = all ~queue1
USERS    = ugroup1 ~user1
PER_HOST = hgroup1
End Limit

Example 8 Limit users in the develop group to 1 job on each host, and 50% of the 
memory on the host.

Begin Limit
NAME = develop_group_limit
# Resources:
SLOTS = 1
MEM = 50%
#Consumers:
USERS = develop
PER_HOST = all
End Limit

Example 9 Limit software license lic1, with quantity 100, where user1 can use 90 
licenses and all other users are restricted to 10.

Begin Limit
USERS          LICENSE
user1          ([lic1,90])
(all ~user1)   ([lic1,10])
End Limit

lic1 is defined as a decreasing numeric shared resource in lsf.shared.

To submit a job to use one lic1 license, use the rusage string in the -R option 
of bsub specify the license:

% bsub -R "rusage[lic1=1]" my-job

Example 10 Jobs from crash project can use 10 lic1 licenses, while jobs from all other 
projects together can use 5.

Begin Limit
LICENSE        PROJECTS
([lic1,10])    crash
([lic1,5])     (all ~crash)
End Limit

lic1 is defined as a decreasing numeric shared resource in lsf.shared.

Example 11 Limit host to 1 job slot per processor:

Begin Limit
NAME                = default_limit
SLOTS_PER_PROCESSOR = 1
PER_HOST            = all
End Limit
Administering Platform LSF



Chapter 16
Resource Allocation Limits
Viewing Information about Resource Allocation Limits
Your job may be pending because some configured resource allocation limit 
has been reached. Use the blimits command to show the dynamic counters 
of resource allocation limits configured in Limit sections in lsb.resources. 
blimits displays the current resource usage to show what limits may be 
blocking your job.

blimits command
The blimits command displays:

◆ Configured limit policy name

◆ Users (-u option)

◆ Queues (-q option)

◆ Hosts (-m option)

◆ Project names (-p option)

Resources that have no configured limits or no limit usage are indicated by a 
dash (-). Limits are displayed in a USED/LIMIT format. For example, if a limit 
of 10 slots is configured and 3 slots are in use, then blimits displays the limit 
for SLOTS as 3/10.

If limits MEM, SWP, or TMP are configured as percentages, both the limit and 
the amount used are displayed in MB. For example, lshosts displays 
maxmem of 249 MB, and MEM is limited to 10% of available memory. If 10 MB 
out of are used, blimits displays the limit for MEM as 10/25 (10 MB USED 
from a 25 MB LIMIT).

Configured limits and resource usage for builtin resources (slots, mem, tmp, 
and swp load indices) are displayed as INTERNAL RESOURCE LIMITS 
separately from custom external resources, which are shown as EXTERNAL 
RESOURCE LIMITS.

Limits are displayed for both the vertical tabular format and the horizontal 
format for Limit sections. Since a vertical format Limit section has no name, 
blimits displays NONAMEnnn under the NAME column for these limits, 
where the unnamed limits are numbered in the order the vertical-format Limit 
sections appear in the lsb.resources file.

If a resource consumer is configured as all, the limit usage for that consumer 
is indicated by a dash (-).

PER_HOST slot limits are not displayed. The bhosts commands displays these 
as MXJ limits.

In MultiCluster, blimits returns the information about all limits in the local 
cluster.
Administering Platform LSF 267



Viewing Information about Resource Allocation Limits

268
Examples
For the following limit definitions:

Begin Limit
NAME = limit1
USERS = user1
PER_QUEUE = all
PER_HOST = hostA hostC
TMP = 30%
SWP = 50%
MEM = 10%
End Limit

Begin Limit
NAME = limit_ext1
PER_HOST = all
RESOURCE = ([user1_num,30] [hc_num,20])
End Limit

blimits displays the following:

% blimits
 
INTERNAL RESOURCE LIMITS:

NAME     USERS     QUEUES     HOSTS   PROJECTS   SLOTS    MEM      TMP      SWP
limit1   user1         q2     hostA         -       -   10/25        -   10/258
limit1   user1         q3     hostA         -       -       -   30/2953       -
limit1   user1         q4     hostC         -       -       -    40/590       -

EXTERNAL RESOURCE LIMITS:

NAME        USERS   QUEUES   HOSTS   PROJECTS    user1_num    hc_num     HC_num
limit_ext1      -        -   hostA          -           -       1/20          -
limit_ext1      -        -   hostC          -         1/30      1/20          -

◆ In limit policy limit1, user1 submitting jobs to q2, q3, or q4 on hostA 
or hostC is limited to 30% tmp space, 50% swap space, and 10% available 
memory. No limits have been reached, so the jobs from user1 should run. 
For example, on hostA for jobs from q2, 10 MB of memory are used from 
a 25 MB limit and 10 MB of swap space are used from a 258 MB limit. 

◆ In limit policy limit_ext1, external resource user1_num is limited to 30 
per host and external resource hc_num is limited to 20 per host. Again, no 
limits have been reached, so the jobs requesting those resources should 
run.
Administering Platform LSF



C H A P T E R

17
Reserving Resources

Contents ◆ “About Resource Reservation” on page 270

◆ “Using Resource Reservation” on page 271

◆ “Memory Reservation for Pending Jobs” on page 272

◆ “Viewing Resource Reservation Information” on page 275
Administering Platform LSF 269



About Resource Reservation

270
About Resource Reservation
When a job is dispatched, the system assumes that the resources that the job 
consumes will be reflected in the load information. However, many jobs do not 
consume the resources they require when they first start. Instead, they will 
typically use the resources over a period of time. 

For example, a job requiring 100 MB of swap is dispatched to a host having 
150 MB of available swap. The job starts off initially allocating 5 MB and 
gradually increases the amount consumed to 100 MB over a period of 30 
minutes. During this period, another job requiring more than 50 MB of swap 
should not be started on the same host to avoid over-committing the resource.

Resources can be reserved to prevent overcommitment by LSF. Resource 
reservation requirements can be specified as part of the resource requirements 
when submitting a job, or can be configured into the queue level resource 
requirements.

How resource reservation works
When deciding whether to schedule a job on a host, LSF considers the reserved 
resources of jobs that have previously started on that host. For each load index, 
the amount reserved by all jobs on that host is summed up and subtracted (or 
added if the index is increasing) from the current value of the resources as 
reported by the LIM to get amount available for scheduling new jobs:

available amount = current value - reserved amount for all 
jobs

For example:

% bsub -R "rusage[tmp=30:duration=30:decay=1]" myjob

will reserve 30 MB of temp space for the job. As the job runs, the amount 
reserved will decrease at approximately 1 MB/minute such that the reserved 
amount is 0 after 30 minutes.

Queue-level and job-level resource reservation
The queue level resource requirement parameter RES_REQ may also specify 
the resource reservation. If a queue reserves certain amount of a resource, you 
cannot reserve a greater amount of that resource at the job level.

For example, if the output of bqueues -l command contains:

RES_REQ: rusage[mem=40:swp=80:tmp=100]

the following submission will be rejected since the requested amount of certain 
resources exceeds queue's specification:

% bsub -R "rusage[mem=50:swp=100]" myjob
Administering Platform LSF



Chapter 17
Reserving Resources
Using Resource Reservation

Queue-level resource reservation
At the queue level, resource reservation allows you to specify the amount of 
resources to reserve for jobs in the queue. It also serves as the upper limits of 
resource reservation if a user also specifies it when submitting a job.

Queue-level resource reservation and pending reasons
The use of RES_REQ affects the pending reasons as displayed by bjobs. If 
RES_REQ is specified in the queue and the loadSched thresholds are not 
specified, then the pending reasons for each individual load index will not be 
displayed.

Configuring resource reservation at the queue level
Queue-level resource reservation can be configured as part of the RES_REQ 
parameter. The resource reservation requirement can be configured at the 
queue level as part of the queue level resource requirements. Use the resource 
usage (rusage) section of the resource requirement string to specify the 
amount of resources a job should reserve after it is started.

Examples Begin Queue
.
RES_REQ = select[type==any] rusage[swp=100:mem=40:duration=60]
.
End Queue

This will allow a job to be scheduled on any host that the queue is configured 
to use and will reserve 100 MB of swap and 40 MB of memory for a duration 
of 60 minutes.

Begin Queue
.
RES_REQ = swap>50 rusage[swp=40:duration=5h:decay=1]
.
End Queue

Job-level resource reservation
To specify resource reservation at the job level, use bsub -R and include the 
resource usage section in the resource requirement string.
Administering Platform LSF 271



Memory Reservation for Pending Jobs

272
Memory Reservation for Pending Jobs

About memory reservation for pending jobs
By default, the rusage string reserves resources for running jobs. Because 
resources are not reserved for pending jobs, some memory-intensive jobs 
could be pending indefinitely because smaller jobs take the resources 
immediately before the larger jobs can start running. The more memory a job 
requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory 
as it becomes available, until the total required memory specified on the 
rusage string is accumulated and the job can start. Use memory reservation 
for pending jobs if memory-intensive jobs often compete for memory with 
smaller jobs in your cluster.

Configuring memory reservation for pending jobs
RESOURCE_RESERVE parameter

Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host 
memory for pending jobs.

The amount of memory reserved is based on the currently available memory 
when the job is pending. Reserved memory expires at the end of the time 
period represented by the number of dispatch cycles specified by the value of 
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter.

Configure
lsb.modules

To enable memory reservation for sequential jobs, add the LSF scheduler 
plugin module name for resource reservation (schmod_reserve) to the 
lsb.modules file:

Begin PluginModule
SCH_PLUGIN                 RB_PLUGIN              
SCH_DISABLE_PHASES 
schmod_default                ()                          () 
schmod_reserve                ()                          () 
schmod_preemption             ()                          () 
End PluginModule

Configure
lsb.queues

Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.

If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same 
queue, job slot reservation and memory reservation are both enabled and an 
error is displayed when the cluster is reconfigured. SLOT_RESERVE is ignored.

Example queues The following queue enables memory reservation for pending jobs:

Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue
Administering Platform LSF



Chapter 17
Reserving Resources
Using memory reservation for pending jobs
Use the rusage string in the -R option to bsub or the RES_REQ parameter in 
lsb.queues to specify the amount of memory required for the job. Submit the 
job to a queue with RESOURCE_RESERVE configured.

See “Examples” on page 274 for examples of jobs that use memory reservation.

How memory reservation for pending jobs works
Amount of

memory reserved
The amount of memory reserved is based on the currently available memory 
when the job is pending. For example, if LIM reports that a host has 300 MB 
of memory available, the job submitted by the following command:

% bsub -R "rusage[mem=400]" -q reservation my_job

will be pending and reserve the 300 MB of available memory. As other jobs 
finish, the memory that becomes available is added to the reserved memory 
until 400 MB accumulates, and the job starts.

No memory is reserved if no job slots are available for the job because the job 
could not run anyway, so reserving memory would waste the resource.

Only memory is accumulated while the job is pending; other resources 
specified on the rusage string are only reserved when the job is running. 
Duration and decay have no effect on memory reservation while the job is 
pending.

How long memory is reserved (MAX_RESERVE_TIME)
Reserved memory expires at the end of the time period represented by the 
number of dispatch cycles specified by the value of MAX_RESERVE_TIME set 
on the RESOURCE_RESERVE parameter. If a job has not accumulated enough 
memory to start by the time MAX_RESERVE_TIME expires, it releases all its 
reserved memory so that other pending jobs can run. After the reservation time 
expires, the job cannot reserve slots or memory for one scheduling session, so 
other jobs have a chance to be dispatched. After one scheduling session, the 
job can reserve available resources again for another period specified by 
MAX_RESERVE_TIME.
Administering Platform LSF 273



Memory Reservation for Pending Jobs

274
Examples
lsb.queues The following queues are defined in lsb.queues:

Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Assumptions Assume one host in the cluster with 10 CPUs and 1 GB of free memory 
currently available.

Sequential jobs Each of the following sequential jobs requires 400 MB of memory and will run 
for 300 minutes.

◆ Job 1: 
% bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job will start running, using 400M of memory and one job slot.

◆ Job 2:

Submitting a second job with same requirements will get the same result.

◆ Job 3: 

Submitting a third job with same requirements will reserve one job slot, 
and reserve all free memory, if the amount of free memory is between 20 
MB and 200 MB (some free memory may be used by the operating system 
or other software.)
Administering Platform LSF



Chapter 17
Reserving Resources
Viewing Resource Reservation Information

Viewing host-level resource information
bhosts command Use bhosts -l to show the amount of resources reserved on each host. In the 

following example, 143 MB of memory is reserved on hostA, and no memory 
is currently available on the host.

$ bhosts -l hostA
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WIN
DOW
ok 20.00 - 4 2 1 0 0 1 -

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp sw

p mem
Total 1.5 1.2 2.0 91% 2.5 7 49 0 911M 915

M 0M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0

M 143M

Use bhosts -s to view information about shared resources.

Viewing queue-level resource information
bqueues -l To see the resource usage configured at the queue level, use bqueues -l.

$ bqueues -l reservation
QUEUE: reservation
  -- For resource reservation

PARAMETERS/STATISTICS
PRIO NICE STATUS          MAX JL/U JL/P JL/H NJOBS  PEND   RUN SSUSP USUSP  RSV 
40      0 Open:Active       -    -    -    -     4     0     0     0     0    4 

SCHEDULING PARAMETERS
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  

SCHEDULING POLICIES:  RESOURCE_RESERVE

USERS: all users
HOSTS: all

Maximum resource reservation time: 600 seconds
Administering Platform LSF 275



Viewing Resource Reservation Information

276
Viewing reserved memory for pending jobs
bjobs -l If the job memory requirements cannot be satisfied, bjobs -l shows the 

pending reason. bjobs -l shows both reserved slots and reserved memory.

For example, the following job reserves 60 MB of memory on hostA:

$ bsub -m hostA -n 2 -q reservation -R"rusage[mem=60]" sleep 
8888
Job <3> is submitted to queue <reservation>.

bjobs -l shows the reserved memory:

$ bjobs -lp

Job <3>, User <user1>, Project <default>, Status <PEND>, Queue <reservation>
                     , Command <sleep 8888>
Tue Jan 22 17:01:05: Submitted from host <user1>, CWD </home/user1/>, 2 
Processors Requested, Requested Resources <rusage[mem=60]>, Specified Hosts 
<hostA>;
Tue Jan 22 17:01:15: Reserved <1> job slot on host <hostA>;
Tue Jan 22 17:01:15: Reserved <60> megabyte memory on host <60M*hostA>;
 PENDING REASONS:
 Not enough job slot(s): hostA;

 SCHEDULING PARAMETERS:
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  
Administering Platform LSF



C H A P T E R

18
Managing Software Licenses with

LSF

Software licenses are valuable resources that must be fully utilized. This section 
discusses how LSF can help manage licensed applications to maximize 
utilization and minimize job failure due to license problems.

Contents ◆ “Using Licensed Software with LSF” on page 278

◆ “Host Locked Licenses” on page 279

◆ “Counted Host Locked Licenses” on page 280

◆ “Network Floating Licenses” on page 281
Administering Platform LSF 277



Using Licensed Software with LSF

278
Using Licensed Software with LSF
Many applications have restricted access based on the number of software 
licenses purchased. LSF can help manage licensed software by automatically 
forwarding jobs to licensed hosts, or by holding jobs in batch queues until 
licenses are available.

In this section LSF can manage three types of software licenses, described in the following 
sections:

◆ “Host Locked Licenses” on page 279

◆ “Counted Host Locked Licenses” on page 280

◆ “Network Floating Licenses” on page 281
Administering Platform LSF



Chapter 18
Managing Software Licenses with LSF
Host Locked Licenses
Host locked software licenses allow users to run an unlimited number of 
copies of the product on each of the hosts that has a license.

Configuring host locked licenses
You can configure a Boolean resource to represent the software license, and 
configure your application to require the license resource. When users run the 
application, LSF chooses the best host from the set of licensed hosts.

See “Boolean resources” on page 140 for information about configuring 
Boolean resources.

See the Platform LSF Reference for information about the lsf.task file and 
instructions on configuring resource requirements for an application.
Administering Platform LSF 279



Counted Host Locked Licenses

280
Counted Host Locked Licenses
Counted host locked licenses are only available on specific licensed hosts, but 
also place a limit on the maximum number of copies available on the host.

Configuring counted host locked licenses
You configure counted host locked licenses by having LSF determine the 
number of licenses currently available. Use either of the following to count the 
host locked licenses:

◆ External LIM (ELIM)

◆ A check_licenses shell script

Using an External
LIM (ELIM)

To use an external LIM (ELIM) to get the number of licenses currently available, 
configure an external load index licenses giving the number of free licenses 
on each host. To restrict the application to run only on hosts with available 
licenses, specify licenses>=1 in the resource requirements for the 
application.

See “External Load Indices and ELIM” on page 158 for instructions on writing 
and using an ELIM and configuring resource requirements for an application.

See the Platform LSF Reference for information about the lsf.task file.

Using a
check_license

script

There are two ways to use a check_license shell script to check license 
availability and acquire a license if one is available:

◆ Configure the check_license script as a job-level pre-execution 
command when submitting the licensed job:
% bsub -m licensed_hosts -E check_license licensed_job

◆ Configure the check_license script as a queue-level pre-execution 
command. See “Configuring Pre- and Post-Execution Commands” on 
page 368 for information about configuring queue-level pre-execution 
commands.

It is possible that the license becomes unavailable between the time the 
check_license script is run, and when the job is actually run. To handle this 
case, configure a queue so that jobs in this queue will be requeued if they exit 
with values indicating that the license was not successfully obtained.

See “Automatic Job Requeue” on page 301 for more information.
Administering Platform LSF



Chapter 18
Managing Software Licenses with LSF
Network Floating Licenses
A network floating license allows a fixed number of machines or users to run 
the product at the same time, without restricting which host the software can 
run on. Floating licenses are cluster-wide resources; rather than belonging to 
a specific host, they belong to all hosts in the cluster.

LSF can be used to manage floating licenses using the following LSF features:

◆ Shared resources

◆ Resource reservation

◆ Job requeuing

Using LSF to run licensed software can improve the utilization of the licenses. 
The licenses can be kept in use 24 hours a day, 7 days a week. For expensive 
licenses, this increases their value to the users. Floating licenses also increase 
productivity, because users do not have to wait for a license to become 
available.

LSF jobs can make use of floating licenses when:

◆ All license jobs are run through LSF

◆ Licenses are managed outside of LSF control

All licenses used through LSF
If all jobs requiring licenses are submitted through LSF, then LSF could regulate 
the allocation of licenses to jobs and ensure that a job is not started if the 
required license is not available. A static resource is used to hold the total 
number of licenses that are available. The static resource is used by LSF as a 
counter which is decremented by the resource reservation mechanism each 
time a job requiring that resource is started.

Example
For example, suppose that there are 10 licenses for the Verilog package 
shared by all hosts in the cluster. The LSF configuration files should be 
specified as shown below. The resource is a static value, so an ELIM is not 
necessary.

lsf.shared Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric () N (Floating 
licenses for Verilog)
End Resource

lsf.cluster.cluster_name
Begin ResourceMap
RESOURCENAME LOCATION
verilog (10@[all])
End ResourceMap

Submitting jobs The users would submit jobs requiring verilog licenses as follows:

% bsub -R "rusage[verilog=1]" myprog
Administering Platform LSF 281



Network Floating Licenses

282
Licenses used outside of LSF control
To handle the situation where application licenses are used by jobs outside of 
LSF, use an ELIM to dynamically collect the actual number of licenses available 
instead of relying on a statically configured value. The ELIM periodically 
informs LSF of the number of available licenses, and LSF takes this into 
consideration when scheduling jobs.

Example
Assuming there are a number of licenses for the Verilog package that can be 
used by all the hosts in the cluster, the LSF configuration files could be set up 
to monitor this resource as follows:

lsf.shared Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric 60 N (Floating 
licenses for Verilog)
End Resource

lsf.cluster.cluster_name
Begin ResourceMap
RESOURCENAME LOCATION
verilog ([all])
End ResourceMap

The INTERVAL in the lsf.shared file indicates how often the ELIM is 
expected to update the value of the Verilog resource—in this case every 60 
seconds. Since this resource is shared by all hosts in the cluster, the ELIM only 
needs to be started on the master host. If the Verilog licenses can only be 
accessed by some hosts in the cluster, specify the LOCATION field of the 
ResourceMap section as ([hostA hostB hostC ...]). In this case an ELIM 
is only started on hostA.

Submitting jobs The users would submit jobs requiring verilog licenses as follows:

% bsub -R "rusage[verilog=1:duration=1]" myprog

Configuring a dedicated queue for floating licenses
Whether you run all license jobs through LSF or run jobs that use licenses that 
are outside of LSF control, you can configure a dedicated queue to run jobs 
requiring a floating software license.

For each job in the queue, LSF reserves a software license before dispatching 
a job, and releases the license when the job finishes.

Use the bhosts -s command to display the number of licenses being reserved 
by the dedicated queue.

Example The following example defines a queue named q_verilog in lsb.queues 
dedicated to jobs that require Verilog licenses:

Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
End Queue
Administering Platform LSF



Chapter 18
Managing Software Licenses with LSF
The queue named q_verilog contains jobs that will reserve one Verilog 
license when it is started.

If the Verilog licenses are not cluster-wide, but can only be used by some 
hosts in the cluster, the resource requirement string should include the 
defined() tag in the select section:

select[defined(verilog)] rusage[verilog=1]

Preventing underutilization of licenses
One limitation to using a dedicated queue for licensed jobs is that if a job does 
not actually use the license, then the licenses will be under-utilized. This could 
happen if the user mistakenly specifies that their application needs a license, 
or submits a non-licensed job to a dedicated queue.

LSF assumes that each job indicating that it requires a Verilog license will 
actually use it, and simply subtracts the total number of jobs requesting 
Verilog licenses from the total number available to decide whether an 
additional job can be dispatched.

Use the duration keyword in the queue resource requirement specification 
to release the shared resource after the specified number of minutes expires. 
This prevents multiple jobs started in a short interval from over-using the 
available licenses. By limiting the duration of the reservation and using the 
actual license usage as reported by the ELIM, underutilization is also avoided 
and licenses used outside of LSF can be accounted for.

When interactive jobs compete for licenses
In situations where an interactive job outside the control of LSF competes with 
batch jobs for a software license, it is possible that a batch job, having reserved 
the software license, may fail to start as its license is intercepted by an 
interactive job. To handle this situation, configure job requeue by using the 
REQUEUE_EXIT_VALUES parameter in a queue definition in lsb.queues. If a 
job exits with one of the values in the REQUEUE_EXIT_VALUES, LSF will 
requeue the job.

Example Jobs submitted to the following queue will use Verilog licenses:

Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
# application exits with value 99 if it fails to get license
REQUEUE_EXIT_VALUES = 99
JOB_STARTER = lic_starter
End Queue

All jobs in the queue are started by the job starter lic_starter, which checks 
if the application failed to get a license and exits with an exit code of 99. This 
causes the job to be requeued and LSF will attempt to reschedule it at a later 
time.
Administering Platform LSF 283



Network Floating Licenses

284
lic_starter job
starter script

The lic_starter job starter can be coded as follows:

#!/bin/sh
# lic_starter: If application fails with no license, exit 99,
# otherwise, exit 0. The application displays
# "no license" when it fails without license available.
$* 2>&1 | grep "no license"
if [ $? != "0" ]
then

exit 0     # string not found, application got the license
else

exit 99
fi

For more information
◆ See “Automatic Job Requeue” on page 301 for more information about 

configuring job requeue

◆ See Chapter 29, “Job Starters” for more information about LSF job starters
Administering Platform LSF



C H A P T E R

19
Dispatch and Run Windows

Contents ◆ “Dispatch and Run Windows” on page 286

◆ “Run Windows” on page 287

◆ “Dispatch Windows” on page 288
Administering Platform LSF 285



Dispatch and Run Windows

286
Dispatch and Run Windows
Both dispatch and run windows are time windows that control when LSF jobs 
start and run.

◆ Dispatch windows can be defined in lsb.hosts. Dispatch and run 
windows can be defined in lsb.queues.

◆ Hosts can only have dispatch windows. Queues can have dispatch 
windows and run windows.

◆ Both windows affect job starting; only run windows affect the stopping of 
jobs.

◆ Dispatch windows define when hosts and queues are active and inactive. 
It does not control job submission.

Run windows define when jobs can and cannot run. While a run window 
is closed, LSF cannot start any of the jobs placed in the queue, or finish any 
of the jobs already running.

◆ When a dispatch window closes, running jobs continue and finish, and no 
new jobs can be dispatched to the host or from the queue. When a run 
window closes, LSF suspends running jobs, but new jobs can still be 
submitted to the queue.
Administering Platform LSF



Chapter 19
Dispatch and Run Windows
Run Windows
Queues can be configured with a run window, which specifies one or more 
time periods during which jobs in the queue are allowed to run. Once a run 
window is configured, jobs in the queue cannot run outside of the run 
window.

Jobs can be submitted to a queue at any time; if the run window is closed, the 
jobs remain pending until it opens again. If the run window is open, jobs are 
placed and dispatched as usual. When an open run window closes, running 
jobs are suspended, and pending jobs remain pending. The suspended jobs are 
resumed when the window opens again.

Configuring run windows
To configure a run window, set RUN_WINDOW in lsb.queues.

For example, to specify that the run window will be open from 4:30 a.m. to 
noon, type:

RUN_WINDOW = 4:30-12:00

You can specify multiple time windows.

For more information about the syntax of time windows, see “Specifying Time 
Windows” on page 169.

Viewing information about run windows
Use bqueues -l to display information about queue run windows.
Administering Platform LSF 287



Dispatch Windows

288
Dispatch Windows
Queues can be configured with a dispatch window, which specifies one or 
more time periods during which jobs are accepted. Hosts can be configured 
with a dispatch window, which specifies one or more time periods during 
which jobs are allowed to start.

Once a dispatch window is configured, LSF cannot dispatch jobs outside of the 
window. By default, no dispatch windows are configured (the windows are 
always open).

Dispatch windows have no effect on jobs that have already been dispatched 
to the execution host; jobs are allowed to run outside the dispatch windows, 
as long as the queue run window is open.

Queue-level Each queue can have a dispatch window. A queue can only dispatch jobs 
when the window is open.

You can submit jobs to a queue at any time; if the queue dispatch window is 
closed, the jobs remain pending in the queue until the dispatch window opens 
again.

Host-level Each host can have dispatch windows. A host is not eligible to accept jobs 
when its dispatch windows are closed.

Configuring dispatch windows
Dispatch windows can be defined for both queues and hosts. The default is no 
restriction, or always open.

Configuring host
dispatch windows

To configure dispatch windows for a host, set DISPATCH_WINDOW in 
lsb.hosts and specify one or more time windows. If no host dispatch 
window is configured, the window is always open.

Configuring
queue dispatch

windows

To configure dispatch windows for queues, set DISPATCH_WINDOW in 
lsb.queues and specify one or more time windows. If no queue dispatch 
window is configured, the window is always open.

Displaying dispatch windows
Displaying queue

dispatch windows
Use bqueues -l to display queue dispatch windows.

Displaying host
dispatch windows

Use bhosts -l to display host dispatch windows.
Administering Platform LSF



C H A P T E R

20
Job Dependencies

Contents ◆ “Job Dependency Scheduling” on page 290

◆ “Dependency Conditions” on page 292
Administering Platform LSF 289



Job Dependency Scheduling

290
Job Dependency Scheduling

About job dependency scheduling
Sometimes, whether a job should start depends on the result of another job. 
For example, a series of jobs could process input data, run a simulation, 
generate images based on the simulation output, and finally, record the images 
on a high-resolution film output device. Each step can only be performed after 
the previous step finishes successfully, and all subsequent steps must be 
aborted if any step fails.

Some jobs may not be considered complete until some post-job processing is 
performed. For example, a job may need to exit from a post-execution job 
script, clean up job files, or transfer job output after the job completes.

In LSF, any job can be dependent on other LSF jobs. When you submit a job, 
you use bsub -w to specify a dependency expression, usually based on the 
job states of preceding jobs.

LSF will not place your job unless this dependency expression evaluates to 
TRUE. If you specify a dependency on a job that LSF cannot find (such as a 
job that has not yet been submitted), your job submission fails.

Specifying a job dependency
To specify job dependencies, use bsub -w to specify a dependency expression 
for the job.

Syntax bsub -w 'dependency_expression'

The dependency expression is a logical expression composed of one or more 
dependency conditions. For syntax of individual dependency conditions, see 
“Dependency Conditions” on page 292.

To make dependency expression of multiple conditions, use the following 
logical operators:

❖ && (AND)

❖ || (OR)

❖ ! (NOT) 

◆ Use parentheses to indicate the order of operations, if necessary.

◆ Enclose the dependency expression in single quotes (') to prevent the shell 
from interpreting special characters (space, any logic operator, or 
parentheses). If you use single quotes for the dependency expression, use 
double quotes for quoted items within it, such as job names.

◆ Job names specify only your own jobs, unless you are an LSF administrator. 

◆ Use double quotes (") around job names that begin with a number.
Administering Platform LSF



Chapter 20
Job Dependencies
◆ In Windows, enclose the dependency expression in double quotes (") 
when the expression contains a space. For example:

❖ bsub -w "exit(678, 0)" requires double quotes in Windows.

❖ bsub -w 'exit(678,0)' can use single quotes in Windows.

◆ In the job name, specify the wildcard character (*) at the end of a string, to 
indicate all jobs whose name begins with the string. For example, if you 
use jobA* as the job name, it specifies jobs named jobA, jobA1, 
jobA_test, jobA.log, etc. 

Multiple jobs with the same name
By default, if you use the job name to specify a dependency condition, and 
more than one of your jobs has the same name, all of your jobs that have that 
name must satisfy the test.

To change this behavior, set JOB_DEP_LAST_SUB in lsb.params to 1. Then, 
if more than one of your jobs has the same name, the test is done on the one 
submitted most recently.
Administering Platform LSF 291



Dependency Conditions

292
Dependency Conditions
The following dependency conditions can be used with any job:

◆ done(job_ID | "job_name")

◆ ended(job_ID | "job_name")

◆ exit(job_ID [,[op] exit_code]) 

◆ exit("job_name"[,[op] exit_code]) 

◆ external(job_ID | "job_name", "status_text") 

◆ job_ID | "job_name" 

◆ post_done(job_ID | "job_name") 

◆ post_err(job_ID | "job_name") 

◆ started(job_ID | "job_name") 

done
Syntax done(job_ID | "job_name") 

Description The job state is DONE.

ended
Syntax ended(job_ID | "job_name") 

Description The job state is EXIT or DONE. 

exit 
Syntax exit(job_ID | "job_name"[,[operator] exit_code]) 

where operator represents one of the following relational operators:

◆ >

◆ >=

◆ <

◆ <=

◆ ==

◆ !=

Description The job state is EXIT, and the job’s exit code satisfies the comparison test.

If you specify an exit code with no operator, the test is for equality (== is 
assumed).

If you specify only the job, any exit code satisfies the test. 
Administering Platform LSF



Chapter 20
Job Dependencies
Examples ◆ exit (myjob)

The job named myjob is in the EXIT state, and it does not matter what its 
exit code was.

◆ exit (678,0)

The job with job ID 678 is in the EXIT state, and terminated with exit code 
0.

◆ exit ("678",!=0)

The job named 678 is in the EXIT state, and terminated with any non-zero 
exit code.

external 
Syntax external(job_ID | "job_name", "status_text") 

Specify the first word of the job status or message description (no spaces). 
Only the first word is evaluated.

Description The job has the specified job status, or the text of the job’s status begins with 
the specified word.

Job ID or job name 
Syntax job_ID | "job_name" 

Description If you specify a job without a dependency condition, the test is for the DONE 
state (LSF assumes the “done” dependency condition by default).

post_done
Syntax post_done(job_ID | "job_name") 

Description The job state is POST_DONE (the post-processing of specified job has 
completed without errors).

post_err
Syntax post_err(job_ID | "job_name") 

Description The job state is POST_ERR (the post-processing of specified job has completed 
with errors). 

started
Syntax started(job_ID | "job_name") 

Description The job state is:

◆ RUN, DONE, or EXIT 

◆ PEND or PSUSP, and the job has a pre-execution command (bsub -E) that 
is running
Administering Platform LSF 293



Dependency Conditions

294
Advanced dependency conditions
Job arrays If you use job arrays, you can specify additional dependency conditions that 

only work with job arrays.

To use other dependency conditions with array jobs, specify elements of a job 
array in the usual way.

Job dependency examples
◆ The simplest kind of dependency expression consists of only one 

dependency condition. For example, if JobA depends on the successful 
completion of JobB, submit the job as shown:
bsub -J "JobA" -w 'done(JobB)' command

◆ -w 'done(312) && (started(Job2)||exit("99Job"))'

The submitted job will not start until the job with the job ID of 312 has 
completed successfully, and either the job named Job2 has started, or the 
job named 99Job has terminated abnormally.

◆ -w '"210"'

The submitted job will not start unless the job named 210 is finished. The 
numeric job name should be doubly quoted, since the UNIX shell treats 
-w "210" the same as -w 210, which would evaluate the job with the job 
ID of 210.
Administering Platform LSF



C H A P T E R

21
Job Priorities

Contents ◆ “User-Assigned Job Priority” on page 296

◆ “Automatic Job Priority Escalation” on page 298
Administering Platform LSF 295



User-Assigned Job Priority

296
User-Assigned Job Priority
User-assigned job priority provides controls that allow users to order their jobs 
in a queue. Job order is the first consideration to determine job eligibility for 
dispatch. Jobs are still subject to all scheduling policies regardless of job 
priority. Jobs with the same priority are ordered first come first served.

The job owner can change the priority of their own jobs. LSF and queue 
administrators can change the priority of all jobs in a queue.

User-assigned job priority is enabled for all queues in your cluster, and can be 
configured with automatic job priority escalation to automatically increase the 
priority of jobs that have been pending for a specified period of time.

Considerations The btop and bbot commands move jobs relative to other jobs of the same 
priority. These commands do not change job priority.

In this section ◆ “Configuring job priority” on page 296

◆ “Specifying job priority” on page 297

◆ “Viewing job priority information” on page 297

Configuring job priority
To configure user-assigned job priority edit lsb.params and define 
MAX_USER_PRIORITY. This configuration applies to all queues in your cluster.

Use bparams -l to display the value of MAX_USER_PRIORITY.

Syntax MAX_USER_PRIORITY=max_priority

Where:

max_priority

Specifies the maximum priority a user can assign to a job. Valid values are 
positive integers. Larger values represent higher priority; 1 is the lowest.

LSF and queue administrators can assign priority beyond max_priority.

Example MAX_USER_PRIORITY=100

Specifies that 100 is the maximum job priority that can be specified by a user.
Administering Platform LSF



Chapter 21
Job Priorities
Specifying job priority
Job priority is specified at submission using bsub and modified after 
submission using bmod. Jobs submitted without a priority are assigned the 
default priority of MAX_USER_PRIORITY/2.

Syntax bsub -sp priority
bmod [-sp priority | -spn] job_ID

Where:

◆ -sp priority

Specifies the job priority. Valid values for priority are any integers between 
1 and MAX_USER_PRIORITY (displayed by bparams -l). Invalid job 
priorities are rejected.

LSF and queue administrators can specify priorities beyond 
MAX_USER_PRIORITY.

◆ -spn

Sets the job priority to the default priority of MAX_USER_PRIORITY/2 
(displayed by bparams -l).

Viewing job priority information
Use the following commands to view job history, the current status and system 
configurations:

bhist -l job_ID Displays the history of a job including changes in job priority.

bjobs -l [job_ID] Displays the current job priority and the job priority at submission time. Job 
priorities are changed by the job owner, LSF and queue administrators, and 
automatically when automatic job priority escalation is enabled.

bparams -l Displays values for:

◆ The maximum user priority, MAX_USER_PRIORITY

◆ The default submission priority, MAX_USER_PRIORITY/2

◆ The value and frequency used for automatic job priority escalation, 
JOB_PRIORITY_OVER_TIME
Administering Platform LSF 297



Automatic Job Priority Escalation

298
Automatic Job Priority Escalation
Automatic job priority escalation automatically increases job priority of jobs 
that have been pending for a specified period of time. User-assigned job 
priority (see “User-Assigned Job Priority” on page 296) must also be 
configured.

As long as a job remains pending, LSF will automatically increase the job 
priority beyond the maximum priority specified by MAX_USER_PRIORITY. Job 
priority will not be increased beyond the value of max_int on your system.

Configuring job priority escalation
To configure job priority escalation edit lsb.params and define 
JOB_PRIORITY_OVER_TIME. User-assigned job priority must also be 
configured.

Use bparams -l to display the values of JOB_PRIORITY_OVER_TIME.

Syntax JOB_PRIORITY_OVER_TIME=increment/interval

Where:

◆ increment

Specifies the value used to increase job priority every interval minutes. 
Valid values are positive integers.

◆ interval

Specifies the frequency, in minutes, to increment job priority. Valid values 
are positive integers.

Example JOB_PRIORITY_OVER_TIME=3/20

Specifies that every 20 minute interval increment to job priority of pending 
jobs by 3.
Administering Platform LSF



C H A P T E R

22
Job Requeue and Job Rerun

Contents ◆ “About Job Requeue” on page 300

◆ “Automatic Job Requeue” on page 301

◆ “Reverse Requeue” on page 302

◆ “Exclusive Job Requeue” on page 303

◆ “User-Specified Job Requeue” on page 304

◆ “Automatic Job Rerun” on page 305
Administering Platform LSF 299



About Job Requeue

300
About Job Requeue
A networked computing environment is vulnerable to any failure or temporary 
conditions in network services or processor resources. For example, you might 
get NFS stale handle errors, disk full errors, process table full errors, or network 
connectivity problems. Your application can also be subject to external 
conditions such as a software license problems, or an occasional failure due to 
a bug in your application.

Such errors are temporary and probably will happen at one time but not 
another, or on one host but not another. You might be upset to learn all your 
jobs exited due to temporary errors and you did not know about it until 12 
hours later.

LSF provides a way to automatically recover from temporary errors. You can 
configure certain exit values such that in case a job exits with one of the values, 
the job will be automatically requeued as if it had not yet been dispatched. This 
job will then be retried later. It is also possible for you to configure your queue 
such that a requeued job will not be scheduled to hosts on which the job had 
previously failed to run.
Administering Platform LSF



Chapter 22
Job Requeue and Job Rerun
Automatic Job Requeue

About automatic job requeue
You can configure a queue to automatically requeue a job if it exits with a 
specified exit value.

◆ The job is requeued to the head of the queue from which it was 
dispatched, unless the LSB_REQUEUE_TO_BOTTOM parameter in 
lsf.conf is set.

◆ When a job is requeued, LSF does not save the output from the failed run.

◆ When a job is requeued, LSF does not notify the user by sending mail.

◆ A job terminated by a signal is not requeued.

Configuring automatic job requeue
To configure automatic job requeue, set REQUEUE_EXIT_VALUES in the queue 
definition (lsb.queues) and specify the exit codes that will cause the job to 
be requeued.

Example Begin Queue
...
REQUEUE_EXIT_VALUES = 99 100
...
End Queue

This configuration enables jobs that exit with 99 or 100 to be requeued.
Administering Platform LSF 301



Reverse Requeue

302
Reverse Requeue

About reverse requeue
By default, if you use automatic job requeue, jobs are requeued to the head of 
a queue. You can have jobs requeued to the bottom of a queue instead. The 
job priority does not change.

Configuring reverse requeue
You must already use automatic job requeue (REQUEUE_EXIT_VALUES in 
lsb.queues).

To configure reverse requeue:

1 Set LSB_REQUEUE_TO_BOTTOM in lsf.conf to 1.

2 Reconfigure the cluster with the commands lsadmin reconfig and 
badmin mbdrestart.

Example LSB_REQUEUE_TO_BOTTOM=1
Administering Platform LSF



Chapter 22
Job Requeue and Job Rerun
Exclusive Job Requeue

About exclusive job requeue
You can configure automatic job requeue so that a failed job is not rerun on 
the same host.

Limitations ◆ If mbatchd is restarted, this feature might not work properly, since LSF 
forgets which hosts have been excluded. If a job ran on a host and exited 
with an exclusive exit code before mbatchd was restarted, the job could 
be dispatched to the same host again after mbatchd is restarted.

◆ Exclusive job requeue does not work for MultiCluster jobs or parallel jobs

◆ A job terminated by a signal is not requeued

Configuring exclusive job requeue
Set REQUEUE_EXIT_VALUES in the queue definition (lsb.queues) and define 
the exit code using parentheses and the keyword EXCLUDE, as shown:

EXCLUDE(exit_code...)

When a job exits with any of the specified exit codes, it will be requeued, but 
it will not be dispatched to the same host again.

Example Begin Queue
...
REQUEUE_EXIT_VALUES=30 EXCLUDE(20)
HOSTS=hostA hostB hostC
...
End Queue

A job in this queue can be dispatched to hostA, hostB or hostC.

If a job running on hostA exits with value 30 and is requeued, it can be 
dispatched to hostA, hostB, or hostC. However, if a job running on hostA 
exits with value 20 and is requeued, it can only be dispatched to hostB or 
hostC.

If the job runs on hostB and exits with a value of 20 again, it can only be 
dispatched on hostC. Finally, if the job runs on hostC and exits with a value 
of 20, it cannot be dispatched to any of the hosts, so it will be pending forever.
Administering Platform LSF 303



User-Specified Job Requeue

304
User-Specified Job Requeue

About user-specified job requeue
You can use brequeue to kill a job and requeue it. When the job is requeued, 
it is assigned the PEND status and the job’s new position in the queue is after 
other jobs of the same priority.

Requeuing a job
To requeue one job, use brequeue.

◆ You can only use brequeue on running (RUN), user-suspended (USUSP), 
or system-suspended (SSUSP) jobs.

◆ Users can only requeue their own jobs. Only root and LSF administrator 
can requeue jobs submitted by other users.

◆ You cannot use brequeue on interactive batch jobs

Examples % brequeue 109

LSF kills the job with job ID 109, and requeues it in the PEND state. If job 109 
has a priority of 4, it is placed after all the other jobs with the same priority.

% brequeue -u User5 45 67 90

LSF kills and requeues 3 jobs belonging to User5. The jobs have the job IDs 
45, 67, and 90.
Administering Platform LSF



Chapter 22
Job Requeue and Job Rerun
Automatic Job Rerun

Job requeue vs. job rerun
Automatic job requeue occurs when a job finishes and has a specified exit code 
(usually indicating some type of failure).

Automatic job rerun occurs when the execution host becomes unavailable 
while a job is running. It does not occur if the job itself fails.

About job rerun
When a job is rerun or restarted, it is first returned to the queue from which it 
was dispatched with the same options as the original job. The priority of the 
job is set sufficiently high to ensure the job gets dispatched before other jobs 
in the queue. The job uses the same job ID number. It is executed when a 
suitable host is available, and an email message is sent to the job owner 
informing the user of the restart.

Automatic job rerun can be enabled at the job level, by the user, or at the 
queue level, by the LSF administrator. If automatic job rerun is enabled, the 
following conditions cause LSF to rerun the job:

◆ The execution host becomes unavailable while a job is running

◆ The system fails while a job is running

When LSF reruns a job, it returns the job to the submission queue, with the 
same job ID. LSF dispatches the job as if it was a new submission, even if the 
job has been checkpointed.

Execution host
fails

If the execution host fails, LSF dispatches the job to another host. You receive 
a mail message informing you of the host failure and the requeuing of the job.

LSF system fails If the LSF system fails, LSF requeues the job when the system restarts.

Configuring queue-level job rerun
To enable automatic job rerun at the queue level, set RERUNNABLE in 
lsb.queues to yes.

Example RERUNNABLE = yes

Submitting a rerunnable job
To enable automatic job rerun at the job level, use bsub -r.

Interactive batch jobs (bsub -I) cannot be rerunnable.
Administering Platform LSF 305



Automatic Job Rerun

306
 Administering Platform LSF



C H A P T E R

23
Job Checkpoint, Restart, and

Migration

Contents ◆ “Checkpointing Jobs” on page 308

◆ “Approaches to Checkpointing” on page 309

◆ “Creating Custom echkpnt and erestart for Application-level 
Checkpointing” on page 310

◆ “Restarting Checkpointed Jobs” on page 319

◆ “Migrating Jobs” on page 320
Administering Platform LSF 307



Checkpointing Jobs

308
Checkpointing Jobs
Checkpointing a job involves capturing the state of an executing job, the data 
necessary to restart the job, and not wasting the work done to get to the current 
stage. The job state information is saved in a checkpoint file. There are many 
reasons why you would want to checkpoint a job.

Fault tolerance
To provide job fault tolerance, checkpoints are taken at regular intervals 
(periodically) during the job’s execution. If the job is killed or migrated, or if 
the job fails for a reason other than host failure, the job can be restarted from 
its last checkpoint and not waste the efforts to get it to its current stage.

Migration
Checkpointing enables a migrating job to make progress rather than restarting 
the job from the beginning. Jobs can be migrated when a host fails or when a 
host becomes unavailable due to load.

Load balancing
Checkpointing a job and restarting it (migrating) on another host provides load 
balancing by moving load (jobs) from a heavily loaded host to a lightly loaded 
host.

In this section ◆ “Approaches to Checkpointing” on page 309

◆ “Checkpointing a Job” on page 313
Administering Platform LSF



Chapter 23
Job Checkpoint, Restart, and Migration
Approaches to Checkpointing
LSF provides support for most checkpoint and restart implementations through 
uniform interfaces, echkpnt and erestart. All interaction between LSF and 
the checkpoint implementations are handled by these commands. See the 
echkpnt(8) and erestart(8) man pages for more information.

Checkpoint and restart implementations are categorized based on the facility 
that performs the checkpoint and the amount of knowledge an executable has 
of the checkpoint. Commonly, checkpoint and restart implementations are 
grouped as kernel-level, user-level, and application-level.

Kernel-level checkpointing
Kernel-level checkpointing is provided by the operating system and can be 
applied to arbitrary jobs running on the system. This approach is transparent 
to the application, there are no source code changes and no need to re-link 
your application with checkpoint libraries.

To support kernel-level checkpoint and restart, LSF provides an echkpnt and 
erestart executable that invokes OS specific system calls.

Kernel-level checkpointing is currently supported on:

◆ Cray UNICOS

◆ IRIX 6.4 and later

◆ NEC SX-4 and SX-5

See the chkpnt(1) man page on Cray systems and the cpr(1) man page on 
IRIX systems for the limitations of their checkpoint implementations.

User-level checkpointing
LSF provides a method to checkpoint jobs on systems that do not support 
kernel-level checkpointing called user-level checkpointing. To implement 
user-level checkpointing, you must have access to your applications object files 
(.o files), and they must be re-linked with a set of libraries provided by LSF in 
LSF_LIBDIR. This approach is transparent to your application, its code does not 
have to be changed and the application does not know that a checkpoint and 
restart has occurred.

Application-level checkpointing
The application-level approach applies to those applications which are 
specially written to accommodate the checkpoint and restart. The application 
writer must also provide an echkpnt and erestart to interface with LSF. For 
more details see the echkpnt(8) and erestart(8) man pages. The 
application checkpoints itself either periodically or in response to signals sent 
by other processes. When restarted, the application itself must look for the 
checkpoint files and restore its state.
Administering Platform LSF 309



Creating Custom echkpnt and erestart for Application-level Checkpointing

310
Creating Custom echkpnt and erestart for 
Application-level Checkpointing

Different applications may have different checkpointing implementations and 
custom echkpnt and erestart programs. 

You can write your own echkpnt and erestart programs to checkpoint your 
specific applications and tell LSF which program to use for which application.

◆ “Writing custom echkpnt and erestart programs” on page 310

◆ “Configuring LSF to recognize the custom echkpnt and erestart” on 
page 312

Writing custom echkpnt and erestart programs
Programming

language
You can write your own echkpnt and erestart interfaces in C or Fortran.

Name Assign the name echkpnt.method_name and erestart.method_name, 
where method_name is the name that identifies this is the program for a 
specific application. 

For example, if your custom echkpnt is for my_app, you would have: 
echkpnt.my_app, erestart.my_app.

Location Place echkpnt.method_name and erestart.method_name in 
LSF_SERVERDIR. You can specify a different directory with 
LSB_ECHKPNT_METHOD_DIR as an environment variable or in lsf.conf.

The method name (LSB_ECHKPNT_METHOD in lsf.conf or as an 
environment variable) and location (LSB_ECHKPNT_METHOD_DIR) 
combination must be unique in the cluster. For example, you may have two 
echkpnt applications with the same name such as echkpnt.mymethod but 
what differentiates them is the different directories defined with 
LSB_ECHKPNT_METHOD_DIR. 

The checkpoint method directory should be accessible by all users who need 
to run the custom echkpnt and erestart programs.

Supported syntax
for echkpnt

Your echkpnt.method_name must recognize commands in the following 
syntax as these are the options used by echkpnt to communicate with your 
echkpnt.method_name:

echkpnt [-c] [-f] [-k | -s] [-d checkpoint_dir] [-x] process_group_ID

For more details on echkpnt syntax, see the echkpnt(8) man page.

Supported syntax
for erestart

Your erestart.method_name must recognize commands in the following 
syntax as these are the options used by erestart to communicate with your 
erestart.method_name .

erestart [-c] [-f] checkpoint_dir 

For more details, see the erestart(8) man page.
Administering Platform LSF



Chapter 23
Job Checkpoint, Restart, and Migration
Return values for echkpnt.method_name
If echkpnt.method_name is able to successfully checkpoint the job, it exits 
with a 0. Non-zero values indicate job checkpoint failed.

stderr and stdout are ignored by LSF. You can save these to a file by setting 
LSB_ECHKPNT_KEEP_OUTPUT=y in lsf.conf or as an environment 
variable. 

Return values for erestart.method_name
erestart.method_name creates the file 
checkpoint_dir/$LSB_JOBID/.restart_cmd and writes in this file the 
command to restart the job or process group in the form:

LSB_RESTART_CMD=restart_command

For example, if the command to restart a job is my_restart my_job, the 
erestart.method_name writes to the .restart_cmd file:

LSB_RESTART_CMD=my_restart my_job

erestart then reads the .restart_cmd file and uses the command specified 
with LSB_RESTART_CMD as the command to restart the job.

You have the choice of writing to the file or not. Return a 0 if 
erestart.method_name succeeds in writing the job restart command to the 
file checkpoint_dir/$LSB_JOBID/.restart_cmd, or if it purposefully 
writes nothing to the file. Non-zero values indicate that 
erestart.method_name was not able to restart the job.

For user-level checkpointing, erestart.method_name must collect the exit 
code from the job. Then, erestart.method_name must exit with the same 
exit code as the job. Otherwise, the job’s exit status is not reported correctly to 
LSF. Kernel-level checkpointing works differently and does not need this 
information from erestart.method_name to restart the job.

erestart.method_name
◆ Must have access to the original command line. It is important the 

erestart.method_name have access to the original command line used 
to start the job. 

◆ erestart.method_name must return, it should not run the application to 
restart the job.

Note Any information echkpnt writes to stderr is considered by sbatchd as an 
echkpnt failure. However, not all errors are fatal. If the chkpnt explicitly writes to 
stdout or stderr "Checkpoint done", sbatchd assumes echkpnt has 
succeeded.
Administering Platform LSF 311



Creating Custom echkpnt and erestart for Application-level Checkpointing

312
Configuring LSF to recognize the custom echkpnt and erestart
You can set the following parameters in lsf.conf or as environment 
variables. If set in lsf.conf, these parameters apply globally to the cluster and 
will be the default values. Parameters specified as environment variables 
override the parameters specified in lsf.conf. 

If you set parameters in lsf.conf, reconfigure your cluster with lsadmin 
reconfig and badmin mbdrestart so that changes take effect.

1 Set LSB_ECHKPNT_METHOD=method_name in lsf.conf or as an 
environment variable

OR 

When you submit the job, specify the checkpoint and restart method. For 
example:

% bsub -k "mydir method=myapp" job1

2 Copy your echkpnt.method_name and erestart.method_name to 
LSF_SERVERDIR.

OR

If you want to specify a different directory than LSF_SERVERDIR, in 
lsf.conf or as an environment variable set 
LSB_ECHKPNT_METHOD_DIR= absolute path to the directory in which 
your echkpnt.method_name and erestart.method_name are located.

The checkpoint method directory should be accessible by all users who 
need to run the custom echkpnt and erestart programs.

3 (Optional)

To save standard error and standard output messages for echkpnt. 
method_name and erestart.method_name set 
LSB_ECHKPNT_KEEP_OUTPUT=y in lsf.conf or as an environment 
variable.

The stdout and stderr output generated by echkpnt. method_name 
will be redirected to:

❖ checkpoint_dir/$LSB_JOBID/echkpnt.out 
❖ checkpoint_dir/$LSB_JOBID/echkpnt.err 

The stdout and stderr output generated by erestart.method_name 
will be redirected to:

❖ checkpoint_dir/$LSB_JOBID/erestart.out
❖ checkpoint_dir/$LSB_JOBID/erestart.err

Otherwise, if LSB_ECHKPNT_KEEP_OUTPUT is not defined, standard 
error and output will be redirected to /dev/null and discarded. 
Administering Platform LSF



Chapter 23
Job Checkpoint, Restart, and Migration
Checkpointing a Job
Before LSF can checkpoint a job, it must be made checkpointable. LSF provides 
automatic and manual controls to make jobs checkpointable and to checkpoint 
jobs. When working with checkpointable jobs, a checkpoint directory must 
always be specified. Optionally, a checkpoint period can be specified to enable 
periodic checkpointing.

When a job is checkpointed, LSF performs the following actions:

1 Stops the job if its running

2 Creates the checkpoint file in the checkpoint directory

3 Restarts the job

Prerequisites LSF can create a checkpoint for any eligible job. Review the discussion about 
“Approaches to Checkpointing” on page 309 to determine if your application 
and environment are suitable for checkpointing.

In this section ◆ “The Checkpoint Directory” on page 314

◆ “Making Jobs Checkpointable” on page 315

◆ “Manually Checkpointing Jobs” on page 316

◆ “Enabling Periodic Checkpointing” on page 317

◆ “Automatically Checkpointing Jobs” on page 318
Administering Platform LSF 313



The Checkpoint Directory

314
The Checkpoint Directory
A checkpoint directory must be specified for every checkpointable job and is 
used to store the files to restart a job. The directory must be writable by the 
job owner. To restart the job on another host (job migration), the directory 
must be accessible by both hosts. LSF does not delete the checkpoint files; 
checkpoint file maintenance is the user’s responsibility.

LSF writes the checkpoint file in a directory named with the job ID of the job 
being checkpointed under the checkpoint directory. This allows LSF to 
checkpoint multiple jobs to the same checkpoint directory. For example, when 
you specify a checkpoint directory called my_dir and when job 123 is 
checkpointed, LSF will save the checkpoint file in:

my_dir/123/

When LSF restarts a checkpointed job, it renames the checkpoint directory 
using the job ID of the new job and creates a symbolic link from the old 
checkpoint directory to the new one. For example, if a job with job ID 123 is 
restarted with job ID 456 the checkpoint directory will be renamed to:

my_dir/456/
Administering Platform LSF



Chapter 23
Job Checkpoint, Restart, and Migration
Making Jobs Checkpointable
Making a job checkpointable involves specifying the location of a checkpoint 
directory to LSF. This can be done manually on the command line or 
automatically through configuration.

Manually
Manually making a job checkpointable involves specifying the checkpoint 
directory on the command line. LSF will create the directory if it does not exist. 
A job can be made checkpointable at job submission or after submission.

At job submission Use the -k "checkpoint_dir" option of bsub to specify the checkpoint 
directory for a job at submission. For example, to specify my_dir as the 
checkpoint directory for my_job:

% bsub -k "my_dir" my_job
Job <123> is submitted to default queue <default>.

After job
submission

Use the -k "checkpoint_dir" option of bmod to specify the checkpoint 
directory for a job after submission. For example, to specify my_dir as the 
checkpoint directory for a job with job ID 123:

% bmod -k "my_dir" 123
Parameters of job <123> are being changed

Automatically
Automatically making a job checkpointable involves submitting the job to a 
queue that is configured for checkpointable jobs. To configure a queue, edit 
lsb.queues and specify the checkpoint directory for the CHKPNT parameter 
on a queue. The checkpoint directory must already exist, LSF will not create 
the directory.

For example, to configure a queue for checkpointable jobs using a directory 
named my_dir:

Begin Queue
... 
CHKPNT=my_dir
DESCRIPTION = Make jobs checkpointable using "my_dir"
... 

End Queue
Administering Platform LSF 315



Manually Checkpointing Jobs

316
Manually Checkpointing Jobs
LSF provides the bchkpnt command to manually checkpoint jobs. LSF can 
only perform a checkpoint for checkpointable jobs as described in “Making 
Jobs Checkpointable” on page 315. For example, to checkpoint a job with job 
ID 123:

% bchkpnt 123
Job <123> is being checkpointed

Interactive jobs (bsub -I) cannot be checkpointed.

Checkpointing and killing a job
By default, after a job has been successfully checkpointed, it continues to run. 
Use the bchkpnt -k command to kill the job after the checkpoint file has been 
created. Killing the job ensures the job does not do any processing or I/O after 
the checkpoint. For example, to checkpoint and kill a job with job ID 123:

% bchkpnt -k 123
Job <123> is being checkpointed
Administering Platform LSF



Chapter 23
Job Checkpoint, Restart, and Migration
Enabling Periodic Checkpointing
Periodic checkpointing involves creating a checkpoint file at regular time 
intervals during the execution of your job. LSF provides the ability to enable 
periodic checkpointing manually on the command line and automatically 
through configuration. Automatic periodic checkpointing is discussed in 
“Automatically Checkpointing Jobs” on page 318. LSF can only perform a 
checkpoint for checkpointable jobs as described in “Making Jobs 
Checkpointable” on page 315.

Manually enabling periodic checkpointing involves specifying a checkpoint 
period in minutes.

At job submission LSF uses the -k "checkpoint_dir checkpoint_period" option of bsub to 
enable periodic checkpointing at job submission. For example, to periodically 
checkpoint my_job every 2 hours (120 minutes):

% bsub -k "my_dir 120" my_job
Job <123> is submitted to default queue <default>.

After job
submission

LSF uses the -p period option of bchkpnt to enable periodic checkpointing 
after submission. When a checkpoint period is specified after submission, LSF 
checkpoints the job immediately then checkpoints it again after the specified 
period of time. For example, to periodically checkpoint a job with job ID 123 
every 2 hours (120 minutes):

% bchkpnt -p 120 123
Job <123> is being checkpointed

You can also use the -p option of bchkpnt to change a checkpoint period. For 
example, to change the checkpoint period of a job with job ID 123 to every 4 
hours (240 minutes):

% bchkpnt -p 240 123
Job <123> is being checkpointed

Disabling periodic checkpointing
To disable periodic checkpointing, specify a period of 0 (zero). For example, 
to disable periodic checkpointing for a job with job ID 123:

% bchkpnt -p 0 123
Job <123> is being checkpointed
Administering Platform LSF 317



Automatically Checkpointing Jobs

318
Automatically Checkpointing Jobs
Automatically checkpointing jobs involves submitting a job to a queue that is 
configured for periodic checkpointing. To configure a queue, edit lsb.queues 
and specify a checkpoint directory and a checkpoint period for the CHKPNT 
parameter for a queue. The checkpoint directory must already exist, LSF will 
not create the directory. The checkpoint period is specified in minutes. All jobs 
submitted to the queue will be automatically checkpointed. For example, to 
configure a queue to periodically checkpoint jobs every 4 hours (240 minutes) 
to a directory named my_dir:

Begin Queue
... 
CHKPNT=my_dir 240
DESCRIPTION=Auto chkpnt every 4 hrs (240 min) to my_dir
... 

End Queue

All jobs submitted to a queue configured for checkpointing can also be 
checkpointed using bchkpnt. Jobs submitted and modified using -k, -r, -p, 
and -kn options override queue configured options.
Administering Platform LSF



Chapter 23
Job Checkpoint, Restart, and Migration
Restarting Checkpointed Jobs
LSF can restart a checkpointed job on a host other than the original execution 
host using the information saved in the checkpoint file to recreate the 
execution environment. Only jobs that have been checkpointed successfully 
can be restarted from a checkpoint file. When a job is restarted, LSF performs 
the following actions:

1 LSF re-submits the job to its original queue as a new job and a new job ID 
is assigned

2 When a suitable host is available, the job is dispatched

3 The execution environment is recreated from the checkpoint file

4 The job is restarted from its last checkpoint.

This can be done manually from the command line, automatically through 
configuration, and when a job is migrated.

Requirements
LSF can restart a job from its last checkpoint on the execution host, or on 
another host if the job is migrated. To restart a job on another host, both hosts 
must:

◆ Be binary compatible

◆ Run the same dot version of the operating system. Unpredictable results 
may occur if both hosts are not running the exact same OS version.

◆ Have access to the executable

◆ Have access to all open files (LSF must locate them with an absolute path 
name)

◆ Have access to the checkpoint file

Manually restarting jobs
Use the brestart command to manually restart a checkpointed job. To restart 
a job from its last checkpoint, specify the checkpoint directory and the job ID 
of the checkpointed job. For example, to restart a checkpointed job with job 
ID 123 from checkpoint directory my_dir:

% brestart my_dir 123
Job <456> is submitted to default queue <default>

The brestart command allows you to change many of the original 
submission options. For example, to restart a checkpointed job with job ID 123 
from checkpoint directory my_dir and have it start from a queue named 
priority:

% brestart -q priority my_dir 123
Job <456> is submitted to queue <priority>
Administering Platform LSF 319



Migrating Jobs

320
Migrating Jobs
Migration is the process of moving a checkpointable or rerunnable job from 
one host to another host.

Checkpointing enables a migrating job to make progress by restarting it from 
its last checkpoint. Rerunnable non-checkpointable jobs are restarted from the 
beginning. LSF provides the ability to manually migrate jobs from the 
command line and automatically through configuration. When a job is 
migrated, LSF performs the following actions:

1 Stops the job if it is running

2 Checkpoints the job if it is checkpointable

3 Kills the job on the current host

4 Restarts or reruns the job on the next available host, bypassing all pending 
jobs

Requirements
To migrate a checkpointable job to another host, both hosts must:

◆ Be binary compatible

◆ Run the same dot version of the operating system. Unpredictable results 
may occur if both hosts are not running the exact same OS version.

◆ Have access to the executable

◆ Have access to all open files (LSF must locate them with an absolute path 
name)

◆ Have access to the checkpoint file

Manually migrating jobs
Use the bmig command to manually migrate jobs. Any checkpointable or 
rerunnable job can be migrated. Jobs can be manually migrated by the job 
owner, queue administrator, and LSF administrator. For example, to migrate a 
job with job ID 123:

% bmig 123
Job <123> is being migrated

% bhist -l 123
Job Id <123>, User <user1>, Command <my_job>
Tue Feb 29 16:50:27: Submitted from host <hostA> to Queue <default>, C

WD <$HOME/tmp>, Checkpoint directory <chkpnt_dir/123>;
Tue Feb 29 16:50:28: Started on <hostB>, Pid <4705>;
Tue Feb 29 16:53:42: Migration requested;
Tue Feb 29 16:54:03: Migration checkpoint initiated (actpid 4746);
Tue Feb 29 16:54:15: Migration checkpoint succeeded (actpid 4746);
Tue Feb 29 16:54:15: Pending: Migrating job is waiting for reschedule;
Tue Feb 29 16:55:16: Started on <hostC>, Pid <10354>.

Summary of time in seconds spent in various states by Tue Feb 29 16:57:26
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
62 0 357 0 0 0 419
Administering Platform LSF



Chapter 23
Job Checkpoint, Restart, and Migration
Automatically Migrating Jobs
Automatic job migration works on the premise that if a job is suspended 
(SSUSP) for an extended period of time, due to load conditions or any other 
reason, the execution host is heavily loaded. To allow the job to make progress 
and to reduce the load on the host, a migration threshold is configured. LSF 
allows migration thresholds to be configured for queues and hosts. The 
threshold is specified in minutes.

When configured on a queue, the threshold will apply to all jobs submitted to 
the queue. When defined at the host level, the threshold will apply to all jobs 
running on the host. When a migration threshold is configured on both a 
queue and host, the lower threshold value is used. If the migration threshold 
is configured to 0 (zero), the job will be migrated immediately upon 
suspension (SSUSP).

You can use bmig at anytime to override a configured threshold.

Configuring
queue migration

threshold

To configure a migration threshold for a queue, edit lsb.queues and specify 
a threshold for the MIG parameter. For example, to configure a queue to 
migrate suspended jobs after 30 minutes:

Begin Queue 
... 
MIG=30 # Migration threshold set to 30 mins 
DESCRIPTION=Migrate suspended jobs after 30 mins
... 

End Queue

Configuring host
migration
threshold

To configure a migration threshold for a host, edit lsb.hosts and specify a 
threshold for the MIG parameter for a host. For example, to configure a host 
to migrate suspended jobs after 30 minutes:

Begin Host
HOST_NAME r1m pg MIG # Keywords
...
hostA 5.0 18 30
...

End Host

Requeuing migrating jobs
By default, LSF restarts or reruns a migrating job on the next available host, 
bypassing all pending jobs.

You can configure LSF to requeue migrating jobs rather than immediately 
restarting them. Jobs will be requeued in PEND state and ordered according to 
their original submission time and priority. To requeue migrating jobs, edit 
lsf.conf and set LSB_MIG2PEND=1.

Additionally, you can configure LSF to requeue migrating jobs to the bottom 
of the queue by editing lsf.conf and setting LSB_MIG2PEND=1 and 
LSB_REQUEUE_TO_BOTTOM=1.
Administering Platform LSF 321



Migrating Jobs

322
 Administering Platform LSF



C H A P T E R

24
Chunk Job Dispatch

Contents ◆ “About Job Chunking” on page 324

◆ “Configuring a Chunk Job Dispatch” on page 325

◆ “Submitting and Controlling Chunk Jobs” on page 327
Administering Platform LSF 323



About Job Chunking

324
About Job Chunking
LSF supports job chunking, where jobs with similar resource requirements 
submitted by the same user are grouped together for dispatch. The 
CHUNK_JOB_SIZE parameter in lsb.queues specifies the maximum number 
of jobs allowed to be dispatched together in a chunk job.

Job chunking can have the following advantages:

◆ Reduces communication between sbatchd and mbatchd, and scheduling 
overhead in mbatchd

◆ Increases job throughput in mbatchd and more balanced CPU utilization 
on the execution hosts

All of the jobs in the chunk are dispatched as a unit rather than individually. 
Job execution is sequential, but each chunk job member is not necessarily 
executed in the order it was submitted.

Chunk job candidates
Jobs with the following characteristics are typical candidates for job chunking:

◆ Take between 1 and 2 minutes to run

◆ All require the same resource (for example a software license or a specific 
amount of memory)

◆ Do not specify a beginning time (bsub -b) or termination time (bsub -t)

Running jobs with these characteristics in normal queues can under-utilize 
resources because LSF spends more time scheduling and dispatching the jobs 
than actually running them.

Configuring a special high-priority queue for short jobs is not desirable 
because users may be tempted to send all of their jobs to this queue, knowing 
that it has high priority.
Administering Platform LSF



Chapter 24
Chunk Job Dispatch
Configuring a Chunk Job Dispatch

CHUNK_JOB_SIZE (lsb.queues)    
To configure a queue to dispatch chunk jobs, specify the CHUNK_JOB_SIZE 
parameter in the queue definition in lsb.queues.

For example, the following configures a queue named chunk, which 
dispatches up to 4 jobs in a chunk:

Begin Queue
QUEUE_NAME = chunk
PRIORITY = 50
CHUNK_JOB_SIZE = 4
End Queue

After adding CHUNK_JOB_SIZE to lsb.queues, use badmin reconfig to 
reconfigure your cluster.

By default, CHUNK_JOB_SIZE is not enabled.

Chunk jobs and
job throughput

Throughput can deteriorate if the chunk job size is too big. Performance may 
decrease on queues with CHUNK_JOB_SIZE greater than 30. You should 
evaluate the chunk job size on your own systems for best performance.

CHUNK_JOB_DURATION (lsb.params)    
If CHUNK_JOB_DURATION is set in lsb.params, jobs submitted to a chunk 
job queue are only chunked if the job has a CPU limit or run limit set in the 
queue (CPULIMIT or RUNLMIT) or specified at job submission (-c or -W bsub 
options) that is less than or equal to the value of CHUNK_JOB_DURATION.

Jobs are not chunked if:

◆ CPU limit or a run limit is greater than the value of 
CHUNK_JOB_DURATION.

or

◆ No CPU limit and no run limit are specified in the queue (CPULIMIT and 
RUNLIMIT) or at job submission (-c or -W bsub options).

The value of CHUNK_JOB_DURATION is displayed by bparams -l.

After adding CHUNK_JOB_DURATION to lsb.params, use badmin 
reconfig to reconfigure your cluster. 

By default, CHUNK_JOB_DURATION is not enabled.
Administering Platform LSF 325



Configuring a Chunk Job Dispatch

326
Restrictions on chunk job queues
CHUNK_JOB_SIZE is ignored and jobs are not chunked for the following 
queues:

◆ Interactive (INTERACTIVE = ONLY parameter)

◆ CPU limit greater than 30 minutes (CPULIMIT parameter)

If CHUNK_JOB_DURATION is set in lsb.params, the job is chunked only 
if it is submitted with a CPU limit that is less than or equal to the value of 
CHUNK_JOB_DURATION (bsub -c)

◆ Run limit greater than 30 minutes (RUNLIMIT parameter)

If CHUNK_JOB_DURATION is set in lsb.params, the job is chunked only 
if it is submitted with a run limit that is less than or equal to the value of 
CHUNK_JOB_DURATION (bsub -W)

Jobs submitted with the corresponding bsub options are not chunked; they are 
dispatched individually:

◆ -I (interactive jobs)

◆ -c (jobs with CPU limit greater than 30)

◆ -W (jobs with run limit greater than 30 minutes)
Administering Platform LSF



Chapter 24
Chunk Job Dispatch
Submitting and Controlling Chunk Jobs
When a job is submitted to a queue configured with the CHUNK_JOB_SIZE 
parameter, LSF attempts to place the job in an existing chunk. A job is added 
to an existing chunk if it has the same characteristics as the first job in the 
chunk:

◆ Submitting user

◆ Resource requirements

◆ Host requirements

◆ Queue

If a suitable host is found to run the job, but there is no chunk available with 
the same characteristics, LSF creates a new chunk.

Resources reserved for any member of the chunk are reserved at the time the 
chunk is dispatched and held until the whole chunk finishes running. Other 
jobs requiring the same resources are not dispatched until the chunk job is 
done.

For example, if all jobs in the chunk require a software license, the license is 
checked out and each chunk job member uses it in turn. The license is not 
released until the last chunk job member is finished running.

WAIT status
When sbatchd receives a chunk job, it will not start all member jobs at once. 
A chunk job occupies a single job slot. Even if other slots are available, the 
chunk job members must run one at a time in the job slot they occupy. The 
remaining jobs in the chunk that are waiting to run are displayed as WAIT by 
bjobs. Any jobs in WAIT status are included in the count of pending jobs by 
bqueues and busers. The bhosts command shows the single job slot 
occupied by the entire chunk job in the number of jobs shown in the NJOBS 
column.

The bhist -l command shows jobs in WAIT status as Waiting ...

The bjobs -l command does not display a WAIT reason in the list of pending 
jobs.
Administering Platform LSF 327



Submitting and Controlling Chunk Jobs

328
Controlling chunk jobs
Job controls affect the state of the members of a chunk job. You can perform 
the following actions on jobs in a chunk job:

Migrating jobs with bmig will change the dispatch sequence of the chunk job 
members. They will not be redispatched in the order they were originally 
submitted.

Rerunnable chunk jobs
If the execution host becomes unavailable, rerunnable chunk job members are 
removed from the queue and dispatched to a different execution host.

See Chapter 22, “Job Requeue and Job Rerun” for more information about 
rerunnable jobs.

Checkpointing chunk jobs
Only running chunk jobs can be checkpointed. If bchkpnt -k is used, the job 
is also killed after the checkpoint file has been created. If chunk job in WAIT 
state is checkpointed, mbatchd rejects the checkpoint request.

See Chapter 23, “Job Checkpoint, Restart, and Migration” for more information 
about checkpointing jobs.

Action (Command) Job 
State

Effect on Job (State)

Suspend (bstop) PEND Removed from chunk (PSUSP)

RUN All jobs in the chunk are suspended 
(NRUN -1, NSUSP +1)

USUSP No change

WAIT Removed from chunk (PSUSP)

Kill (bkill) PEND Removed from chunk (NJOBS -1, PEND -1)

RUN Job finishes, next job in the chunk starts if one exists 
(NJOBS -1, PEND -1)

USUSP Job finishes, next job in the chunk starts if one exists 
(NJOBS -1, PEND -1, SUSP -1, RUN +1)

WAIT Job finishes (NJOBS-1, PEND -1)

Resume 
(bresume)

USUSP Entire chunk is resumed (RUN +1, USUSP -1)

Migrate (bmig) WAIT Removed from chunk

Switch queue 
(bswitch)

RUN Job is removed from the chunk and switched; all 
other WAIT jobs are requeued to PEND

WAIT Only the WAIT job is removed from the chunk and 
switched, and requeued to PEND

Checkpoint 
(bchkpnt)

RUN Job is checkpointed normally

Modify (bmod) PEND Removed from the chunk to be scheduled later
Administering Platform LSF



Chapter 24
Chunk Job Dispatch
Fairshare policies and chunk jobs
Fairshare queues can use job chunking. Jobs are accumulated in the chunk job 
so that priority is assigned to jobs correctly according to the fairshare policy 
that applies to each user. Jobs belonging to other users are dispatched in other 
chunks.

TERMINATE_WHEN job control action
If the TERMINATE_WHEN job control action is applied to a chunk job, 
sbatchd kills the chunk job element that is running and puts the rest of the 
waiting elements into pending state to be rescheduled later.

Enforcing resource usage limits on chunk jobs
By default, resource usage limits are not enforced for chunk jobs because 
chunk jobs are typically too short to allow LSF to collect resource usage.

To enforce resource limits for chunk jobs, define LSB_CHUNK_RUSAGE=Y in 
lsf.conf. Limits may not be enforced for chunk jobs that take less than a 
minute to run.

See Chapter 26, “Runtime Resource Usage Limits” for more information.
Administering Platform LSF 329



Submitting and Controlling Chunk Jobs

330
 Administering Platform LSF



C H A P T E R Ë

25
Job Arrays

LSF provides a structure called a job array that allows a sequence of jobs that 
share the same executable and resource requirements, but have different input 
files, to be submitted, controlled, and monitored as a single unit. Using the 
standard LSF commands, you can also control and monitor individual jobs and 
groups of jobs submitted from a job array.

After the job array is submitted, LSF independently schedules and dispatches 
the individual jobs. Each job submitted from a job array shares the same job 
ID as the job array and are uniquely referenced using an array index. The 
dimension and structure of a job array is defined when the job array is created.

Contents ◆ “Creating a Job Array” on page 332

◆ “Handling Input and Output Files” on page 334

◆ “Job Array Dependencies” on page 337

◆ “Monitoring Job Arrays” on page 338

◆ “Controlling Job Arrays” on page 340

◆ “Requeuing a Job Array” on page 341

◆ “Job Array Job Slot Limit” on page 342
Administering Platform LSF 331



Creating a Job Array

332
Creating a Job Array
A job array is created at job submission time using the -J option of bsub. For 
example, the following command creates a job array named myArray made up 
of 1000 jobs.

% bsub -J "myArray[1-1000]" myJob
Job <123> is submitted to default queue <normal>.

Syntax
The bsub syntax used to create a job array follows:

% bsub -J "arrayName[indexList, ...]" myJob

Where:

-J "arrayName[indexList, ...]"
Names and creates the job array. The square brackets, [ ], around indexList 
must be entered exactly as shown and the job array name specification must 
be enclosed in quotes. Commas (,) are used to separate multiple indexList 
entries. The maximum length of this specification is 255 characters.

arrayName User specified string used to identify the job array. Valid values are any 
combination of the following characters:

a-z | A-Z | 0-9 | . | - | _

indexList = start[-end[:step]]
Specifies the size and dimension of the job array, where:

◆ start

Used with end to specify the start of a range of indices. Can also be used 
to specify an individual index. Valid values are unique positive integers. 
For example, [1-5] and [1, 2, 3, 4, 5] specify 5 jobs with indices 1 
through 5.

◆ end

Specifies the end of a range of indices. Valid values are unique positive 
integers.

◆ step

Specifies the value to increment the indices in a range. Indices begin at 
start, increment by the value of step, and do not increment past the 
value of end. The default value is 1. Valid values are positive integers. For 
example, [1-10:2] specifies a range of 1-10 with step value 2 creating 
indices 1, 3, 5, 7, and 9.

After the job array is created (submitted), individual jobs are referenced using 
the job array name or job ID and an index value. For example, both of the 
following series of job array statements refer to jobs submitted from a job array 
named myArray which is made up of 1000 jobs and has a job ID of 123:

myArray[1], myArray[2], myArray[3], ..., myArray[1000]
123[1], 123[2], 123[3], ..., 123[1000]
Administering Platform LSF



Chapter 25
Job Arrays
Maximum size of a job array
A large job array allows a user to submit a large number of jobs to the system 
with a single job submission.

By default, the maximum number of jobs in a job array is 1000, which means 
the maximum size of a job array can never exceed 1000 jobs. 

To make a change to the maximum job array value, set 
MAX_JOB_ARRAY_SIZE in lsb.params to any number up to 65534. The 
maximum number of jobs in a job array cannot exceed this value.
Administering Platform LSF 333



Handling Input and Output Files

334
Handling Input and Output Files
LSF provides methods for coordinating individual input and output files for the 
multiple jobs created when submitting a job array. These methods require your 
input files to be prepared uniformly. To accommodate an executable that uses 
standard input and standard output, LSF provides runtime variables (%I and 
%J) that are expanded at runtime. To accommodate an executable that reads 
command line arguments, LSF provides an environment variable 
(LSB_JOBINDEX) that is set in the execution environment.

Methods ◆ “Redirecting Standard Input and Output” on page 335

◆ “Passing Arguments on the Command Line” on page 336

Preparing input files
LSF needs all the input files for the jobs in your job array to be located in the 
same directory. By default LSF assumes the current working directory (CWD); 
the directory from where bsub was issued. To override CWD, specify an 
absolute path when submitting the job array.

Each file name consists of two parts, a consistent name string and a variable 
integer that corresponds directly to an array index. For example, the following 
file names are valid input file names for a job array. They are made up of the 
consistent name input and integers that correspond to job array indices from 
1 to 1000:

input.1, input.2, input.3, ..., input.1000
Administering Platform LSF



Chapter 25
Job Arrays
Redirecting Standard Input and Output
The variables %I and %J are used as substitution strings to support file 
redirection for jobs submitted from a job array. At execution time, %I is 
expanded to provide the job array index value of the current job, and %J is 
expanded at to provide the job ID of the job array.

Standard input
Use the -i option of bsub and the %I variable when your executable reads 
from standard input. To use %I, all the input files must be named consistently 
with a variable part that corresponds to the indices of the job array. For 
example:

input.1, input.2, input.3, ..., input.N

For example, the following command submits a job array of 1000 jobs whose 
input files are named input.1, input.2, input.3, ..., input.1000 and 
located in the current working directory:

% bsub -J "myArray[1-1000]" -i "input.%I" myJob

Standard output and error
Use the -o option of bsub and the %I and %J variables when your executable 
writes to standard output and error.

To create an output file that corresponds to each job submitted from a job 
array, specify %I as part of the output file name. For example, the following 
command submits a job array of 1000 jobs whose output files will be located 
in CWD and named output.1, output.2, output.3, ..., output.1000:

% bsub -J "myArray[1-1000]" -o "output.%I" myJob

To create output files that include the job array job ID as part of the file name 
specify %J. For example, the following command submits a job array of 1000 
jobs whose output files will be located in CWD and named output.123.1, 
output.123.2, output.123.3, ..., output.123.1000. The job ID of the job 
array is 123.

% bsub -J "myArray[1-1000]" -o "output.%J.%I" myJob
Administering Platform LSF 335



Passing Arguments on the Command Line

336
Passing Arguments on the Command Line
The environment variable LSB_JOBINDEX is used as a substitution string to 
support passing job array indices on the command line. When the job is 
dispatched, LSF sets LSB_JOBINDEX in the execution environment to the job 
array index of the current job. LSB_JOBINDEX is set for all jobs. For non-array 
jobs, LSB_JOBINDEX is set to sero (0).

To use LSB_JOBINDEX, all the input files must be named consistently and with 
a variable part that corresponds to the indices of the job array. For example:

input.1, input.2, input.3, ..., input.N

You must escape LSB_JOBINDEX with a backslash, \, to prevent the shell 
interpreting bsub from expanding the variable. For example, the following 
command submits a job array of 1000 jobs whose input files are named 
input.1, input.2, input.3, ..., input.1000 and located in the current 
working directory. The executable is being passed an argument that specifies 
the name of the input files:

% bsub -J "myArray[1-1000]" myJob -f input.\$LSB_JOBINDEX
Administering Platform LSF



Chapter 25
Job Arrays
Job Array Dependencies
Like all jobs in LSF, a job array can be dependent on the completion or partial 
completion of a job or another job array. A number of job-array-specific 
dependency conditions are provided by LSF.

Whole array dependency
To make a job array dependent on the completion of a job or another job array 
use the -w "dependency_condition" option of bsub. For example, to have 
an array dependent on the completion of a job or job array with job ID 123, 
you would use the following command:

% bsub -w "done(123)" -J "myArray2[1-1000]" myJob

Partial array dependency
To make a job or job array dependent on an existing job array you would use 
one of the following dependency conditions.

Use one the following operators (op) combined with a positive integer (num) 
to build a condition:

== | > | < | >= |<= | !=

Optionally, an asterisk (*) can be used in place of num to mean all jobs 
submitted from the job array.

For example, to start a job named myJob when 100 or more elements in a job 
array with job ID 123 have completed successfully:

% bsub -w "numdone(123, >= 100)" myJob

Condition Description

numrun(jobArrayJobId, op num) Evaluate the number of jobs in RUN state

numpend(jobArrayJobId, op num) Evaluate the number of jobs in PEND state

numdone(jobArrayJobId, op num) Evaluate the number of jobs in DONE state

numexit(jobArrayJobId, op num) Evaluate the number of jobs in EXIT state

numended(jobArrayJobId, op num) Evaluate the number of jobs in DONE and 
EXIT state

numhold(jobArrayJobId, op num) Evaluate the number of jobs in PSUSP state

numstart(jobArrayJobId, op num) Evaluate the number of jobs in RUN and SSUSP 
and USUSP state
Administering Platform LSF 337



Monitoring Job Arrays

338
Monitoring Job Arrays
Use bjobs and bhist to monitor the current and past status of job arrays.

Job array status
To display summary information about the currently running jobs submitted 
from a job array, use the -A option of bjobs. For example, a job array of 10 
jobs with job ID 123:

% bjobs -A 123
JOBID ARRAY_SPEC OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
123 myArra[1-10] user1 10 3 3  4 0 0 0 0

Individual job status
Current To display the status of the individual jobs submitted from a job array, specify 

the job array job ID with bjobs. For jobs submitted from a job array, JOBID 
displays the job array job ID, and JOBNAME displays the job array name and 
the index value of each job. For example, to view a job array with job ID 123:

% bjobs 123
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 DONE default hostA hostC myArray[1] Feb 29 12:34
123 user1 DONE default hostA hostQ myArray[2] Feb 29 12:34
123 user1 DONE default hostA hostB myArray[3] Feb 29 12:34
123 user1 RUN default hostA hostC myArray[4] Feb 29 12:34
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34
123 user1 RUN default hostA hostB myArray[6] Feb 29 12:34
123 user1 RUN default hostA hostQ myArray[7] Feb 29 12:34
123 user1 PEND default hostA myArray[8] Feb 29 12:34
123 user1 PEND default hostA myArray[9] Feb 29 12:34
123 user1 PEND default hostA myArray[10] Feb 29 12:34

Past To display the past status of the individual jobs submitted from a job array, 
specify the job array job ID with bhist. For example, to view the history of a 
job array with job ID 456:

% bhist 456
Summary of time in seconds spent in various states:
JOBID  USER    JOB_NAME   PEND    PSUSP   RUN     USUSP   SSUSP   UNKWN   TOTAL
456[1] user1   *rray[1]   14      0       65      0       0       0       79
456[2] user1   *rray[2]   74      0       25      0       0       0       99
456[3] user1   *rray[3]   121     0       26      0       0       0       147
456[4] user1   *rray[4]   167     0       30      0       0       0       197
456[5] user1   *rray[5]   214     0       29      0       0       0       243
456[6] user1   *rray[6]   250     0       35      0       0       0       285
456[7] user1   *rray[7]   295     0       33      0       0       0       328
456[8] user1   *rray[8]   339     0       29      0       0       0       368
456[9] user1   *rray[9]   356     0       26      0       0       0       382
456[10]user1   *ray[10]   375     0       24      0       0       0       399
Administering Platform LSF



Chapter 25
Job Arrays
Specific job status
Current To display the current status of a specific job submitted from a job array, 

specify in quotes, the job array job ID and an index value with bjobs. For 
example, the status of the 5th job in a job array with job ID 123:

% bjobs "123[5]"
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34

Past To display the past status of a specific job submitted from a job array, specify, 
in quotes, the job array job ID and an index value with bhist. For example, 
the status of the 5th job in a job array with job ID 456:

% bhist "456[5]"
Summary of time in seconds spent in various states:
JOBID  USER    JOB_NAME   PEND    PSUSP   RUN     USUSP   SSUSP   UNKWN   TOTAL
456[5] user1   *rray[5]   214     0       29      0       0       0       243
Administering Platform LSF 339



Controlling Job Arrays

340
Controlling Job Arrays
You can control the whole array, all the jobs submitted from the job array, with 
a single command. LSF also provides the ability to control individual jobs and 
groups of jobs submitted from a job array. When issuing commands against a 
job array, use the job array job ID instead of the job array name. Job names are 
not unique in LSF, and issuing a command using a job array name may result 
in unpredictable behavior.

Most LSF commands allow operation on both the whole job array, individual 
jobs, and groups of jobs. These commands include bkill, bstop, bresume, 
and bmod.

Some commands only allow operation on individual jobs submitted from a job 
array. These commands include btop, bbot, and bswitch.

Whole array
To control the whole job array, specify the command as you would for a single 
job using only the job ID. For example, to kill a job array with job ID 123:

% bkill 123

Individual jobs
To control an individual job submitted from a job array, specify the command 
using the job ID of the job array and the index value of the corresponding job. 
The job ID and index value must be enclosed in quotes. For example, to kill 
the 5th job in a job array with job ID 123:

% bkill "123[5]"

Groups of jobs
To control a group of jobs submitted from a job array, specify the command as 
you would for an individual job and use indexList syntax to indicate the jobs. 
For example, to kill jobs 1-5, 239, and 487 in a job array with job ID 123:

% bkill "123[1-5, 239, 487]"
Administering Platform LSF



Chapter 25
Job Arrays
Requeuing a Job Array
Use brequeue to requeue a job array. When the job is requeued, it is assigned 
the PEND status and the job’s new position in the queue is after other jobs of 
the same priority. You can requeue:

◆ Jobs in DONE job state

◆ Jobs EXIT job state

◆ All jobs regardless of job state in a job array.

◆ EXIT, RUN, DONE jobs to PSUSP state

◆ Jobs in RUN job state

brequeue is not supported across clusters.

Requeuing jobs in DONE state
To requeue DONE jobs use the -d option of brequeue. For example, the 
command brequeue -J "myarray[1-10]" -d 123 requeues jobs with job 
ID 123 and DONE status.

Requeuing Jobs in EXIT state
To requeue EXIT jobs use the -e option of brequeue. For example, the 
command brequeue -J "myarray[1-10]" -e 123 requeues jobs with job 
ID 123 and EXIT status.

Requeuing all jobs in an array regardless of job state
A submitted job array can have jobs that have different job states. To requeue 
all the jobs in an array regardless of any job’s state, use the -a option of 
brequeue. For example, the command brequeue -J "myarray[1-10]" -a 
123 requeues all jobs in a job array with job ID 123 regardless of their job state.

Requeuing RUN jobs to PSUSP state
To requeue RUN jobs to PSUSP state, use the -H option of brequeue. For 
example, the command brequeue -J "myarray[1-10]" -H 123 requeues 
to PSUSP RUN status jobs with job ID 123.

Requeuing jobs in RUN state
To requeue RUN jobs use the -r option of brequeue. For example, the 
command brequeue -J "myarray[1-10]" -r 123 requeues jobs with job 
ID 123 and RUN status.
Administering Platform LSF 341



Job Array Job Slot Limit

342
Job Array Job Slot Limit
The job array job slot limit is used to specify the maximum number of jobs 
submitted from a job array that are allowed to run at any one time. A job array 
allows a large number of jobs to be submitted with one command, potentially 
flooding a system, and job slot limits provide a way to limit the impact a job 
array may have on a system. Job array job slot limits are specified using the 
following syntax:

% bsub -J "arrayName[indexList]%jobLimit" myJob

where:

%jobLimit Specifies the maximum number of jobs allowed to run at any one time. The 
percent sign, %, must be entered exactly as shown. Valid values are positive 
integers less than the maximum index value of the job array.

Setting a job array job slot limit
A job array job slot limit can be set at the time of submission using bsub, or 
after submission using bmod.

At Submission For example, to set a job array job slot limit of 100 jobs for a job array of 1000 
jobs:

% bsub -J "jobArrayName[1000]%100" myJob

After submission For example, to set a job array job slot limit of 100 jobs for 
an array with job ID 123:

% bmod -J "%100" 123

Changing a job array job slot limit
Changing a job array job slot limit is the same as setting it after submission. For 
example, to change a job array job slot limit to 250 for a job array with job ID 
123:

% bmod -J "%250" 123

Viewing a job array job slot limit
To view job array job slot limits use the -A and -l options of bjobs. The job 
array job slot limit is displayed in the Job Name field in the same format in 
which it was set. For example, the following output displays the job array job 
slot limit of 100 for a job array with job ID 123:

% bjobs -A -l 123
Job <123>, Job Name <myArray[1-1000]%100>, User <user1>, Project <default>, Sta
                     tus <PEND>, Queue <normal>, Job Priority <20>, Command <my
                     Job>
Wed Feb 29 12:34:56: Submitted from host <hostA>, CWD <$HOME>;
 
 COUNTERS:
 NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
    10    9   0    1    0     0     0     0
Administering Platform LSF



P A R T

V
Controlling Job Execution

Contents ◆ Chapter 26, “Runtime Resource Usage Limits”

◆ Chapter 27, “Load Thresholds”

◆ Chapter 28, “Pre-Execution and Post-Execution Commands”

◆ Chapter 29, “Job Starters”

◆ Chapter 30, “External Job Submission and Execution Controls”

◆ Chapter 31, “Configuring Job Controls”





C H A P T E R

26
Runtime Resource Usage Limits

Contents ◆ “About Resource Usage Limits” on page 346

◆ “Specifying Resource Usage Limits” on page 348

◆ “Supported Resource Usage Limits and Syntax” on page 351

◆ “CPU Time and Run Time Normalization” on page 357
Administering Platform LSF 345



About Resource Usage Limits

346
About Resource Usage Limits
Resource usage limits control how much resource can be consumed by 
running jobs. Jobs that use more than the specified amount of a resource are 
signalled or have their priority lowered. 

Limits can be specified either at the queue level by your LSF administrator 
(lsb.queues) or at the job level when you submit a job.

For example, by defining a high-priority short queue, you can allow short jobs 
to be scheduled earlier than long jobs. To prevent some users from submitting 
long jobs to this short queue, you can set CPU limit for the queue so that no 
jobs submitted from the queue can run for longer than that limit.

Limits specified at the queue level are hard limits, while those specified with 
job submission are soft limits. See setrlimit(2) man page for concepts of 
hard and soft limits.

Resource usage limits and resource allocation limits
Resource usage limits are not the same as resource allocation limits, which 
are enforced during job scheduling and before jobs are dispatched. You set 
resource allocation limits to restrict the amount of a given resource that must 
be available during job scheduling for different classes of jobs to start, and 
which resource consumers the limits apply to. 

See Chapter 16, “Resource Allocation Limits” for more information.

Summary of resource usage limits

Limit Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

Core file size limit -C core_limit CORELIMIT=limit integer KB

CPU time limit -c cpu_limit CPULIMIT=[default] 
maximum

[hours:]minutes[/host_name 
| /host_model]

Data segment size 
limit

-D data_limit DATALIMIT=[default] 
maximum

integer KB

File size limit -F file_limit FILELIMIT=limit integer KB

Memory limit -M mem_limit MEMLIMIT=[default] 
maximum

integer KB

Process limit -p process_limit PROCESSLIMIT=[defaul
t] maximum

integer KB

Run time limit -W run_limit RUNLIMIT=[default] 
maximum

[hours:]minutes[/host_name 
| /host_model]

Stack segment size 
limit

-S stack_limit STACKLIMIT=limit integer KB

Virtual memory limit -v swap_limit SWAPLIMIT=limit integer KB

Thread limit -T thread_limit THREADLIMIT=[default
] maximum

integer
Administering Platform LSF



Chapter 26
Runtime Resource Usage Limits
Priority of resource usage limits
If no limit is specified at job submission, then the following apply to all jobs 
submitted to the queue:

Incorrect resource usage limits
Incorrect limits are ignored, and a warning message is displayed when the 
cluster is reconfigured or restarted. A warning message is also logged to the 
mbatchd log file when LSF is started.

If no limit is specified at job submission, then the following apply to all jobs 
submitted to the queue:

Resource usage limits specified at job submission must be less than the 
maximum specified in lsb.queues. The job submission is rejected if the user-
specified limit is greater than the queue-level maximum, and the following 
message is issued:

Cannot exceed queue’s hard limit(s). Job not submitted.

Enforcing limits on chunk jobs
By default, resource usage limits are not enforced for chunk jobs because 
chunk jobs are typically too short to allow LSF to collect resource usage.

To enforce resource limits for chunk jobs, define LSB_CHUNK_RUSAGE=Y in 
lsf.conf. Limits may not be enforced for chunk jobs that take less than a 
minute to run.

If ... Then ...

Both default and maximum limits are defined The default is enforced

Only a maximum is defined The maximum is enforced

No limit is specified in the queue or at job submission No limits are enforced

If ... Then ...

The default limit is incorrect The default is ignored and the maximum limit is 
enforced

Both default and maximum 
limits are specified, and the 
maximum is incorrect

The maximum is ignored and the resource has no 
maximum limit, only a default limit

Both default and maximum 
limits are incorrect

The default and maximum are ignored and no limit 
is enforced
Administering Platform LSF 347



Specifying Resource Usage Limits

348
Specifying Resource Usage Limits
Queues can enforce resource usage limits on running jobs. LSF supports most 
of the limits that the underlying operating system supports. In addition, LSF 
also supports a few limits that the underlying operating system does not 
support.

Specify queue-level resource usage limits using parameters in lsb.queues.

Specifying queue-level resource usage limits
Limits configured in lsb.queues apply to all jobs submitted to the queue. Job-
level resource usage limits specified at job submission override the queue 
definitions.

Maximum value
only

Specify only a maximum value for the resource.

For example, to specify a maximum run limit, use one value for the RUNLIMIT 
parameter in lsb.queues:

RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more 
than 10 minutes. Jobs in the RUN state for longer than 10 minutes are killed by 
LSF.

If only one run limit is specified, jobs that are submitted with bsub -W with a 
run limit that exceeds the maximum run limit will not be allowed to run. Jobs 
submitted without bsub -W will be allowed to run but will be killed when they 
are in the RUN state for longer than the specified maximum run limit.

For example, in lsb.queues:

RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more 
than 10 minutes.

Default and
maximum values

If you specify two limits, the first one is the default (soft) limit for jobs in the 
queue and the second one is the maximum (hard) limit. Both the default and 
the maximum limits must be positive integers. The default limit must be less 
than the maximum limit. The default limit is ignored if it is greater than the 
maximum limit.

Use the default limit to avoid having to specify resource usage limits in the 
bsub command.

For example, to specify a default and a maximum run limit, use two values for 
the RUNLIMIT parameter in lsb.queues:

RUNLIMIT = 10 15

◆ The first number is the default run limit applied to all jobs in the queue that 
are submitted without a job-specific run limit (without bsub -W).

◆ The second number is the maximum run limit applied to all jobs in the 
queue that are submitted with a job-specific run limit (with bsub -W). The 
default run limit must be less than the maximum run limit.
Administering Platform LSF



Chapter 26
Runtime Resource Usage Limits
You can specify both default and maximum values for the following resource 
usage limits in lsb.queues:

◆ CPULIMIT

◆ DATALIMIT

◆ MEMLIMIT

◆ PROCESSLIMIT

◆ RUNLIMIT

◆ THREADLIMIT

Host specification
with two limits

If default and maximum limits are specified for CPU time limits or run time 
limits, only one host specification is permitted. For example, the following CPU 
limits are correct (and have an identical effect):

◆ CPULIMIT = 400/hostA 600
◆ CPULIMIT = 400 600/hostA

The following CPU limit is incorrect:

CPULIMIT = 400/hostA 600/hostB

The following run limits are correct (and have an identical effect):

◆ RUNLIMIT = 10/hostA 15
◆ RUNLIMIT = 10 15/hostA

The following run limit is incorrect:

RUNLIMIT = 10/hostA 15/hostB

Default run limits for backfill scheduling
Default run limits are used for backfill scheduling of parallel jobs.

For example, in lsb.queues, you enter: RUNLIMIT = 10 15

◆ The first number is the default run limit applied to all jobs in the queue that 
are submitted without a job-specific run limit (without bsub -W).

◆ The second number is the maximum run limit applied to all jobs in the 
queue that are submitted with a job-specific run limit (with 
bsub -W). The default run limit cannot exceed the maximum run limit.

Automatically assigning a default run limit to all jobs in the queue means that 
backfill scheduling works efficiently.

For example, in lsb.queues, you enter:

RUNLIMIT = 10 15

The first number is the default run limit applied to all jobs in the queue that 
are submitted without a job-specific run limit. The second number is the 
maximum run limit.

If you submit a job to the queue without the -W option, the default run limit is 
used:

% bsub myjob

The job myjob cannot run for more than 10 minutes as specified with the 
default run limit.
Administering Platform LSF 349



Specifying Resource Usage Limits

350
If you submit a job to the queue with the -W option, the maximum run limit is 
used:

% bsub -W 12 myjob

The job myjob is allowed to run on the queue because the specified run limit 
(12) is less than the maximum run limit for the queue (15).

% bsub -W 20 myjob

The job myjob is rejected from the queue because the specified run limit (20) 
is more than the maximum run limit for the queue (15).

Specifying job-level resource usage limits
To specify resource usage limits at the job level, use one of the following bsub 
options:

◆ -C core_limit

◆ -c cpu_limit

◆ -D data_limit

◆ -F file_limit

◆ -M mem_limit

◆ -p process_limit

◆ -W run_limit

◆ -S stack_limit

◆ -T thread_limit

◆ -v swap_limit

Job-level resource usage limits specified at job submission override the queue 
definitions.
Administering Platform LSF



Chapter 26
Runtime Resource Usage Limits
Supported Resource Usage Limits and Syntax

Core file size limit

Sets a per-process (soft) core file size limit in KB for each process that belongs 
to this batch job. On some systems, no core file is produced if the image for 
the process is larger than the core limit. On other systems only the first 
core_limit KB of the image are dumped. The default is no soft limit.

CPU time limit

Sets the soft CPU time limit to cpu_limit for this batch job. The default is no 
limit. This option is useful for avoiding runaway jobs that use up too many 
resources. LSF keeps track of the CPU time used by all processes of the job.

When the job accumulates the specified amount of CPU time, a SIGXCPU 
signal is sent to all processes belonging to the job. If the job has no signal 
handler for SIGXCPU, the job is killed immediately. If the SIGXCPU signal is 
handled, blocked, or ignored by the application, then after the grace period 
expires, LSF sends SIGINT, SIGTERM, and SIGKILL to the job to kill it.

You can define whether the CPU limit is a per-process limit enforced by the 
OS or a per-job limit enforced by LSF with LSB_JOB_CPULIMIT in lsf.conf.

Jobs submitted to a chunk job queue are not chunked if the CPU limit is greater 
than 30 minutes.

Format cpu_limit is in the form [hour:]minute, where minute can be greater than 
59. 3.5 hours can either be specified as 3:30 or 210. 

Normalized CPU
time

The CPU time limit is normalized according to the CPU factor of the 
submission host and execution host. The CPU limit is scaled so that the job 
does approximately the same amount of processing for a given CPU limit, even 
if it is sent to a host with a faster or slower CPU.

For example, if a job is submitted from a host with a CPU factor of 2 and 
executed on a host with a CPU factor of 3, the CPU time limit is multiplied by 
2/3 because the execution host can do the same amount of work as the 
submission host in 2/3 of the time.

If the optional host name or host model is not given, the CPU limit is scaled 
based on the DEFAULT_HOST_SPEC specified in the lsb.params file. (If 
DEFAULT_HOST_SPEC is not defined, the fastest batch host in the cluster is 
used as the default.) If host or host model is given, its CPU scaling factor is 
used to adjust the actual CPU time limit at the execution host.

The following example specifies that myjob can run for 10 minutes on a 
DEC3000 host, or the corresponding time on any other host:

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-C core_limit CORELIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-c cpu_limit CPULIMIT=[default] 
maximum

[hours:]minutes[/host_name 
| /host_model]
Administering Platform LSF 351



Supported Resource Usage Limits and Syntax

352
% bsub -c 10/DEC3000 myjob

See “CPU Time and Run Time Normalization” on page 357 for more 
information.

Data segment size limit

Sets a per-process (soft) data segment size limit in KB for each process that 
belongs to this batch job. An sbrk() or malloc() call to extend the data 
segment beyond the data limit returns an error. The default is no soft limit.

File size limit

Sets a per-process (soft) file size limit in KB for each process that belongs to 
this batch job. If a process of this job attempts to write to a file such that the 
file size would increase beyond the file limit, the kernel sends that process a 
SIGXFSZ signal. This condition normally terminates the process, but may be 
caught. The default is no soft limit.

Memory limit

Sets the memory limit, in KB.

If LSB_MEMLIMIT_ENFORCE or LSB_JOB_MEMLIMIT in lsf.conf are set to 
y, LSF kills the job when it exceeds the memory limit. Otherwise, LSF passes 
the memory limit to the operating system. Some operating systems apply the 
memory limit to each process, and some do not enforce the memory limit at all.

LSF memory limit
enforcement

To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in 
lsf.conf to y. LSF memory limit enforcement explicitly sends a signal to kill 
a running process once it has allocated memory past mem_limit.

You can also enable LSF memory limit enforcement by setting 
LSB_JOB_MEMLIMIT in lsf.conf to y. The difference between 
LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that 
with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is 
enabled. The per-process memory limit enforced by the OS is disabled. With 
LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by 
LSF and the per-process memory limit enforced by the OS are enabled.

LSB_JOB_MEMLIMIT disables per-process memory limit enforced by the OS 
and enables per-job memory limit enforced by LSF. When the total memory 
allocated to all processes in the job exceeds the memory limit, LSF sends the 
following signals to kill the job: SIGINT first, then SIGTERM, then SIGKILL.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-D data_limit DATALIMIT=[default] maximum integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-F file_limit FILELIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-M mem_limit MEMLIMIT=[default] maximum integer KB
Administering Platform LSF



Chapter 26
Runtime Resource Usage Limits
On UNIX, the time interval between SIGINT, SIGKILL, SIGTERM can be 
configured with the parameter JOB_TERMINATE_INTERVAL in lsb.params.

OS memory limit
enforcement

OS enforcement usually allows the process to eventually run to completion. 
LSF passes mem_limit to the OS which uses it as a guide for the system 
scheduler and memory allocator. The system may allocate more memory to a 
process if there is a surplus. When memory is low, the system takes memory 
from and lowers the scheduling priority (re-nice) of a process that has 
exceeded its declared mem_limit.

OS memory limit enforcement is only available on systems that support 
RLIMIT_RSS for setrlimit().

The following operating systems do not support the memory limit at the OS 
level:

◆ Windows NT

◆ Sun Solaris 2.x

Process limit

Sets the limit of the number of processes to process_limit for the whole job. 
The default is no limit. Exceeding the limit causes the job to terminate.

Limits the number of concurrent processes that can be part of a job.

If a default process limit is specified, jobs submitted to the queue without a 
job-level process limit are killed when the default process limit is reached.

If you specify only one limit, it is the maximum, or hard, process limit. If you 
specify two limits, the first one is the default, or soft, process limit, and the 
second one is the maximum process limit.

Run time limit

A run time limit is the maximum amount of time a job can run before it is 
terminated. It sets the run time limit of a job. The default is no limit. If the 
accumulated time the job has spent in the RUN state exceeds this limit, the job 
is sent a USR2 signal. If the job does not terminate within 10 minutes after 
being sent this signal, it is killed.

With deadline constraint scheduling configured, a run limit also specifies the 
amount of time a job is expected to take, and the minimum amount of time 
that must be available before a job can be started.

Jobs submitted to a chunk job queue are not chunked if the run limit is greater 
than 30 minutes.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-p process_limit PROCESSLIMIT=[default] maximum integer

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-W run_limit RUNLIMIT=[default] maximum [hours:]minutes[
/host_name | 
/host_model]
Administering Platform LSF 353



Supported Resource Usage Limits and Syntax

354
Format run_limit is in the form [hour:]minute, where minute can be greater than 
59. 3.5 hours can either be specified as 3:30 or 210.

Normalized run
time

The run time limit is normalized according to the CPU factor of the 
submission host and execution host. The run limit is scaled so that the job has 
approximately the same run time for a given run limit, even if it is sent to a 
host with a faster or slower CPU.

For example, if a job is submitted from a host with a CPU factor of 2 and 
executed on a host with a CPU factor of 3, the run limit is multiplied by 2/3 
because the execution host can do the same amount of work as the submission 
host in 2/3 of the time.

If the optional host name or host model is not given, the run limit is scaled 
based on the DEFAULT_HOST_SPEC specified in the lsb.params file. (If 
DEFAULT_HOST_SPEC is not defined, the fastest batch host in the cluster is 
used as the default.) If host or host model is given, its CPU scaling factor is 
used to adjust the actual run limit at the execution host.

The following example specifies that myjob can run for 10 minutes on a 
DEC3000 host, or the corresponding time on any other host:

% bsub -W 10/DEC3000 myjob

If ABS_RUNLIMIT=Y is defined in lsb.params, the run time limit is not 
normalized by the host CPU factor. Absolute wall-clock run time is used for all 
jobs submitted with a run limit.

See “CPU Time and Run Time Normalization” on page 357 for more 
information.

Platform
MultiCluster

For MultiCluster jobs, if no other CPU time normalization host is defined and 
information about the submission host is not available, LSF uses the host with 
the largest CPU factor (the fastest host in the cluster). The ABS_RUNLIMIT 
parameter in lsb.params is is not supported in either MultiCluster model; run 
time limit is normalized by the CPU factor of the execution host.

Thread limit

Sets the limit of the number of concurrent threads to thread_limit for the 
whole job. The default is no limit.

Exceeding the limit causes the job to terminate. The system sends the following 
signals in sequence to all processes belongs to the job: SIGINT, SIGTERM, and 
SIGKILL.

If a default thread limit is specified, jobs submitted to the queue without a job-
level thread limit are killed when the default thread limit is reached.

If you specify only one limit, it is the maximum, or hard, thread limit. If you 
specify two limits, the first one is the default, or soft, thread limit, and the 
second one is the maximum thread limit.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-T thread_limit THREADLIMIT=[default] maximum integer
Administering Platform LSF



Chapter 26
Runtime Resource Usage Limits
Stack segment size limit

Sets a per-process (soft) stack segment size limit in KB for each process that 
belongs to this batch job. An sbrk() call to extend the stack segment beyond 
the stack limit causes the process to be terminated. The default is no soft limit.

Virtual memory (swap) limit

Sets the total process virtual memory limit to swap_limit in KB for the whole 
job. The default is no limit. Exceeding the limit causes the job to terminate.

This limit applies to the whole job, no matter how many processes the job may 
contain.

Examples
Queue-level limits ◆ CPULIMIT = 20/hostA 15

The first number is the default CPU limit. The second number is the 
maximum CPU limit.

However, the default CPU limit is ignored because it is a higher value than 
the maximum CPU limit.

◆ CPULIMIT = 10/hostA

In this example, the lack of a second number specifies that there is no 
default CPU limit. The specified number is considered as the default and 
maximum CPU limit.

◆ RUNLIMIT = 10/hostA 15

The first number is the default run limit. The second number is the 
maximum run limit.

The first number specifies that the default run limit is to be used for jobs 
that are submitted without a specified run limit (without the -W option of 
bsub).

◆ RUNLIMIT = 10/hostA

No default run limit is specified. The specified number is considered as the 
default and maximum run limit.

◆ THREADLIMIT=6

No default thread limit is specified. The value 6 is the default and maximum 
thread limit.

◆ THREADLIMIT=6 8

The first value (6) is the default thread limit. The second value (8) is the 
maximum thread limit.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-S stack_limit STACKLIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-v swap_limit SWAPLIMIT=limit integer KB
Administering Platform LSF 355



Supported Resource Usage Limits and Syntax

356
Job-level limits ◆ % bsub -M 5000 myjob

Submits myjob with a memory limit of 5000 KB.

◆ % bsub -W 14 myjob

myjob is expected to run for 14 minutes. If the run limit specified with 
bsub -W exceeds the value for the queue, the job will be rejected.

◆ % bsub -T 4 myjob

Submits myjob with a maximum number of concurrent threads of 4.
Administering Platform LSF



Chapter 26
Runtime Resource Usage Limits
CPU Time and Run Time Normalization
To set the CPU time limit and run time limit for jobs in a platform-independent 
way, LSF scales the limits by the CPU factor of the hosts involved. When a job 
is dispatched to a host for execution, the limits are then normalized according 
to the CPU factor of the execution host.

Whenever a normalized CPU time or run time is given, the actual time on the 
execution host is the specified time multiplied by the CPU factor of the 
normalization host then divided by the CPU factor of the execution host.

If ABS_RUNLIMIT=Y is defined in lsb.params, the run time limit is not 
normalized by the host CPU factor. Absolute wall-clock run time is used for all 
jobs submitted with a run limit.

Normalization host
If no host or host model is given with the CPU time or run time, LSF uses the 
default CPU time normalization host defined at the queue level 
(DEFAULT_HOST_SPEC in lsb.queues) if it has been configured, otherwise 
uses the default CPU time normalization host defined at the cluster level 
(DEFAULT_HOST_SPEC in lsb.params) if it has been configured, otherwise 
uses the submission host.

Example CPULIMIT=10/hostA

If hostA has a CPU factor of 2, and hostB has a CPU factor of 1 (hostB is 
slower than hostA), this specifies an actual time limit of 10 minutes on hostA, 
or on any other host that has a CPU factor of 2. However, if hostB is the 
execution host, the actual time limit on hostB is 20 minutes (10 * 2 / 1).

Normalization hosts for default CPU and run time limits
The first valid CPU factor encountered is used for both CPU limit and run time 
limit. To be valid, a host specification must be a valid host name that is a 
member of the LSF cluster. The CPU factor is used even if the specified limit is 
not valid.

If the CPU and run limit have different host specifications, the CPU limit host 
specification is enforced.

If no host or host model is given with the CPU or run time limits, LSF 
determines the default normalization host according to the following priority:

1 DEFAULT_HOST_SPEC is configured in lsb.queues

2 DEFAULT_HOST_SPEC is configured in lsb.params

3 If DEFAULT_HOST_SPEC is not configured in lsb.queues or 
lsb.params, host with the largest CPU factor is used.

CPU time display (bacct, bhist, bqueues)
Normalized CPU time is displayed in the output of bqueues. CPU time is not 
normalized in the output if bacct and bhist.
Administering Platform LSF 357



CPU Time and Run Time Normalization

358
 Administering Platform LSF



C H A P T E R

27
Load Thresholds

Contents ◆ “Automatic Job Suspension” on page 360

◆ “Suspending Conditions” on page 362
Administering Platform LSF 359



Automatic Job Suspension

360
Automatic Job Suspension
Jobs running under LSF can be suspended based on the load conditions on the 
execution hosts. Each host and each queue can be configured with a set of 
suspending conditions. If the load conditions on an execution host exceed 
either the corresponding host or queue suspending conditions, one or more 
jobs running on that host will be suspended to reduce the load.

When LSF suspends a job, it invokes the SUSPEND action. The default 
SUSPEND action is to send the signal SIGSTOP.

By default, jobs are resumed when load levels fall below the suspending 
conditions. Each host and queue can be configured so that suspended 
checkpointable or rerunnable jobs are automatically migrated to another host 
instead.

If no suspending threshold is configured for a load index, LSF does not check 
the value of that load index when deciding whether to suspend jobs.

Suspending thresholds can also be used to enforce inter-queue priorities. For 
example, if you configure a low-priority queue with an r1m (1 minute CPU run 
queue length) scheduling threshold of 0.25 and an r1m suspending threshold 
of 1.75, this queue starts one job when the machine is idle. If the job is CPU 
intensive, it increases the run queue length from 0.25 to roughly 1.25. A high-
priority queue configured with a scheduling threshold of 1.5 and an unlimited 
suspending threshold will send a second job to the same host, increasing the 
run queue to 2.25. This exceeds the suspending threshold for the low priority 
job, so it is stopped. The run queue length stays above 0.25 until the high 
priority job exits. After the high priority job exits the run queue index drops 
back to the idle level, so the low priority job is resumed.

When jobs are running on a host, LSF periodically checks the load levels on 
that host. If any load index exceeds the corresponding per-host or per-queue 
suspending threshold for a job, LSF suspends the job. The job remains 
suspended until the load levels satisfy the scheduling thresholds.

At regular intervals, LSF gets the load levels for that host. The period is defined 
by the SBD_SLEEP_TIME parameter in the lsb.params file. Then, for each job 
running on the host, LSF compares the load levels against the host suspending 
conditions and the queue suspending conditions. If any suspending condition 
at either the corresponding host or queue level is satisfied as a result of 
increased load, the job is suspended. A job is only suspended if the load levels 
are too high for that particular job’s suspending thresholds.

There is a time delay between when LSF suspends a job and when the changes 
to host load are seen by the LIM. To allow time for load changes to take effect, 
LSF suspends no more than one job at a time on each host.

Jobs from the lowest priority queue are checked first. If two jobs are running 
on a host and the host is too busy, the lower priority job is suspended and the 
higher priority job is allowed to continue. If the load levels are still too high 
on the next turn, the higher priority job is also suspended.
Administering Platform LSF



Chapter 27
Load Thresholds
If a job is suspended because of its own load, the load drops as soon as the 
job is suspended. When the load goes back within the thresholds, the job is 
resumed until it causes itself to be suspended again.

Exceptions In some special cases, LSF does not automatically suspend jobs because of load 
levels.

◆ LSF does not suspend a job forced to run with brun -f.

◆ LSF does not suspend the only job running on a host, unless the host is 
being used interactively.

When only one job is running on a host, it is not suspended for any reason 
except that the host is not interactively idle (the it interactive idle time 
load index is less than one minute). This means that once a job is started 
on a host, at least one job continues to run unless there is an interactive 
user on the host. Once the job is suspended, it is not resumed until all the 
scheduling conditions are met, so it should not interfere with the 
interactive user.

◆ LSF does not suspend a job because of the paging rate, unless the host is 
being used interactively.

When a host has interactive users, LSF suspends jobs with high paging 
rates, to improve the response time on the host for interactive users. When 
a host is idle, the pg (paging rate) load index is ignored. The PG_SUSP_IT 
parameter in lsb.params controls this behaviour. If the host has been idle 
for more than PG_SUSP_IT minutes, the pg load index is not checked 
against the suspending threshold.
Administering Platform LSF 361



Suspending Conditions

362
Suspending Conditions
LSF provides different alternatives for configuring suspending conditions. 
Suspending conditions are configured at the host level as load thresholds, 
whereas suspending conditions are configured at the queue level as either load 
thresholds, or by using the STOP_COND parameter in the lsb.queues file, or 
both.

The load indices most commonly used for suspending conditions are the CPU 
run queue lengths (r15s, r1m, and r15m), paging rate (pg), and idle time (it). 
The (swp) and (tmp) indices are also considered for suspending jobs.

To give priority to interactive users, set the suspending threshold on the it 
(idle time) load index to a non-zero value. Jobs are stopped when any user is 
active, and resumed when the host has been idle for the time given in the it 
scheduling condition.

To tune the suspending threshold for paging rate, it is desirable to know the 
behaviour of your application. On an otherwise idle machine, check the 
paging rate using lsload, and then start your application. Watch the paging 
rate as the application runs. By subtracting the active paging rate from the idle 
paging rate, you get a number for the paging rate of your application. The 
suspending threshold should allow at least 1.5 times that amount. A job can be 
scheduled at any paging rate up to the scheduling threshold, so the suspending 
threshold should be at least the scheduling threshold plus 1.5 times the 
application paging rate. This prevents the system from scheduling a job and 
then immediately suspending it because of its own paging.

The effective CPU run queue length condition should be configured like the 
paging rate. For CPU-intensive sequential jobs, the effective run queue length 
indices increase by approximately one for each job. For jobs that use more than 
one process, you should make some test runs to determine your job’s effect on 
the run queue length indices. Again, the suspending threshold should be equal 
to at least the scheduling threshold plus 1.5 times the load for one job.

Configuring load thresholds at queue level
The queue definition (lsb.queues) can contain thresholds for 0 or more of 
the load indices. Any load index that does not have a configured threshold has 
no effect on job scheduling.

Syntax Each load index is configured on a separate line with the format:

load_index = loadSched/loadStop

Specify the name of the load index, for example r1m for the 1-minute CPU run 
queue length or pg for the paging rate. loadSched is the scheduling threshold 
for this load index. loadStop is the suspending threshold. The loadSched 
condition must be satisfied by a host before a job is dispatched to it and also 
before a job suspended on a host can be resumed. If the loadStop condition 
is satisfied, a job is suspended.

The loadSched and loadStop thresholds permit the specification of 
conditions using simple AND/OR logic. For example, the specification:
Administering Platform LSF



Chapter 27
Load Thresholds
MEM=100/10
SWAP=200/30

translates into a loadSched condition of mem>=100 && swap>=200 and a 
loadStop condition of mem < 10 || swap < 30.

Theory ◆ The r15s, r1m, and r15m CPU run queue length conditions are compared 
to the effective queue length as reported by lsload -E, which is 
normalised for multiprocessor hosts. Thresholds for these parameters 
should be set at appropriate levels for single processor hosts.

◆ Configure load thresholds consistently across queues. If a low priority 
queue has higher suspension thresholds than a high priority queue, then 
jobs in the higher priority queue will be suspended before jobs in the low 
priority queue.

Configuring load thresholds at host level
A shared resource cannot be used as a load threshold in the Hosts section of 
the lsf.cluster.cluster_name file.

Configuring suspending conditions at queue level
The condition for suspending a job can be specified using the queue-level 
STOP_COND parameter. It is defined by a resource requirement string. Only 
the select section of the resource requirement string is considered when 
stopping a job. All other sections are ignored.

This parameter provides similar but more flexible functionality for loadStop.

If loadStop thresholds have been specified, then a job will be suspended if 
either the STOP_COND is TRUE or the loadStop thresholds are exceeded.

Example This queue will suspend a job based on the idle time for desktop machines 
and based on availability of swap and memory on compute servers. Assume 
cs is a Boolean resource defined in the lsf.shared file and configured in the 
lsf.cluster.cluster_name file to indicate that a host is a compute server:

Begin Queue
.
STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swap < 50))]
.
End Queue

Viewing host-level and queue-level suspending conditions
The suspending conditions are displayed by the bhosts -l and bqueues -l 
commands.

Viewing job-level suspending conditions
The thresholds that apply to a particular job are the more restrictive of the host 
and queue thresholds, and are displayed by the bjobs -l command.
Administering Platform LSF 363



Suspending Conditions

364
Viewing suspend reason
The bjobs -lp command shows the load threshold that caused LSF to 
suspend a job, together with the scheduling parameters.

The use of STOP_COND affects the suspending reasons as displayed by the 
bjobs command. If STOP_COND is specified in the queue and the loadStop 
thresholds are not specified, the suspending reasons for each individual load 
index will not be displayed.

Resuming suspended jobs
Jobs are suspended to prevent overloading hosts, to prevent batch jobs from 
interfering with interactive use, or to allow a more urgent job to run. When the 
host is no longer overloaded, suspended jobs should continue running.

When LSF automatically resumes a job, it invokes the RESUME action. The 
default action for RESUME is to send the signal SIGCONT.

If there are any suspended jobs on a host, LSF checks the load levels in each 
dispatch turn.

If the load levels are within the scheduling thresholds for the queue and the 
host, and all the resume conditions for the queue (RESUME_COND in 
lsb.queues) are satisfied, the job is resumed.

If RESUME_COND is not defined, then the loadSched thresholds are used to 
control resuming of jobs: all the loadSched thresholds must be satisfied for 
the job to be resumed. The loadSched thresholds are ignored if 
RESUME_COND is defined.

Jobs from higher priority queues are checked first. To prevent overloading the 
host again, only one job is resumed in each dispatch turn.

Specifying resume condition
Use RESUME_COND in lsb.queues to specify the condition that must be 
satisfied on a host if a suspended job is to be resumed.

Only the select section of the resource requirement string is considered when 
resuming a job. All other sections are ignored.

Viewing resume thresholds
The bjobs -l command displays the scheduling thresholds that control when 
a job is resumed.
Administering Platform LSF



C H A P T E R

28
Pre-Execution and Post-Execution

Commands

Jobs can be submitted with optional pre- and post-execution commands. A 
pre- or post-execution command is an arbitrary command to run before the job 
starts or after the job finishes. Pre- and post-execution commands are executed 
in a separate environment from the job.

Contents ◆ “About Pre-Execution and Post-Execution Commands” on page 366

◆ “Configuring Pre- and Post-Execution Commands” on page 368
Administering Platform LSF 365



About Pre-Execution and Post-Execution Commands

366
About Pre-Execution and Post-Execution Commands
Each batch job can be submitted with optional pre- and post-execution 
commands. Pre- and post-execution commands can be any excutable 
command lines to be run before a job is started or after a job finishes.

Some batch jobs require resources that LSF does not directly support. For 
example, appropriate pre- and/or post-execution commands can be used to 
handle various situations:

◆ Reserving devices like tape drives

◆ Creating and deleting scratch directories for a job

◆ Customized scheduling

◆ Checking availability of software licenses

◆ Assigning jobs to run on specific processors on SMP machines

By default, the pre- and post-execution commands are run under the same user 
ID, environment, and home and working directories as the batch job. If the 
command is not in your normal execution path, the full path name of the 
command must be specified. 

For parallel jobs, the command is run on the first selected host.

Pre-execution commands
Pre-execution commands support job starting decisions which cannot be 
configured directly in LSF. LSF supports both job-level and queue-level pre-
execution.

The pre-execution command returns information to LSF using its exit status. 
When a pre-execution command is specified, the job is held in the queue until 
the specified pre-execution command returns exit status zero (0).

If the pre-execution command exits with non-zero status, the batch job is not 
dispatched. The job goes back to the PEND state, and LSF tries to dispatch 
another job to that host. While the job is pending, other jobs can proceed 
ahead of the waiting job. The next time LSF tries to dispatch jobs this process 
is repeated.

If the pre-execution command exits with a value of 99, the job will not go back 
to the PEND state, it will exit. This gives you flexibility to abort the job if the 
pre-execution command fails.

LSF assumes that the pre-execution command runs without side effects. For 
example, if the pre-execution command reserves a software license or other 
resource, you must not reserve the same resource more than once for the same 
batch job.

Post-execution commands
If a post-execution command is specified, then the command is run after the 
job is finished regardless of the exit state of the job.

Post-execution commands are typically used to clean up some state left by the 
pre-execution and the job execution. Post-execution is only supported at the 
queue level.
Administering Platform LSF



Chapter 28
Pre-Execution and Post-Execution Commands
Job-level commands
The bsub -E option specifies an arbitrary command to run before starting the 
batch job. When LSF finds a suitable host on which to run a job, the pre-
execution command is executed on that host. If the pre-execution command 
runs successfully, the batch job is started.

Job-level post-execution commands are not supported.

Queue-level commands
In some situations (for example, license checking), it is better to specify a 
queue-level pre-execution command instead of requiring every job be 
submitted with the -E option of bsub.

Queue-level commands run on the execution host before or after a job from 
the queue is run.

The LSF administrator uses the PRE_EXEC and POST_EXEC parameters in 
lsb.queues to set up queue-level pre- and post-execution commands.

Post-execution job states
Some jobs may not be considered complete until some post-job processing is 
performed. For example, a job may need to exit from a post-execution job 
script, clean up job files, or transfer job output after the job completes.

The DONE or EXIT job states do not indicate whether post-processing is 
complete, so jobs that depend on processing may start prematurely. Use the 
post_done and post_err keywords on the bsub -w command to specify job 
dependency conditions for job post-processing. The corresponding job states 
POST_DONE and POST_ERR indicate the state of the post-processing.

The bhist command displays the POST_DONE and POST_ERR states. The 
resource usage of post-processing is not included in the job resource usage.

After the job completes, you cannot perform any job control on the post-
processing. Post-processing exit codes are not reported to LSF. The post-
processing of a repetitive job cannot be longer than the repetition period.
Administering Platform LSF 367



Configuring Pre- and Post-Execution Commands

368
Configuring Pre- and Post-Execution Commands
Pre- and post-execution commands can be configured at the job level or on a 
per-queue basis.

Job-level commands
Job-level pre-execution commands require no configuration. Use the bsub -E 
option to specify an arbitrary command to run before the job starts.

Example The following example shows a batch job that requires a tape drive. The user 
program tapeCheck exits with status zero if the specified tape drive is ready:

% bsub -E "/usr/share/bin/tapeCheck /dev/rmt01" myJob

Queue-level commands
Use the PRE_EXEC and POST_EXEC keywords in the queue definition 
(lsb.queues) to specify pre- and post-execution commands.

The following points should be considered when setting up pre- and post-
execution commands at the queue level:

◆ If the pre-execution command exits with a non-zero exit code, then it is 
considered to have failed and the job is requeued to the head of the queue. 
This feature can be used to implement customized scheduling by having 
the pre-execution command fail if conditions for dispatching the job are 
not met.

◆ Other environment variables set for the job are also set for the pre- and 
post-execution commands.

◆ When a job is dispatched from a queue which has a pre-execution 
command, LSF will remember the post-execution command defined for the 
queue from which the job is dispatched. If the job is later switched to 
another queue or the post-execution command of the queue is changed, 
LSF will still run the original post-execution command for this job.

◆ When the post-execution command is run, the environment variable, 
LSB_JOBEXIT_STAT, is set to the exit status of the job. See the man page 
for the wait(2) command for the format of this exit status.

◆ The post-execution command is also run if a job is requeued because the 
job’s execution environment fails to be set up, or if the job exits with one 
of the queue’s REQUEUE_EXIT_VALUES.

The LSB_JOBPEND environment variable is set if the job is requeued. If the 
job’s execution environment could not be set up, LSB_JOBEXIT_STAT is set 
to 0.

See “Automatic Job Requeue” on page 301 for more information.

◆ If both queue and job-level pre-execution commands are specified, the job-
level pre-execution is run after the queue-level pre-execution command.
Administering Platform LSF



Chapter 28
Pre-Execution and Post-Execution Commands
UNIX The entire contents of the configuration line of the pre- and post-execution 
commands are run under /bin/sh -c, so shell features can be used in the 
command.

For example, the following is valid:

PRE_EXEC = /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
POST_EXEC = /usr/share/lsf/misc/testq_post | grep -v "Hey!"

The pre- and post-execution commands are run in /tmp.

Standard input and standard output and error are set to /dev/null. The 
output from the pre- and post-execution commands can be explicitly 
redirected to a file for debugging purposes.

The PATH environment variable is set to:

PATH='/bin /usr/bin /sbin /usr/sbin'

Windows The pre- and post-execution commands are run under cmd.exe /c.

Standard input and standard output and error are set to NULL. The output from 
the pre- and post-execution commands can be explicitly redirected to a file for 
debugging purposes.

See “LSB_PRE_POST_EXEC_USER parameter (lsf.sudoers)” on page 369.

See the Platform LSF Reference for information about the lsf.sudoers file.

Example The following queue specifies the pre-execution command 
/usr/share/lsf/pri_prexec and the post-execution command 
/usr/share/lsf/pri_postexec.

Begin Queue
QUEUE_NAME = priority
PRIORITY = 43
NICE = 10
PRE_EXEC = /usr/share/lsf/pri_prexec
POST_EXEC = /usr/share/lsf/pri_postexec
End Queue

LSB_PRE_POST_EXEC_USER parameter (lsf.sudoers)
By default, both the pre- and post-execution commands are run as the job 
submission user. Use the LSB_PRE_POST_EXEC_USER parameter in 
lsf.sudoers to specify a different user ID for queue-level pre- and post-
execution commands.

Example For example, if the pre- or post-execution commands perform privileged 
operations that require root permission, specify:

LSB_PRE_POST_EXEC_USER=root

See the Platform LSF Reference for information about the lsf.sudoers file.
Administering Platform LSF 369



Configuring Pre- and Post-Execution Commands

370
 Administering Platform LSF



C H A P T E R

29
Job Starters

A job starter is a specified shell script or executable program that sets up the 
environment for a job and then runs the job. The job starter and the job share 
the same environment. This chapter discusses two ways of running job starters 
in LSF and how to set up and use them.

Contents ◆ “About Job Starters” on page 372

◆ “Command-Level Job Starters” on page 374

◆ “Queue-Level Job Starters” on page 376

◆ “Controlling Execution Environment Using Job Starters” on page 378
Administering Platform LSF 371



About Job Starters

372
About Job Starters
Some jobs have to run in a particular environment, or require some type of 
setup to be performed before they run. In a shell environment, job setup is 
often written into a wrapper shell script file that itself contains a call to start 
the desired job.

A job starter is a specified wrapper script or executable program that typically 
performs environment setup for the job, then calls the job itself, which inherits 
the execution environment created by the job starter. LSF controls the job 
starter process, rather than the job. One typical use of a job starter is to 
customize LSF for use with specific application environments, such as Alias 
Renderer or Rational ClearCase.

Two ways to run job starters
You run job starters two ways in LSF. You can accomplish similar things with 
either job starter, but their functional details are slightly different.

Command-level
job starters

Are user-defined. They run interactive jobs submitted using lsrun, lsgrun, or 
ch. Command-level job starters have no effect on batch jobs, including 
interactive batch jobs run with bsub -I.

Use the LSF_JOB_STARTER environment variable to specify a job starter for 
interactive jobs. See “Controlling Execution Environment Using Job Starters” on 
page 378 for detailed information.

Queue-level job
starters

Defined by the LSF administrator, and run batch jobs submitted to a queue 
defined with the JOB_STARTER parameter set. Use bsub to submit jobs to 
queues with job-level job starters. 

A queue-level job starter is configured in the queue definition in lsb.queues. 
See “Queue-Level Job Starters” on page 376 for detailed information.

Pre-execution commands are not job starters
A job starter differs from a pre-execution command. A pre-execution command 
must run successfully and exit before the LSF job starts. It can signal LSF to 
dispatch the job, but because the pre-execution command is an unrelated 
process, it does not control the job or affect the execution environment of the 
job. A job starter, however, is the process that LSF controls. It is responsible for 
invoking LSF and controls the execution environment of the job.

See Chapter 28, “Pre-Execution and Post-Execution Commands” for more 
information.
Administering Platform LSF



Chapter 29
Job Starters
Examples
The following are some examples of job starters:

◆ In UNIX, a job starter defined as /bin/ksh -c causes jobs to be run under 
a Korn shell environment.

◆ In Windows, a job starter defined as C:\cmd.exe /C causes jobs to be run 
under a DOS shell environment.

◆ Setting the JOB_STARTER parameter in lsb.queues to $USER_STARTER 
enables users to define their own job starters by defining the environment 
variable USER_STARTER.

◆ Setting a job starter to make clean causes the command make clean to 
be run before the user job.

◆ Setting a job starter to pvmjob or mpijob allows you to run PVM or MPI 
jobs with LSF, where pvmjob and mpijob are job starters for parallel jobs 
written in PVM or MPI.
Administering Platform LSF 373



Command-Level Job Starters

374
Command-Level Job Starters
A command-level job starter allows you to specify an executable file that does 
any necessary setup for the job and runs the job when the setup is complete. 
You can select an existing command to be a job starter, or you can create a 
script containing a desired set of commands to serve as a job starter.

This section describes how to set up and use a command-level job starter to 
run interactive jobs.

Command-level job starters have no effect on batch jobs, including interactive 
batch jobs. See Chapter 32, “Interactive Jobs with bsub” for information on 
interactive batch jobs.

A job starter can also be defined at the queue level using the JOB_STARTER 
parameter. Only the LSF administrator can configure queue-level job starters. 
See “Queue-Level Job Starters” on page 376 for more information.

LSF_JOB_STARTER environment variable
Use the LSF_JOB_STARTER environment variable to specify a command or 
script that is the job starter for the interactive job. When the environment 
variable LSF_JOB_STARTER is defined, RES invokes the job starter rather than 
running the job itself, and passes the job to the job starter as a command-line 
argument.

Using command-level job starters
UNIX The job starter is invoked from within a Bourne shell, making the command-

line equivalent:

/bin/sh -c "$LSF_JOB_STARTER command [argument ...]"

where command and argument are the command-line arguments you 
specify in lsrun, lsgrun, or ch.

Windows RES runs the job starter, passing it your commands as arguments:

LSF_JOB_STARTER command [argument ...]
Administering Platform LSF



Chapter 29
Job Starters
Examples
UNIX If you define the LSF_JOB_STARTER environment variable using the following 

C-shell command:

% setenv LSF_JOB_STARTER "/bin/sh -c"

Then you run a simple C-shell job:

% lsrun "’a.out; hostname’"

The command that actually runs is:

/bin/sh -c "/bin/sh -c ’a.out hostname’"

The job starter can be a shell script. In the following example, the 
LSF_JOB_STARTER environment variable is set to the Bourne shell script 
named job_starter:

$ LSF_JOB_STARTER=/usr/local/job_starter

The job_starter script contains the following:

#!/bin/sh
set term = xterm
eval "$*"

Windows If you define the LSF_JOB_STARTER environment variable as follows:

% set LSF_JOB_STARTER=C:\cmd.exe /C

Then you run a simple DOS shell job:

C:\> lsrun dir /p

The command that actually runs is:

C:\cmd.exe /C dir /p
Administering Platform LSF 375



Queue-Level Job Starters

376
Queue-Level Job Starters
LSF administrators can define a job starter for an individual queue to create a 
specific environment for jobs to run in. A queue-level job starter specifies an 
executable that performs any necessary setup, and then runs the job when the 
setup is complete. The JOB_STARTER parameter in lsb.queues specifies the 
command or script that is the job starter for the queue.

This section describes how to set up and use a queue-level job starter.

Queue-level job starters have no effect on interactive jobs, unless the 
interactive job is submitted to a queue as an interactive batch job. See 
Chapter 32, “Interactive Jobs with bsub” for information on interactive batch 
jobs.

LSF users can also select an existing command or script to be a job starter for 
their interactive jobs using the LSF_JOB_STARTER environment variable. See 
“Command-Level Job Starters” on page 374 for more information.

Configuring a queue-level job starter
Use the JOB_STARTER parameter in lsb.queues to specify a queue-level job 
starter in the queue definition. All jobs submitted to this queue are run using 
the job starter. The jobs are called by the specified job starter process rather 
than initiated by the batch daemon process.

For example:

Begin Queue
.
JOB_STARTER = xterm -e 
.
End Queue

All jobs submitted to this queue are run under an xterm terminal emulator.

JOB_STARTER parameter (lsb.queues)
The JOB_STARTER parameter in the queue definition (lsb.queues) has the 
following format:

JOB_STARTER = starter [starter] [%USRCMD] [starter]

The string starter is the command or script that is used to start the job. It can 
be any executable that can accept a job as an input argument. Optionally, 
additional strings can be specified.

When starting a job, LSF runs the JOB_STARTER command, and passes the 
shell script containing the job commands as the argument to the job starter. The 
job starter is expected to do some processing and then run the shell script 
containing the job commands. The command is run under /bin/sh -c and 
can contain any valid Bourne shell syntax.
Administering Platform LSF



Chapter 29
Job Starters
%USRCMD string The special string %USRCMD indicates the position of the job starter command 
in the job command line. By default, the user commands run after the job 
starter, so the %USRCMD string is not usually required. For example, these two 
job starters both give the same results:

JOB_STARTER = /bin/csh -c

JOB_STARTER = /bin/csh -c %USRCMD

You can also enclose the %USRCMD string in quotes or follow it with additional 
commands. For example:

JOB_STARTER = /bin/csh -c "%USRCMD;sleep 10"

If a user submits the following job to the queue with this job starter:

% bsub myjob arguments

the command that actually runs is:

% /bin/csh -c "myjob arguments; sleep 10"

For more
information

See the Platform LSF Reference for information about the JOB_STARTER 
parameter in the lsb.queues file.
Administering Platform LSF 377



Controlling Execution Environment Using Job Starters

378
Controlling Execution Environment Using Job Starters 
In some cases, using bsub -L does not result in correct environment settings 
on the execution host. LSF provides the following two job starters:

◆ preservestarter—preserves the default environment of the execution 
host. It does not include any submission host settings.

◆ augmentstarter—augments the default user environment of the 
execution host by adding settings from the submission host that are not 
already defined on the execution host

bsub -L cannot be used for a Windows execution host.

Where the job starter executables are located
By default, the job starter executables are installed in LSF_BINDIR. If you prefer 
to store them elsewhere, make sure they are in a directory that is included in 
the default PATH on the execution host.

For example:

◆ On Windows, put the job starter under %WINDIR%.

◆ On UNIX, put the job starter under $HOME/bin.

Source code for
the job starters

The source code for the job starters is installed in LSF_MISC/examples.

Adding to the initial login environment
By default, the preservestarter job starter preserves the environment that 
RES establishes on the execution host, and establishes an initial login 
environment for the user with the following variables from the user’s login 
environment on the execution host:

◆ HOME

◆ USER

◆ SHELL

◆ LOGNAME

Any additional environment variables that exist in the user’s login environment 
on the submission host must be added to the job starter source code.

Example A user’s .login script on the submission host contains the following setting:

if ($TERM != "xterm") then
set TERM=`tset - -Q -m 'switch:?vt100' ....

else
stty -tabs

endif

The TERM environment variable must also be included in the environment on 
the execution host for login to succeed. If it is missing in the job starter, the 
login fails, the job starter may fail as well. If the job starter can continue with 
only the initial environment settings, the job may execute correctly, but this is 
not likely.
Administering Platform LSF



C H A P T E R

30
External Job Submission and

Execution Controls

This document describes the use of external job submission and execution 
controls called esub and eexec. These site-specific user-written executables 
are used to validate, modify, and reject job submissions, pass data to and 
modify job execution environments.

Contents ◆ “Understanding External Executables” on page 380

◆ “Using esub” on page 381

◆ “Working with eexec” on page 388
Administering Platform LSF 379



Understanding External Executables

380
Understanding External Executables

About esub and eexec
LSF provides the ability to validate, modify, or reject job submissions, modify 
execution environments, and pass data from the submission host directly to the 
execution host through the use of the esub and eexec executables. Both are 
site-specific and user written and must be located in LSF_SERVERDIR.

Validate, modify,
or reject a job

To validate, modify, or reject a job, an esub needs to be written. See “Using 
esub” on page 381

Modifying
execution

environments

To modify the execution environment on the execution host, an eexec needs 
to be written. See “Working with eexec” on page 388

Passing data To pass data directly to the execution host, an esub and eexec need to be 
written. See “Using esub and eexec to pass data to execution environments” 
on page 388

Interactive remote execution
Interactive remote execution also runs esub and eexec if they are found in 
LSF_SERVERDIR. For example, lsrun invokes esub, and RES runs eexec 
before starting the task. esub is invoked at the time of the ls_connect(3) call, 
and RES invokes eexec each time a remote task is executed. RES runs eexec 
only at task startup time.

DCE credentials and AFS tokens
esub and eexec are also used for processing DCE credentials and AFS tokens. 
See the following documents on the Platform Web site for more information:

◆ “Installing LSF on AFS”

◆ “Installing LSF on DCE/DFS”
Administering Platform LSF



Chapter 30
External Job Submission and Execution Controls
Using esub

About esub
An esub, short for external submission, is a user-written executable (binary 
or script) that can be used to validate, modify, or reject jobs. The esub is put 
into LSF_SERVERDIR (defined in lsf.conf) where LSF checks for its existence 
when a job is submitted, restarted, and modified. If LSF finds an esub, it is run 
by LSF. Whether the job is submitted, modified, or rejected depends on the 
logic built into the esub.

Any messages that need to be provided to the user should be directed to the 
standard error (stderr) stream and not the standard output (stdout) stream.

In this section ◆ “Environment variables to bridge esub and LSF” on page 381

◆ “General esub logic” on page 384

◆ “Rejecting jobs” on page 384

◆ “Validating job submission parameters” on page 384

◆ “Modifying job submission parameters” on page 385

◆ “The bmod and brestart commands and esub” on page 386

◆ “How LSF supports multiple esub” on page 386

◆ “How master esub invokes application-specific esubs” on page 386

◆ “Configuring master esub and your application-specific esub” on page 387

Environment variables to bridge esub and LSF
LSF provides the following environment variables in the esub execution 
environment:

LSB_SUB_PARM_FILE
This variable points to a temporary file containing the job parameters that esub 
reads when the job is submitted. The submission parameters are a set of name-
value pairs on separate lines in the format "option_name=value". The 
following option names are supported:

Option Description

LSB_SUB_ADDITIONAL Arbitrary string format parameter containing the value of the -a 
option to bsub
The value of -a is passed to esub, but it does not directly 
affect the other bsub parameters or behavior.
LSB_SUB_ADDITIONAL cannot be changed in or added to 
LSB_SUB_MODIFY_FILE..

LSB_SUB_BEGIN_TIME Begin time, in seconds since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_CHKPNT_DIR Checkpoint directory

LSB_SUB_CLUSTER Submission cluster name (MultiCluster only)

LSB_SUB_COMMAND_LINE Job command

LSB_SUB_CHKPNT_PERIOD Checkpoint period

LSB_SUB_DEPEND_COND Dependency condition

LSB_SUB_ERR_FILE Standard error file name
Administering Platform LSF 381



Using esub

382
LSB_SUB_EXCEPTION Exception condition

LSB_SUB_EXCLUSIVE "Y" specifies exclusive execution

LSB_SUB_EXTSCHED_PARAM Validate or modify bsub -extsched option

LSB_SUB_HOST_SPEC Host specifier

LSB_SUB_HOSTS List of execution host names

LSB_SUB_IN_FILE Standard input file name

LSB_SUB_INTERACTIVE "Y" specifies an interactive job

LSB_SUB_LOGIN_SHELL Login shell

LSB_SUB_JOB_NAME Job name

LSB_SUB_JOB_WARNING_ACTION Job warning action specified by bsub -wa

LSB_SUB_JOB_WARNING_TIME_PERIOD Job warning time period specified by bsub -wt

LSB_SUB_MAIL_USER Email address used by LSF for sending job email

LSB_SUB_MAX_NUM_PROCESSORS Maximum number of processors requested

LSB_SUB_MODIFY "Y" specifies a modification request

LSB_SUB_MODIFY_ONCE "Y" specifies a modification-once request

LSB_SUB_NOTIFY_BEGIN "Y" specifies email notification when job begins

LSB_SUB_NOTIFY_END "Y" specifies email notification when job ends

LSB_SUB_NUM_PROCESSORS Minimum number of processors requested

LSB_SUB_OTHER_FILES Always "SUB_RESET" if defined to indicate a bmod is being 
performed to reset the number of files to be transferred

LSB_SUB_OTHER_FILES_number number is an index number indicating the particular file 
transfer value is the specified file transfer expression.
For example, for bsub -f "a > b" -f "c < d", the 
following would be defined:
◆ LSB_SUB_OTHER_FILES_0="a > b"
◆ LSB_SUB_OTHER_FILES_1="c < d"

LSB_SUB_OUT_FILE Standard output file name

LSB_SUB_PRE_EXEC Pre-execution command

LSB_SUB_PROJECT_NAME Project name

LSB_SUB_PTY "Y" specifies an interactive job with PTY support

LSB_SUB_PTY_SHELL "Y" specifies an interactive job with PTY shell support

LSB_SUB_QUEUE Submission queue name

LSB_SUB_RERUNNABLE "Y" specifies a rerunnable job

LSB_SUB_RES_REQ Resource requirement string

LSB_SUB_RESTART "Y" specifies a restart job

LSB_SUB_RESTART_FORCE "Y" specifies forced restart job

LSB_SUB_RLIMIT_CORE Core file size limit

LSB_SUB_RLIMIT_CPU CPU limit

LSB_SUB_RLIMIT_DATA Data size limit

LSB_SUB_RLIMIT_FSIZE File size limit

LSB_SUB_RLIMIT_RSS Resident size limit

LSB_SUB_RLIMIT_RUN Wall-clock run limit

LSB_SUB_RLIMIT_STACK Stack size limit

LSB_SUB_RLIMIT_THREAD Thread limit

Option Description
Administering Platform LSF



Chapter 30
External Job Submission and Execution Controls
Example submission parameter file
If a user submits the following job:

% bsub -q normal -x -P my_project -R “r1m rusage[dummy=1]” -n 90 sleep 10

The contents of the LSB_SUB_PARM_FILE will be:

LSB_SUB_QUEUE="normal"
LSB_SUB_EXCLUSIVE=Y
LSB_SUB_RES_REQ="r1m rusage[dummy=1]"
LSB_SUB_PROJECT_NAME="my_project"
LSB_SUB_COMMAND_LINE="sleep 10"
LSB_SUB_NUM_PROCESSORS=90
LSB_SUB_MAX_NUM_PROCESSORS=90

LSB_SUB_ABORT_VALUE
This variable indicates the value esub should exit with if LSF is to reject the 
job submission.

LSB_SUB_MODIFY_ENVFILE
The file in which esub should write any changes to the job environment 
variables.

esub writes the variables to be modified to this file in the same format used in 
LSB_SUB_PARM_FILE. The order of the variables does not matter.

After esub runs, LSF checks LSB_SUB_MODIFY_ENVFILE for changes and if 
found, LSF will apply them to the job environment variables.

LSB_SUB_MODIFY_FILE
The file in which esub should write any submission parameter changes.

esub writes the job options to be modified to this file in the same format used 
in LSB_SUB_PARM_FILE. The order of the options does not matter. After esub 
runs, LSF checks LSB_SUB_MODIFY_FILE for changes and if found LSF will 
apply them to the job.

LSB_SUB_ADDITIONAL cannot be changed in or added to LSB_SUB_MODIFY_FILE.

LSB_SUB_TERM_TIME Termination time, in seconds, since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_TIME_EVENT Time event expression

LSB_SUB_USER_GROUP User group name

LSB_SUB_WINDOW_SIG Window signal number

LSB_SUB2_JOB_GROUP Options specified by bsub -g

LSB_SUB2_SLA SLA scheduling options

Option Description
Administering Platform LSF 383



Using esub

384
General esub logic
After esub runs, LSF checks:

1 Is the esub exit value LSB_SUB_ABORT_VALUE?

a Yes, step 2

b No, step 4

2 Reject the job

3 Go to step 5

4 Does LSB_SUB_MODIFY_FILE or LSB_SUB_MODIFY_ENVFILE exist?

❖ Apply changes

5 Done

Rejecting jobs
Depending on your policies you may choose to reject a job. To do so, have 
esub exit with LSB_SUB_ABORT_VALUE.

If esub rejects the job, it should not write to either LSB_SUB_MODIFY_FILE or 
LSB_SUB_MODIFY_ENVFILE.

Example The following Bourne shell esub rejects all job submissions by exiting with 
LSB_SUB_ABORT_VALUE:

#!/bin/sh

# Redirect stderr to stdout so echo can be used for 
# error messages 
exec 1>&2

# Reject the submission
echo "LSF is Rejecting your job submission..."
exit $LSB_SUB_ABORT_VALUE

Validating job submission parameters
One use of validation is to support project-based accounting. The user can 
request that the resources used by a job be charged to a particular project. 
Projects are associated with a job at job submission time, so LSF will accept any 
arbitrary string for a project name. In order to ensure that only valid projects 
are entered and the user is eligible to charge to that project, an esub can be 
written.

Example The following Bourne shell esub validates job submission parameters:

#!/bin/sh

. $LSB_SUB_PARM_FILE

# Redirect stderr to stdout so echo can be used for error messages 
exec 1>&2

# Check valid projects
if [ $LSB_SUB_PROJECT_NAME != "proj1" -o $LSB_SUB_PROJECT_NAME != "proj2" ]; 
then
Administering Platform LSF



Chapter 30
External Job Submission and Execution Controls
echo "Incorrect project name specified"
exit $LSB_SUB_ABORT_VALUE

fi

USER=`whoami`
if [ $LSB_SUB_PROJECT_NAME = "proj1" ]; then

# Only user1 and user2 can charge to proj1
if [$USER != "user1" -a $USER != "user2" ]; then

echo "You are not allowed to charge to this project"
exit $LSB_SUB_ABORT_VALUE

fi
fi

Modifying job submission parameters
esub can be used to modify submission parameters and the job environment 
before the job is actually submitted.

The following example writes modifications to LSB_SUB_MODIFY_FILE for 
the following parameters:

◆ LSB_SUB_QUEUE

◆ USER

◆ SHELL

In the example, user userA can only submit jobs to queue queueA. User userB 
must use Bourne shell (/bin/sh), and user userC should never be able to 
submit a job.

#!/bin/sh
. $LSB_SUB_PARM_FILE

# Redirect stderr to stdout so echo can be used for error 
messages 
exec 1>&2

USER=`whoami`
# Ensure userA is using the right queue queueA
if [ $USER="userA" -a $LSB_SUB_QUEUE != "queueA" ]; then

echo "userA has submitted a job to an incorrect queue"
echo "...submitting to queueA"
echo 'LSB_SUB_QUEUE="queueA"' > $LSB_SUB_MODIFY_FILE

fi

# Ensure userB is using the right shell (/bin/sh)
if [ $USER="userB" -a $SHELL != "/bin/sh" ]; then

echo "userB has submitted a job using $SHELL"
echo "...using /bin/sh instead"
echo 'SHELL="/bin/sh"' > $LSB_SUB_MODIFY_ENVFILE

fi
Administering Platform LSF 385



Using esub

386
# Deny userC the ability to submit a job
if [ $USER="userC" ]; then

echo "You are not permitted to submit a job."
exit $LSB_SUB_ABORT_VALUE

fi

The bmod and brestart commands and esub
You can use the bmod command to modify job submission parameters, and 
brestart to restart checkpointed jobs. Like bsub, bmod and brestart also 
call esub if it exists. bmod and brestart cannot make changes to the job 
environment through esub. Environment changes only occur when esub is 
called by the original job submission with bsub.

How LSF supports multiple esub
LSF provides a master esub (LSF_SERVERDIR/mesub) to handle the invocation 
of individual esub executables and the job submission requirements of your 
applications. Use the -a option of bsub to specify the application you are 
running through LSF. 

For example, to submit a FLUENT job:

bsub -a fluent bsub_options fluent_command

The method name fluent, uses the esub for FLUENT jobs 
(LSF_SERVERDIR/esub.fluent), which sets the checkpointing method 
LSB_ECHKPNT_METHOD="fluent" to use the echkpnt.fluent and 
erestart.fluent.

LSB_ESUB_METHOD (lsf.conf)
To specify a mandatory esub method that applies to all job submissions, you 
can configure LSB_ESUB_METHOD in lsf.conf.

LSB_ESUB_METHOD specifies the name of the esub method used in addition 
to any methods specified in the bsub -a option.

For example, LSB_ESUB_METHOD="dce fluent" defines DCE as the 
mandatory security system, and FLUENT as the mandatory application used on 
all jobs.

How master esub invokes application-specific esubs
bsub invokes mesub at job submission, which calls:

1 Mandatory esub programs defined by LSB_ESUB_METHOD

2 esub if it exists

3 application-specific esub programs if the bsub -a option is specified
Administering Platform LSF



Chapter 30
External Job Submission and Execution Controls
Example

In this example, esub.dce is defined as a mandatory esub, an esub already 
exists in LSF_SERVERDIR, and the job is submitted as a FLUENT job to use 
esub.fluent.

Configuring master esub and your application-specific esub
The master esub is installed as LSF_SERVERDIR/mesub. After installation:

1 Create your own application-specific esub.

2 Optional. Configure LSB_ESUB_METHOD in lsf.conf to specify a 
mandatory esub for all job submissions.

Naming your esub Use the following naming conventions:

◆ On UNIX, LSF_SERVERDIR/esub.application

For example, esub.fluent for FLUENT jobs

◆ On Windows, LSF_SERVERDIR\esub.application.[exe |bat]

For example, esub.fluent.exe

Existing esub Your existing esub does not need to follow this convention and does not need to be 
renamed. However, since mesub invokes any esub that follows this convention, you 
should move any backup copies of your esubs out of LSF_SERVERDIR or choose a 
name that does not follow the convention (for example, use esub_bak instead of 
esub.bak).

esub.user is
reserved

The name esub.user is reserved for backward compatibility. Do not use the 
name esub.user for your application-specific esub. 

(lsf.conf)

LSB_ESUB_METHOD=dce

bsub -a fluent mesub esub

esub.fluent

esub.dce
Administering Platform LSF 387



Working with eexec

388
Working with eexec

About eexec
The eexec program runs on the execution host at job start-up and completion 
time and when checkpointing is initiated. It is run as the user after the job 
environment variables have been set. The environment variable LS_EXEC_T is 
set to START, END, and CHKPNT, respectively, to indicate when eexec is 
invoked.

If you need to run eexec as a different user, such as root, you must properly 
define LSF_EEXEC_USER in the file /etc/lsf.sudoers. See the Platform 
LSF Reference for information about the lsf.sudoers file.

eexec is expected to finish running because the parent job process waits for 
eexec to finish running before proceeding. The environment variable 
LS_JOBPID stores the process ID of the process that invoked eexec. If eexec 
is intended to monitor the execution of the job, eexec must fork a child and 
then have the parent eexec process exit. The eexec child should periodically 
test that the job process is still alive using the LS_JOBPID variable.

Using esub and eexec to pass data to execution environments
If esub needs to pass some data to eexec, it can write the data to its standard 
output for eexec to read from its standard input (stdin). LSF effectively acts 
as the pipe between esub and eexec (e.g., esub | eexec).

Standard output (stdout) from any esub is automatically sent to eexec.

Limitation Since eexec cannot handle more than one standard output stream, only one 
esub can use standard output to generate data as standard input to eexec.

For example, the esub for AFS (esub.afs) sends its authentication tokens as 
standard output to eexec. If you use AFS, no other esub can use standard 
output.
Administering Platform LSF



C H A P T E R

31
Configuring Job Controls

After a job is started, it can be killed, suspended, or resumed by the system, an 
LSF user, or LSF administrator. LSF job control actions cause the status of a job 
to change. This chapter describes how to configure job control actions to 
override or augment the default job control actions.

Contents ◆ “Default Job Control Actions” on page 390

◆ “Configuring Job Control Actions” on page 392

◆ “Customizing Cross-Platform Signal Conversion” on page 395
Administering Platform LSF 389



Default Job Control Actions

390
Default Job Control Actions
After a job is started, it can be killed, suspended, or resumed by the system, an 
LSF user, or LSF administrator. LSF job control actions cause the status of a job 
to change. LSF supports the following default actions for job controls:

◆ SUSPEND

◆ RESUME

◆ TERMINATE

On successful completion of the job control action, the LSF job control 
commands cause the status of a job to change.

The environment variable LS_EXEC_T is set to the value JOB_CONTROLS for 
a job when a job control action is initiated.

See “Killing Jobs” on page 121 for more information about job controls and the 
LSF commands that perform them.

SUSPEND action
Change a running job from RUN state to one of the following states:

◆ USUSP or PSUSP in response to bstop

◆ SSUSP state when the LSF system suspends the job

The default action is to send the following signals to the job:

◆ SIGTSTP for parallel or interactive jobs

SIGTSTP is caught by the master process and passed to all the slave 
processes running on other hosts.

◆ SIGSTOP for sequential jobs

SIGSTOP cannot be caught by user programs. The SIGSTOP signal can be 
configured with the LSB_SIGSTOP parameter in lsf.conf.

LSF invokes the SUSPEND action when:

◆ The user or LSF administrator issues a bstop or bkill command to the job

◆ Load conditions on the execution host satisfy any of:

❖ The suspend conditions of the queue, as specified by the STOP_COND 
parameter in lsb.queues

❖ The scheduling thresholds of the queue or the execution host

◆ The run window of the queue closes

◆ The job is preempted by a higher priority job
Administering Platform LSF



Chapter 31
Configuring Job Controls
RESUME action
Change a suspended job from SSUSP, USUSP, or PSUSP state to the RUN state. 
The default action is to send the signal SIGCONT.

LSF invokes the RESUME action when:

◆ The user or LSF administrator issues a bresume command to the job

◆ Load conditions on the execution host satisfy all of:

❖ The resume conditions of the queue, as specified by the 
RESUME_COND parameter in lsb.queues

❖ The scheduling thresholds of the queue and the execution host

◆ A closed run window of the queue opens again

◆ A preempted job finishes

TERMINATE action
Terminate a job. This usually causes the job change to EXIT status. The default 
action is to send SIGINT first, then send SIGTERM 10 seconds after SIGINT, 
then send SIGKILL 10 seconds after SIGTERM. The delay between signals 
allows user programs to catch the signals and clean up before the job 
terminates.

To override the 10 second interval, use the parameter 
JOB_TERMINATE_INTERVAL in the lsb.params file. See the Platform LSF 
Reference for information about the lsb.params file.

LSF invokes the TERMINATE action when:

◆ The user or LSF administrator issues a bkill or brequeue command to the 
job

◆ The TERMINATE_WHEN parameter in the queue definition (lsb.queues) 
causes a SUSPEND action to be redirected to TERMINATE

◆ The job reaches its CPULIMIT, MEMLIMIT, RUNLIMIT or PROCESSLIMIT

If the execution of an action is in progress, no further actions are initiated 
unless it is the TERMINATE action. A TERMINATE action is issued for all job 
states except PEND.

Windows job control actions
On Windows, actions equivalent to the UNIX signals have been implemented 
to do the default job control actions. Job control messages replace the SIGINT 
and SIGTERM signals, but only customized applications will be able to process 
them. Termination is implemented by the TerminateProcess() system call.

See Using the Platform LSF SDK for more information about LSF signal 
handling on Windows.
Administering Platform LSF 391



Configuring Job Control Actions

392
Configuring Job Control Actions
Several situations may require overriding or augmenting the default actions for 
job control. For example:

◆ Notifying users when their jobs are suspended, resumed, or terminated

◆ An application holds resources (for example, licenses) that are not freed 
by suspending the job. The administrator can set up an action to be 
performed that causes the license to be released before the job is 
suspended and re-acquired when the job is resumed.

◆ The administrator wants the job checkpointed before being:

❖ Suspended when a run window closes

❖ Killed when the RUNLIMIT is reached

◆ A distributed parallel application must receive a catchable signal when the 
job is suspended, resumed or terminated to propagate the signal to remote 
processes.

To override the default actions for the SUSPEND, RESUME, and TERMINATE 
job controls, specify the JOB_CONTROLS parameter in the queue definition in 
lsb.queues.

JOB_CONTROLS parameter (lsb.queues)
The JOB_CONTROLS parameter has the following format:

Begin Queue
...
JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \

RESUME[signal | command] \
TERMINATE[signal | CHKPNT | command]

...
End Queue

When LSF needs to suspend, resume, or terminate a job, it invokes one of the 
following actions as specified by SUSPEND, RESUME, and TERMINATE.

signal A UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal 
is sent to the job.

The same set of signals is not supported on all UNIX systems. To display a list 
of the symbolic names of the signals (without the SIG prefix) supported on 
your system, use the kill -l command.

CHKPNT Checkpoint the job. Only valid for SUSPEND and TERMINATE actions.

◆ If the SUSPEND action is CHKPNT, the job is checkpointed and then 
stopped by sending the SIGSTOP signal to the job automatically.

◆ If the TERMINATE action is CHKPNT, then the job is checkpointed and 
killed automatically.

command A /bin/sh command line. Do not quote the command line inside an action 
definition.

See the Platform LSF Reference for information about the lsb.queues file.
Administering Platform LSF



Chapter 31
Configuring Job Controls
Using a command as a job control action
The following apply to a job control action that is a command:

◆ The command line for the action is run with /bin/sh -c so you can use 
shell features in the command.

◆ The command is run as the user of the job.

◆ All environment variables set for the job are also set for the command 
action.

The following additional environment variables are set:

❖ LSB_JOBPGIDS—a list of current process group IDs of the job

❖ LSB_JOBPIDS—a list of current process IDs of the job

◆ For the SUSPEND action command, the following environment variable is 
also set:

LSB_SUSP_REASONS—an integer representing a bitmap of suspending 
reasons as defined in lsbatch.h.

The suspending reason can allow the command to take different actions 
based on the reason for suspending the job.

◆ The standard input, output, and error of the command are redirected to the 
NULL device, so you cannot tell directly whether the command runs 
correctly. The default null device on UNIX is /dev/null.

You should make sure the command line is correct. If you want to see the 
output from the command line for testing purposes, redirect the output to 
a file inside the command line.

TERMINATE job actions
Use caution when configuring TERMINATE job actions that do more than just 
kill a job. For example, resource usage limits that terminate jobs change the 
job state to SSUSP while LSF waits for the job to end. If the job is not killed by 
the TERMINATE action, it remains suspended indefinitely.

TERMINATE_WHEN parameter (lsb.queues)
In certain situations you may want to terminate the job instead of calling the 
default SUSPEND action. For example, you may want to kill jobs if the run 
window of the queue is closed. Use the TERMINATE_WHEN parameter to 
configure the queue to invoke the TERMINATE action instead of SUSPEND.

See the Platform LSF Reference for information about the lsb.queues file 
and the TERMINATE_WHEN parameter.

Syntax TERMINATE_WHEN = [LOAD] [PREEMPT] [WINDOW]
Administering Platform LSF 393



Configuring Job Control Actions

394
Example The following defines a night queue that will kill jobs if the run window closes.

Begin Queue 
NAME = night
RUN_WINDOW = 20:00-08:00
TERMINATE_WHEN = WINDOW
JOB_CONTROLS = TERMINATE[ kill -KILL $LSB_JOBPIDS;

echo "job $LSB_JOBID killed by queue run window" |
mail $USER ]

End Queue

LSB_SIGSTOP parameter (lsf.conf)
Use LSB_SIGSTOP to configure the SIGSTOP signal sent by the default 
SUSPEND action.

If LSB_SIGSTOP is set to anything other than SIGSTOP, the SIGTSTP signal that 
is normally sent by the SUSPEND action is not sent. For example, if 
LSB_SIGSTOP=SIGKILL, the three default signals sent by the TERMINATE 
action (SIGINT, SIGTERM, and SIGKILL) are sent 10 seconds apart.

See the Platform LSF Reference for information about the lsf.conf file.

Avoiding signal and action deadlock
Do not configure a job control to contain the signal or command that is the 
same as the action associated with that job control. This will cause a deadlock 
between the signal and the action.

For example, the bkill command uses the TERMINATE action, so a deadlock 
results when the TERMINATE action itself contains the bkill command.

Any of the following job control specifications will cause a deadlock:

◆ JOB_CONTROLS=TERMINATE[bkill]

◆ JOB_CONTROLS=TERMINATE[brequeue]

◆ JOB_CONTROLS=RESUME[bresume]

◆ JOB_CONTROLS=SUSPEND[bstop]
Administering Platform LSF



Chapter 31
Configuring Job Controls
Customizing Cross-Platform Signal Conversion
LSF supports signal conversion between UNIX and Windows for remote 
interactive execution through RES.

On Windows, the CTRL+C and CTRL+BREAK key combinations are treated as 
signals for console applications (these signals are also called console control 
actions).

LSF supports these two Windows console signals for remote interactive 
execution. LSF regenerates these signals for user tasks on the execution host.

Default signal conversion
In a mixed Windows/UNIX environment, LSF has the following default 
conversion between the Windows console signals and the UNIX signals:

For example, if you issue the lsrun or bsub -I commands from a Windows 
console but the task is running on an UNIX host, pressing the CTRL+C keys 
will generate a UNIX SIGINT signal to your task on the UNIX host. The 
opposite is also true.

Custom signal conversion
For lsrun (but not bsub -I), LSF allows you to define your own signal 
conversion using the following environment variables:

◆ LSF_NT2UNIX_CLTRC

◆ LSF_NT2UNIX_CLTRB

For example:

◆ LSF_NT2UNIX_CLTRC=SIGXXXX

◆ LSF_NT2UNIX_CLTRB=SIGYYYY

Here, SIGXXXX/SIGYYYY are UNIX signal names such as SIGQUIT, SIGTINT, 
etc. The conversions will then be: CTRL+C=SIGXXXX and 
CTRL+BREAK=SIGYYYY.

If both LSF_NT2UNIX_CLTRC and LSF_NT2UNIX_CLTRB are set to the same 
value (LSF_NT2UNIX_CLTRC=SIGXXXX and 
LSF_NT2UNIX_CLTRB=SIGXXXX), CTRL+C will be generated on the Windows 
execution host.

For bsub -I, there is no conversion other than the default conversion. 

Windows UNIX

CTRL+C SIGINT

CTRL+BREAK SIGQUIT
Administering Platform LSF 395



Customizing Cross-Platform Signal Conversion

396
 Administering Platform LSF



P A R T

VI
Interactive Jobs

Contents ◆ Chapter 32, “Interactive Jobs with bsub”

◆ Chapter 33, “Running Interactive and Remote Tasks”





C H A P T E R

32
Interactive Jobs with bsub

Contents ◆ “About Interactive Jobs” on page 400

◆ “Submitting Interactive Jobs” on page 401

◆ “Performance Tuning for Interactive Batch Jobs” on page 404

◆ “Interactive Batch Job Messaging” on page 407

◆ “Running X Applications with bsub” on page 409

◆ “Writing Job Scripts” on page 410

◆ “Registering utmp File Entries for Interactive Batch Jobs” on page 413
Administering Platform LSF 399



About Interactive Jobs

400
About Interactive Jobs
It is sometimes desirable from a system management point of view to control 
all workload through a single centralized scheduler.

Running an interactive job through the LSF batch system allows you to take 
advantage of batch scheduling policies and host selection features for 
resource-intensive jobs. You can submit a job and the least loaded host is 
selected to run the job.

Since all interactive batch jobs are subject to LSF policies, you will have more 
control over your system. For example, you may dedicate two servers as 
interactive servers, and disable interactive access to all other servers by 
defining an interactive queue that only uses the two interactive servers.

Scheduling policies
Running an interactive batch job allows you to take advantage of batch 
scheduling policies and host selection features for resource-intensive jobs.

An interactive batch job is scheduled using the same policy as all other jobs in 
a queue. This means an interactive job can wait for a long time before it gets 
dispatched. If fast response time is required, interactive jobs should be 
submitted to high-priority queues with loose scheduling constraints.

Interactive queues
You can configure a queue to be interactive-only, batch-only, or both 
interactive and batch with the parameter INTERACTIVE in lsb.queues.

See the Platform LSF Reference for information about configuring interactive 
queues in the lsb.queues file.

Interactive jobs with non-batch utilities
Non-batch utilities such as lsrun, lsgrun, etc., use LIM simple placement 
advice for host selection when running interactive tasks. For more details on 
using non-batch utilities to run interactive tasks, see “Running Interactive and 
Remote Tasks” on page 415.
Administering Platform LSF



Chapter 32
Interactive Jobs with bsub
Submitting Interactive Jobs
Use the bsub -I option to submit batch interactive jobs, and the bsub -Is 
and -Ip options to submit batch interactive jobs in pseudo-terminals.

Pseudo-terminals are not supported for Windows.

For more details, see the bsub(1) man page.

Finding out which queues accept interactive jobs
Before you submit an interactive job, you need to find out which queues 
accept interactive jobs with the bqueues -l command.

If the output of this command contains the following, this is a batch-only 
queue. This queue does not accept interactive jobs:

SCHEDULING POLICIES: NO_INTERACTIVE

If the output contains the following, this is an interactive-only queue:

SCHEDULING POLICIES: ONLY_INTERACTIVE

If none of the above are defined or if SCHEDULING POLICIES is not in the 
output of bqueues -l, both interactive and batch jobs are accepted by the 
queue.

You configure interactive queues in the lsb.queues file.

Submitting an interactive job
Use the bsub -I option to submit an interactive batch job. 

A new job cannot be submitted until the interactive job is completed or 
terminated.

When an interactive job is submitted, a message is displayed while the job is 
awaiting scheduling. The bsub command stops display of output from the shell 
until the job completes, and no mail is sent to the user by default. A user can 
issue a ctrl-c at any time to terminate the job.

Interactive jobs cannot be checkpointed.

Interactive batch jobs cannot be rerunnable (bsub -r) or submitted to 
rerunnable queues (RERUNNABLE=y in lsb.queues).

Examples ◆ % bsub -I ls

Submits a batch interactive job which displays the output of ls at the user’s 
terminal.

◆ % bsub -I -q interactive -n 4,10 lsmake
<<Waiting for dispatch ...>>

This example starts Platform Make on 4 to 10 processors and displays the 
output on the terminal.
Administering Platform LSF 401



Submitting Interactive Jobs

402
Submitting an interactive job by using a pseudo-terminal
Submission of interaction jobs using pseudo-terminal is not supported for 
Windows for either lsrun or bsub LSF commands.

bsub -Ip To submit a batch interactive job by using a pseudo-terminal, use the bsub -
Ip option.

When you specify the -Ip option, bsub submits a batch interactive job and 
creates a pseudo-terminal when the job starts. Some applications such as vi 
for example, require a pseudo-terminal in order to run correctly.

For example:

% bsub -Ip vi myfile

Submits a batch interactive job to edit myfile.

bsub -Is To submit a batch interactive job and create a pseudo-terminal with shell mode 
support, use the bsub -Is option.

When you specify the -Is option, bsub submits a batch interactive job and 
creates a pseudo-terminal with shell mode support when the job starts. This 
option should be specified for submitting interactive shells, or applications 
which redefine the CTRL-C and CTRL-Z keys (for example, jove).

Example:

% bsub -Is csh

Submits a batch interactive job that starts up csh as an interactive shell.

Submitting an interactive job and redirect streams to files
bsub -i, -o, -e It is possible to use the -I option together with the -i, -o, and -e options of 

bsub to selectively redirect streams to files. For more details, see the bsub(1) 
man page.

For example:

% bsub -I -q interactive -e job.err lsmake

Saves the standard error stream in the job.err file, while standard input and 
standard output come from the terminal.
Administering Platform LSF



Chapter 32
Interactive Jobs with bsub
Split stdout and
stderr

If in your environment there is a wrapper around bsub and LSF commands so 
that end-users are unaware of LSF and LSF-specific options, you redirect 
standard output and standard error of batch interactive jobs to a file with the 
> operator.

By default, both standard error messages and output messages for batch 
interactive jobs are written to stdout on the submission host.

For example:

% bsub -I myjob 2>mystderr 1>mystdout

In the above example, both stderr and stdout are written to mystdout.

To redirect both stdout and stderr to different files, set 
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable. 
For example, with LSF_INTERACTIVE_STDERR set:

% bsub -I myjob 2>mystderr 1>mystdout

stderr is redirected to mystderr, and stdout to mystdout. 

See the Platform LSF Reference for more details on 
LSF_INTERACTIVE_STDERR.
Administering Platform LSF 403



Performance Tuning for Interactive Batch Jobs

404
Performance Tuning for Interactive Batch Jobs
LSF is often used on systems that support both interactive and batch users. On 
one hand, users are often concerned that load sharing will overload their 
workstations and slow down their interactive tasks. On the other hand, some 
users want to dedicate some machines for critical batch jobs so that they have 
guaranteed resources. Even if all your workload is batch jobs, you still want to 
reduce resource contentions and operating system overhead to maximize the 
use of your resources.

Numerous parameters can be used to control your resource allocation and to 
avoid undesirable contention.

Types of load conditions
Since interferences are often reflected from the load indices, LSF responds to 
load changes to avoid or reduce contentions. LSF can take actions on jobs to 
reduce interference before or after jobs are started. These actions are triggered 
by different load conditions. Most of the conditions can be configured at both 
the queue level and at the host level. Conditions defined at the queue level 
apply to all hosts used by the queue, while conditions defined at the host level 
apply to all queues using the host.

Scheduling
conditions

These conditions, if met, trigger the start of more jobs. The scheduling 
conditions are defined in terms of load thresholds or resource requirements.

At the queue level, scheduling conditions are configured as either resource 
requirements or scheduling load thresholds, as described in lsb.queues. At 
the host level, the scheduling conditions are defined as scheduling load 
thresholds, as described in lsb.hosts.

Suspending
conditions

These conditions affect running jobs. When these conditions are met, a 
SUSPEND action is performed to a running job.

At the queue level, suspending conditions are defined as STOP_COND as 
described in lsb.queues or as suspending load threshold. At the host level, 
suspending conditions are defined as stop load threshold as described in 
lsb.hosts.

Resuming
conditions

These conditions determine when a suspended job can be resumed. When 
these conditions are met, a RESUME action is performed on a suspended job. 

At the queue level, resume conditions are defined as by RESUME_COND in 
lsb.queues, or by the loadSched thresholds for the queue if RESUME_COND 
is not defined. 
Administering Platform LSF



Chapter 32
Interactive Jobs with bsub
Types of load indices
To effectively reduce interference between jobs, correct load indices should be 
used properly. Below are examples of a few frequently used parameters.

Paging rate (pg) The paging rate (pg) load index relates strongly to the perceived interactive 
performance. If a host is paging applications to disk, the user interface feels 
very slow.

The paging rate is also a reflection of a shortage of physical memory. When an 
application is being paged in and out frequently, the system is spending a lot 
of time performing overhead, resulting in reduced performance.

The paging rate load index can be used as a threshold to either stop sending 
more jobs to the host, or to suspend an already running batch job to give 
priority to interactive users.

This parameter can be used in different configuration files to achieve different 
purposes. By defining paging rate threshold in lsf.cluster.cluster_name, 
the host will become busy from LIM’s point of view; therefore, no more jobs 
will be advised by LIM to run on this host.

By including paging rate in queue or host scheduling conditions, jobs can be 
prevented from starting on machines with a heavy paging rate, or can be 
suspended or even killed if they are interfering with the interactive user on the 
console.

A job suspended due to pg threshold will not be resumed even if the resume 
conditions are met unless the machine is interactively idle for more than 
PG_SUSP_IT seconds.

Interactive idle
time (it)

Strict control can be achieved using the idle time (it) index. This index 
measures the number of minutes since any interactive terminal activity. 
Interactive terminals include hard wired ttys, rlogin and lslogin sessions, 
and X shell windows such as xterm. On some hosts, LIM also detects mouse 
and keyboard activity.

This index is typically used to prevent batch jobs from interfering with 
interactive activities. By defining the suspending condition in the queue as 
it<1 && pg>50, a job from this queue will be suspended if the machine is not 
interactively idle and the paging rate is higher than 50 pages per second. 
Furthermore, by defining the resuming condition as it>5 && pg<10 in the 
queue, a suspended job from the queue will not resume unless it has been idle 
for at least five minutes and the paging rate is less than ten pages per second. 

The it index is only non-zero if no interactive users are active. Setting the it 
threshold to five minutes allows a reasonable amount of think time for 
interactive users, while making the machine available for load sharing, if the 
users are logged in but absent.

For lower priority batch queues, it is appropriate to set an it suspending 
threshold of two minutes and scheduling threshold of ten minutes in the 
lsb.queues file. Jobs in these queues are suspended while the execution host 
Administering Platform LSF 405



Performance Tuning for Interactive Batch Jobs

406
is in use, and resume after the host has been idle for a longer period. For hosts 
where all batch jobs, no matter how important, should be suspended, set a per-
host suspending threshold in the lsb.hosts file.

CPU run queue
length (r15s, r1m,

r15m)

Running more than one CPU-bound process on a machine (or more than one 
process per CPU for multiprocessors) can reduce the total throughput because 
of operating system overhead, as well as interfering with interactive users. 
Some tasks such as compiling can create more than one CPU-intensive task. 

Queues should normally set CPU run queue scheduling thresholds below 1.0, 
so that hosts already running compute-bound jobs are left alone. LSF scales the 
run queue thresholds for multiprocessor hosts by using the effective run queue 
lengths, so multiprocessors automatically run one job per processor in this 
case.

For concept of effective run queue lengths, see lsfintro(1).

For short to medium-length jobs, the r1m index should be used. For longer 
jobs, you might want to add an r15m threshold. An exception to this are high 
priority queues, where turnaround time is more important than total 
throughput. For high priority queues, an r1m scheduling threshold of 2.0 is 
appropriate.

CPU utilization
(ut)

The ut parameter measures the amount of CPU time being used. When all the 
CPU time on a host is in use, there is little to gain from sending another job to 
that host unless the host is much more powerful than others on the network. 
A ut threshold of 90% prevents jobs from going to a host where the CPU does 
not have spare processing cycles.

If a host has very high pg but low ut, then it may be desirable to suspend some 
jobs to reduce the contention. 

Some commands report ut percentage as a number from 0-100, some report it 
as a decimal number between 0-1. The configuration parameter in the 
lsf.cluster.cluster_name file and the configuration files take a fraction in 
the range from 0 to 1, while the bsub -R resource requirement string takes an 
integer from 1-100. 

The command bhist shows the execution history of batch jobs, including the 
time spent waiting in queues or suspended because of system load.

The command bjobs -p shows why a job is pending.

Scheduling conditions and resource thresholds
Three parameters, RES_REQ, STOP_COND and RESUME_COND, can be 
specified in the definition of a queue. Scheduling conditions are a more 
general way for specifying job dispatching conditions at the queue level. These 
parameters take resource requirement strings as values which allows you to 
specify conditions in a more flexible manner than using the loadSched or 
loadStop thresholds.
Administering Platform LSF



Chapter 32
Interactive Jobs with bsub
Interactive Batch Job Messaging
LSF can display messages to stderr or the Windows console when the 
following changes occur with interactive batch jobs:

◆ Job state

◆ Pending reason

◆ Suspend reason

Other job status changes, like switching the job’s queue, are not displayed.

Limitations
Interactive batch job messaging is not supported in a MultiCluster environment.

Windows Interactive batch job messaging is not fully supported on Windows. Only 
changes in the job state that occur before the job starts running are displayed. 
No messages are displayed after the job starts.

Configuring interactive batch job messaging
Messaging for interactive batch jobs can be specified cluster-wide or in the user 
environment.

Cluster level To enable interactive batch job messaging for all users in the cluster, the LSF 
administrator configures the following parameters in lsf.conf:

◆ LSB_INTERACT_MSG_ENH=Y

◆ (Optional) LSB_INTERACT_MSG_INTVAL

LSB_INTERACT_MSG_INTVAL specifies the time interval, in seconds, in which 
LSF updates messages about any changes to the pending status of the job. The 
default interval is 60 seconds. LSB_INTERACT_MSG_INTVAL is ignored if 
LSB_INTERACT_MSG_ENH is not set.

User level To enable messaging for interactive batch jobs, LSF users can define 
LSB_INTERACT_MSG_ENH and LSB_INTERACT_MSG_INTVAL as environment 
variables.

The user-level definition of LSB_INTERACT_MSG_ENH overrides the definition 
in lsf.conf.

Example messages
Job in pending

state
The following example shows messages displayed when a job is in pending 
state:

% bsub -Is -R "ls < 2" csh
Job <2812> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>

<<  Job's resource requirements not satisfied: 2 hosts; >>
<<  Load information unavailable: 1 host; >>

<<  Just started a job recently: 1 host; >>
<<  Load information unavailable: 1 host; >>
<<  Job's resource requirements not satisfied: 1 host; >>
Administering Platform LSF 407



Interactive Batch Job Messaging

408
Job terminated by
user

The following example shows messages displayed when a job in pending state 
is terminated by the user:

% bsub -m hostA -b 13:00 -Is sh
Job <2015> is submitted to default queue <normal>.
Job will be scheduled after Fri Nov 19 13:00:00 1999
<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>

<< The job has a specified start time >>

% bkill 2015
<< Job <2015> has been terminated by user or administrator >>

<<Terminated while pending>>

Job suspended
then resumed

The following example shows messages displayed when a job is dispatched, 
suspended, and then resumed:

% bsub -m hostA -Is sh
Job <2020> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>
<<Starting on hostA>>
% bstop 2020
<< The job was suspended by user >>

% bresume 2020
<< Waiting for re-scheduling after being resumed by user >>
Administering Platform LSF



Chapter 32
Interactive Jobs with bsub
Running X Applications with bsub
You can start an X session on the least loaded host by submitting it as a batch 
job:

% bsub xterm

An xterm is started on the least loaded host in the cluster.

When you run X applications using lsrun or bsub, the environment variable 
DISPLAY is handled properly for you. It behaves as if you were running the X 
application on the local machine.
Administering Platform LSF 409



Writing Job Scripts

410
Writing Job Scripts
You can build a job file one line at a time, or create it from another file, by 
running bsub without specifying a job to submit. When you do this, you start 
an interactive session in which bsub reads command lines from the standard 
input and submits them as a single batch job. You are prompted with bsub> 
for each line.

You can use the bsub -Zs command to spool a file.

For more details on bsub options, see the bsub(1) man page.

Writing a job file one line at a time
UNIX example % bsub -q simulation

bsub> cd /work/data/myhomedir
bsub> myjob arg1 arg2 ......
bsub> rm myjob.log
bsub> ^D
Job <1234> submitted to queue <simulation>.

In the above example, the 3 command lines run as a Bourne shell (/bin/sh) 
script. Only valid Bourne shell command lines are acceptable in this case.

Windows example C:\> bsub -q simulation
bsub> cd \\server\data\myhomedir
bsub> myjob arg1 arg2 ......
bsub> del myjob.log
bsub> ^Z
Job <1234> submitted to queue <simulation>.

In the above example, the 3 command lines run as a batch file (.BAT). Note 
that only valid Windows batch file command lines are acceptable in this case.

Specifying job options in a file
In this example, options to run the job are specified in the options_file.

% bsub -q simulation < options_file
Job <1234> submitted to queue <simulation>.

UNIX On UNIX, the options_file must be a text file that contains Bourne shell 
command lines. It cannot be a binary executable file.

Windows On Windows, the options_file must be a text file containing Windows 
batch file command lines.

Spooling a job command file
Use bsub -Zs to spool a job command file to the directory specified by the 
JOB_SPOOL_DIR parameter in lsb.params, and use the spooled file as the 
command file for the job.

Use the bmod -Zsn command to modify or remove the command file after the 
job has been submitted. Removing or modifying the original input file does not 
affect the submitted job.
Administering Platform LSF



Chapter 32
Interactive Jobs with bsub
Redirecting a script to bsub standard input
You can redirect a script to the standard input of the bsub command:

% bsub < myscript
Job <1234> submitted to queue <test>.

In this example, the myscript file contains job submission options as well as 
command lines to execute. When the bsub command reads a script from its 
standard input, it can be modified right after bsub returns for the next job 
submission.

When the script is specified on the bsub command line, the script is not 
spooled:

% bsub myscript
Job <1234> submitted to default queue <normal>.

In this case the command line myscript is spooled, instead of the contents of 
the myscript file. Later modifications to the myscript file can affect job 
behavior.

Specifying embedded submission options
You can specify job submission options in scripts read from standard input by 
the bsub command using lines starting with #BSUB:

% bsub -q simulation
bsub> #BSUB -q test
bsub> #BSUB -o outfile -R "mem>10"
bsub> myjob arg1 arg2
bsub> #BSUB -J simjob
bsub> ^D
Job <1234> submitted to queue <simulation>.

There are a few things to note:

◆ Command-line options override embedded options. In this example, the 
job is submitted to the simulation queue rather than the test queue.

◆ Submission options can be specified anywhere in the standard input. In the 
above example, the -J option of bsub is specified after the command to 
be run.

◆ More than one option can be specified on one line, as shown in the 
example above.
Administering Platform LSF 411



Writing Job Scripts

412
Running a job under a particular shell
By default, LSF runs batch jobs using the Bourne (/bin/sh) shell. You can 
specify the shell under which a job is to run. This is done by specifying an 
interpreter in the first line of the script.

For example:

% bsub
bsub> #!/bin/csh -f
bsub> set coredump=‘ls |grep core‘
bsub> if ( "$coredump" != "") then
bsub> mv core core.‘date | cut -d" " -f1‘
bsub> endif
bsub> myjob
bsub> ^D
Job <1234> is submitted to default queue <normal>.

The bsub command must read the job script from standard input to set the 
execution shell. If you do not specify a shell in the script, the script is run using 
/bin/sh. If the first line of the script starts with a # not immediately followed 
by an exclamation mark (!), then /bin/csh is used to run the job.

For example:

% bsub
bsub> # This is a comment line. This tells the system to use 
/bin/csh to
bsub> # interpret the script.
bsub>
bsub> setenv DAY ‘date | cut -d" " -f1‘
bsub> myjob
bsub> ^D
Job <1234> is submitted to default queue <normal>.

If running jobs under a particular shell is required frequently, you can specify 
an alternate shell using a command-level job starter and run your jobs 
interactively. See “Controlling Execution Environment Using Job Starters” on 
page 378 for more details.
Administering Platform LSF



Chapter 32
Interactive Jobs with bsub
Registering utmp File Entries for Interactive Batch 
Jobs

LSF administrators can configure the cluster to track user and account 
information for interactive batch jobs submitted with bsub -Ip or bsub -Is. 
User and account information is registered as entries in the UNIX utmp file, 
which holds information for commands such as who. Registering user 
information for interactive batch jobs in utmp allows more accurate job 
accounting.

Configuration and operation
To enable utmp file registration, the LSF administrator sets the LSB_UTMP 
parameter in lsf.conf.

When LSB_UTMP is defined, LSF registers the job by adding an entry to the 
utmp file on the execution host when the job starts. After the job finishes, LSF 
removes the entry for the job from the utmp file.

Limitations
◆ Registration of utmp file entries is supported only on SGI IRIX (6.4 and 

later).

◆ utmp file registration is not supported in a MultiCluster environment.

◆ Because interactive batch jobs submitted with bsub -I are not associated 
with a pseudo-terminal, utmp file registration is not supported for these 
jobs.
Administering Platform LSF 413



Registering utmp File Entries for Interactive Batch Jobs

414
 Administering Platform LSF



C H A P T E R

33
Running Interactive and Remote

Tasks

This chapter provides instructions for running tasks interactively and remotely 
with non-batch utilities such as lsrun, lsgrun, and lslogin. 

Contents ◆ “Running Remote Tasks” on page 416

◆ “Interactive Tasks” on page 419

◆ “Load Sharing Interactive Sessions” on page 422
Administering Platform LSF 415



Running Remote Tasks

416
Running Remote Tasks
lsrun is a non-batch utility to run tasks on a remote host. lsgrun is a non-
batch utility to run the same task on many hosts, in sequence one after the 
other, or in parallel.

The default for lsrun is to run the job on the host with the least CPU load 
(represented by the lowest normalized CPU run queue length) and the most 
available memory. Command-line arguments can be used to select other 
resource requirements or to specify the execution host.

To avoid typing in the lsrun command every time you want to execute a 
remote job, you can also use a shell alias or script to run your job. 

For a complete description of lsrun and lsgrun options, see the lsrun(1) 
and lsgrun(1) man pages.

In this section ◆ “Running a task on the best available host” on page 416

◆ “Running a task on a host with specific resources” on page 416

◆ “Running a task on a specific host” on page 417

◆ “Running a task by using a pseudo-terminal” on page 417

◆ “Running the same task on many hosts in sequence” on page 417

◆ “Running parallel tasks” on page 417

◆ “Running tasks on hosts specified by a file” on page 418

Running a task on the best available host 
To run mytask on the best available host, enter:

% lsrun mytask

LSF automatically selects a host of the same type as the local host, if one is 
available. By default the host with the lowest CPU and memory load is 
selected.

Running a task on a host with specific resources
If you want to run mytask on a host that meets specific resource requirements, 
you can specify the resource requirements using the -R res_req option of 
lsrun.

For example:

% lsrun -R 'cserver && swp>100' mytask

In this example mytask must be run on a host that has the resource cserver 
and at least 100 MB of virtual memory available.

You can also configure LSF to store the resource requirements of specific tasks. 
If you configure LSF with the resource requirements of your task, you do not 
need to specify the -R res_req option of lsrun on the command-line. If you 
do specify resource requirements on the command line, they override the 
configured resource requirements.

See the Platform LSF Reference for information about configuring resource 
requirements in the lsf.task file.
Administering Platform LSF



Chapter 33
Running Interactive and Remote Tasks
Resource usage Resource reservation is only available for batch jobs. If you run jobs using only 
LSF Base, LIM uses resource usage to determine the placement of jobs. 
Resource usage requests are used to temporarily increase the load so that a 
host is not overloaded. When LIM makes a placement advice, external load 
indices are not considered in the resource usage string. In this case, the syntax 
of the resource usage string is

res[=value]:res[=value]: ... :res[=value]

The res is one of the resources whose value is returned by the lsload 
command.

rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute 
run queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.

If no value is specified, the task is assumed to be intensive in using that 
resource. In this case no more than one task will be assigned to a host 
regardless of how many CPUs it has.

The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This 
indicates a CPU-intensive task which consumes few other resources.

Running a task on a specific host
If you want to run your task on a particular host, use the lsrun -m option:

% lsrun -m hostD mytask

Running a task by using a pseudo-terminal 
Submission of interaction jobs using pseudo-terminal is not supported for 
Windows for either lsrun or bsub LSF commands.

Some tasks, such as text editors, require special terminal handling. These tasks 
must be run using a pseudo-terminal so that special terminal handling can be 
used over the network. 

The -P option of lsrun specifies that the job should be run using a pseudo-
terminal:

% lsrun -P vi

Running the same task on many hosts in sequence
The lsgrun command allows you to run the same task on many hosts, one 
after the other, or in parallel. 

For example, to merge the /tmp/out file on hosts hostA, hostD, and hostB 
into a single file named gout, enter:

% lsgrun -m "hostA hostD hostB" cat /tmp/out >> gout

Running parallel tasks
lsgrun -p The -p option tells lsgrun that the task specified should be run in parallel. 

See lsgrun(1) for more details.

To remove the /tmp/core file from all 3 hosts, enter:

% lsgrun -m "hostA hostD hostB" -p rm -r /tmp/core
Administering Platform LSF 417



Running Remote Tasks

418
Running tasks on hosts specified by a file
lsgrun -f host_file The lsgrun -f host_file option reads the host_file file to get a list of hosts 

on which to run the task. 
Administering Platform LSF



Chapter 33
Running Interactive and Remote Tasks
Interactive Tasks
LSF supports transparent execution of tasks on all server hosts in the cluster. 
You can run your program on the best available host and interact with it just 
as if it were running directly on your workstation. Keyboard signals such as 
CTRL-Z and CTRL-C work as expected.

Interactive tasks communicate with the user in real time. Programs like vi use 
a text-based terminal interface. Computer Aided Design and desktop 
publishing applications usually use a graphic user interface (GUI).

This section outlines issues for running interactive tasks with the non-batch 
utilities lsrun, lsgrun, etc. To run interactive tasks with these utilities, use the 
-i option.

For more details, see the lsrun(1) and lsgrun(1) man pages.

In this section ◆ “Interactive tasks on remote hosts” on page 419

◆ “Interactive processing and scheduling policies” on page 419

◆ “Shared files and user IDs” on page 420

◆ “Shell mode for remote execution” on page 420

◆ “Run windows” on page 420

◆ “Redirecting streams to files” on page 421

Interactive tasks on remote hosts
Job controls When you run an interactive task on a remote host, you can perform most of 

the job controls as if it were running locally. If your shell supports job control, 
you can suspend and resume the task and bring the task to background or 
foreground as if it were a local task. 

For a complete description, see the lsrun(1) man page.

Hiding remote
execution

You can also write one-line shell scripts or csh aliases to hide remote 
execution. For example:

#!/bin/sh
# Script to remotely execute mytask
exec lsrun -m hostD mytask

OR

% alias mytask "lsrun -m hostD mytask"

Interactive processing and scheduling policies
LSF lets you run interactive tasks on any computer on the network, using your 
own terminal or workstation. Interactive tasks run immediately and normally 
require some input through a text-based or graphical user interface. All the 
input and output is transparently sent between the local host and the job 
execution host.
Administering Platform LSF 419



Interactive Tasks

420
Shared files and user IDs
When LSF runs a task on a remote host, the task uses standard UNIX system 
calls to access files and devices. The user must have an account on the remote 
host. All operations on the remote host are done with the user’s access 
permissions.

Tasks that read and write files access the files on the remote host. For load 
sharing to be transparent, your files should be available on all hosts in the 
cluster using a file sharing mechanism such as NFS or AFS. When your files are 
available on all hosts in the cluster, you can run your tasks on any host without 
worrying about how your task will access files.

LSF can operate correctly in cases where these conditions are not met, but the 
results may not be what you expect. For example, the /tmp directory is usually 
private on each host. If you copy a file into /tmp on a remote host, you can 
only read that file on the same remote host.

LSF can also be used when files are not available on all hosts. LSF provides the 
lsrcp command to copy files across LSF hosts. You can use pipes to redirect 
the standard input and output of remote commands, or write scripts to copy 
the data files to the execution host. 

Shell mode for remote execution
On UNIX, shell mode support is provided for running interactive applications 
through RES. 

Not supported for Windows.

Shell mode support is required for running interactive shells or applications 
that redefine the CTRL-C and CTRL-Z keys (for example, jove). 

The -S option of lsrun, ch or lsgrun creates the remote task with shell mode 
support. The default is not to enable shell mode support. 

Run windows
Some run windows are only applicable to batch jobs. Interactive jobs 
scheduled by LIM are controlled by another set of run windows.
Administering Platform LSF



Chapter 33
Running Interactive and Remote Tasks
Redirecting streams to files
By default, both standard error messages and standard output messages of 
interactive tasks are written to stdout on the submission host.

To separate stdout and stderr and redirect to separate files, set 
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable.

For example, to redirect both stdout and stderr to different files with the 
parameter set:

% lsrun mytask 2>mystderr 1>mystdout

The result of the above example is for stderr to be redirected to mystderr, 
and stdout to mystdout. Without LSF_INTERACTIVE_STDERR set, both 
stderr and stdout will be redirected to mystdout.

See the Platform LSF Reference for more details on 
LSF_INTERACTIVE_STDERR.
Administering Platform LSF 421



Load Sharing Interactive Sessions

422
Load Sharing Interactive Sessions
There are different ways to use LSF to start an interactive session on the best 
available host.

Logging on to the least loaded host
To log on to the least loaded host, use the lslogin command. 

When you use lslogin, LSF automatically chooses the best host and does an 
rlogin to that host.

With no argument, lslogin picks a host that is lightly loaded in CPU, has few 
login sessions, and whose binary is compatible with the current host.

Logging on to a host with specific resources
If you want to log on a host that meets specific resource requirements, use the 
lslogin -R res_req option.

% lslogin -R "solaris order[ls:cpu]"

This command opens a remote login to a host that has the sunos resource, few 
other users logged in, and a low CPU load level. This is equivalent to using 
lsplace to find the best host and then using rlogin to log in to that host:

% rlogin 'lsplace -R "sunos order[ls:cpu]"'
Administering Platform LSF



Chapter 33
Running Interactive and Remote Tasks
Load Sharing X Applications

Starting an xterm
If you are using the X Window System, you can start an xterm that opens a 
shell session on the least loaded host by entering:

% lsrun sh -c xterm &

The & in this command line is important as it frees resources on the host once 
xterm is running, by running the X terminal in the background.

In this example, no processes are left running on the local host. The lsrun 
command exits as soon as xterm starts, and the xterm on the remote host 
connects directly to the X server on the local host. 

xterm on a PC
Each X application makes a separate network connection to the X display on 
the user's desktop. The application generally gets the information about the 
display from the DISPLAY environment variable. 

X-based systems such as eXceed start applications by making a remote shell 
connection to the UNIX server, setting the DISPLAY environment variable, and 
then invoking the X application. Once the application starts, it makes its own 
connection to the display and the initial remote shell is no longer needed. 

This approach can be extended to allow load sharing of remote applications. 
The client software running on the X display host makes a remote shell 
connection to any server host in the LSF cluster. Instead of running the X 
application directly, the client invokes a script that uses LSF to select the best 
available host and starts the application on that host. Because the application 
then makes a direct connection to the display, all of the intermediate 
connections can be closed. The client software on the display host must select 
a host in the cluster to start the connection. You can choose an arbitrary host 
for this; once LSF selects the best host and starts the X application there, the 
initial host is no longer involved. There is no ongoing load on the initial host. 

Setting up an X terminal to start an X session on the least loaded host
If you are using a PC as a desktop machine and are running an X Window 
server on your PC, then you can start an X session on the least loaded host. 

The following steps assume you are using Exceed from Hummingbird 
Communications. This procedure can be used to load share any X-based 
application. 

You can customize host selection by changing the resource requirements 
specified with -R "...". For example, a user could have several icons in the 
xterm program group: one called Best, another called Best_Sun, another 
Best_SGI.
Administering Platform LSF 423



Load Sharing X Applications

424
Setting up Exceed to log on the least loaded host
To set up Exceed to log on to the least loaded host:

1 Click the Xstart icon in the Exceed program group.

2 Choose REXEC (TCP/IP, ...) as start method, program type is X window.

3 Set the host to be any server host in your LSF cluster:
lsrun -R "type==any order[cpu:mem:login]" lsbg xterm -sb -
ls -display your_PC:0.0

4 Set description to be Best.

5 Click the Install button in the Xstart window.

This installs Best as an icon in the program group you chose (for example, 
xterm).

The user can now log on to the best host by clicking Best in the Xterm 
program group.

Starting an xterm in Exceed
To start an xterm:

◆ Double-click the Best icon.

You will get an xterm started on the least loaded host in the cluster and 
displayed on your screen. 

Examples
Running any application on the least loaded host

To run appY on the best machine licensed for it, you could set the command 
line in Exceed to be the following and set the description to appY:

lsrun -R "type==any && appY order[mem:cpu]" sh -c "appY -display your_PC:0.0 &" 

You must make sure that all the UNIX servers licensed for appY are configured 
with the resource "appY". In this example, appY requires a lot of memory when 
there are embedded graphics, so we make "mem" the most important 
consideration in selecting the best host among the eligible servers. 

Starting an X session on the least loaded host in any X desktop environment
The above approach also applies to other X desktop environments. In general, 
if you want to start an X session on the best host, run the following on an LSF 
host: 

lsrun -R "resource_requirement" lsbg my_Xapp -display your_PC:0.0 

where 

resource_requirement is your resource requirement string
Administering Platform LSF



Chapter 33
Running Interactive and Remote Tasks
Script for automatically specifying resource requirements
The above examples require the specification of resource requirement strings 
by users. You may want to centralize this such that all users use the same 
resource specifications. 

You can create a central script (for example lslaunch) and place it in the 
/lsf/bin directory. For example: 

#!/bin/sh
lsrun -R "order[cpu:mem:login]" lsbg $@
exit $?

Which would simplify the command string to: 

lslaunch xterm -sb -ls -display your_PC:0.0 

Taking this one step further, you could have lsxterm: 

#!/bin/sh
lsrun -R "order[cpu:mem:login]" lsbg xterm -sb -sl $@
exit $?

Which would simplify the command string to: 

lsxterm -display your_PC:0.0 
Administering Platform LSF 425



Load Sharing X Applications

426
 Administering Platform LSF



P A R T

VII
Running Parallel Jobs

Contents ◆ Chapter 34, “Running Parallel Jobs”

◆ Chapter 35, “Advance Reservation”





C H A P T E R

34
Running Parallel Jobs

Contents ◆ “How LSF Runs Parallel Jobs” on page 430

◆ “Preparing Your Environment to Submit Parallel Jobs to LSF” on page 431

◆ “Submitting Parallel Jobs” on page 432

◆ “Starting Parallel Tasks with LSF Utilities” on page 436

◆ “Job Slot Limits For Parallel Jobs” on page 437

◆ “Specifying a Minimum and Maximum Number of Processors” on page 438

◆ “Specifying a Mandatory First Execution Host” on page 439

◆ “Controlling Processor Allocation Across Hosts” on page 441

◆ “Running Parallel Processes on Homogeneous Hosts” on page 444

◆ “Using LSF Make to Run Parallel Jobs” on page 446

◆ “Limiting the Number of Processors Allocated” on page 447

◆ “Reserving Processors” on page 450

◆ “Reserving Memory for Pending Parallel Jobs” on page 452

◆ “Allowing Jobs to Use Reserved Job Slots” on page 453

◆ “Parallel Fairshare” on page 458

◆ “How Deadline Constraint Scheduling Works For Parallel Jobs” on 
page 459

◆ “Optimized Preemption of Parallel Jobs” on page 460
Administering Platform LSF 429



How LSF Runs Parallel Jobs

430
How LSF Runs Parallel Jobs
When LSF runs a job, the LSB_HOSTS variable is set to the names of the hosts 
running the batch job. For a parallel batch job, LSB_HOSTS contains the 
complete list of hosts that LSF has allocated to that job.

LSF starts one controlling process for the parallel batch job on the first host in 
the host list. It is up to your parallel application to read the LSB_HOSTS 
environment variable to get the list of hosts, and start the parallel job 
components on all the other allocated hosts.

LSF provides a generic interface to parallel programming packages so that any 
parallel package can be supported by writing shell scripts or wrapper 
programs.

For information about writing parallel applications for use with the Platform 
Parallel product, see Using Platform Parallel (OBSOLETE).
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Preparing Your Environment to Submit Parallel Jobs to 
LSF

Getting the host list
Some applications can take this list of hosts directly as a command line 
parameter. For other applications, you may need to process the host list.

Example The following example shows a /bin/sh script that processes all the hosts in 
the host list, including identifying the host where the job script is executing.

#!/bin/sh
# Process the list of host names in LSB_HOSTS

for host in $LSB_HOSTS ; do
handle_host $host
done

Parallel job scripts
Each parallel programming package has different requirements for specifying 
and communicating with all the hosts used by a parallel job. LSF is not tailored 
to work with a specific parallel programming package. Instead, LSF provides a 
generic interface so that any parallel package can be supported by writing shell 
scripts or wrapper programs.

LSF includes example shell scripts for running PVM (pvmjob), P4 (p4job), and 
MPI (mpijob) programs as parallel batch jobs. These scripts are installed in the 
LSF_BINDIR directory as defined in the lsf.conf file.

You can modify these scripts to support more parallel packages.

For more information, see:

◆ “Submitting Parallel Jobs” on page 432

Using a job starter
You can configure the script into your queue as a job starter, and then all users 
can submit parallel jobs without having to type the script name. See “Queue-
Level Job Starters” on page 376 for more information about job starters.

To see if your queue already has a job starter defined, run bqueues -l.
Administering Platform LSF 431



Submitting Parallel Jobs

432
Submitting Parallel Jobs
LSF can allocate more than one host or processor to run a job and automatically 
keeps track of the job status, while a parallel job is running.

◆ “Specifying the number of processors” on page 432

◆ “Submitting PVM Jobs to LSF” on page 433

◆ “Submitting MPI Jobs” on page 434

Specifying the number of processors
When submitting a parallel job that requires multiple processors, you can 
specify the exact number of processors to use.

To submit a parallel job, use bsub -n and specify multiple processors.

Example % bsub -n 4 myjob

This command submits myjob as a parallel job. The job is started when 4 job 
slots are available.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Submitting PVM Jobs to LSF
Parallel Virtual Machine (PVM) is a parallel programming system distributed by 
Oak Ridge National Laboratory. PVM programs are controlled by the PVM hosts 
file, which contains host names and other information. 

pvmjob script
The pvmjob shell script supplied with LSF can be used to run PVM programs 
as parallel LSF jobs. The pvmjob script reads the LSF environment variables, 
sets up the PVM hosts file and then runs the PVM job. If your PVM job needs 
special options in the hosts file, you can modify the pvmjob script.

Example
For example, if the command line to run your PVM job is:

% myjob data1 -o out1

the following command submits this job to LSF to run on 10 hosts:

% bsub -n 10 pvmjob myjob data1 -o out1

Other parallel programming packages can be supported in the same way. The 
p4job shell script runs jobs that use the P4 parallel programming library. Other 
packages can be handled by creating similar scripts.
Administering Platform LSF 433



Submitting MPI Jobs

434
Submitting MPI Jobs
The Message Passing Interface (MPI) is a portable library that supports parallel 
programming. LSF supports MPICH, a joint implementation of MPI by Argonne 
National Laboratory and Mississippi State University. This version supports 
both TCP/IP and IBM’s Message Passing Library (MPL) communication 
protocols.

mpijob script
LSF provides an mpijob shell script that you can use to submit MPI jobs to LSF. 
The mpijob script writes the hosts allocated to the job by LSF to a file and 
supplies the file as an option to MPICH’s mpirun command.

mpijob syntax
mpijob -tcp mpirun program arguments

Write the LSF hosts to a PROCGROUP file, supply the -p4pg procgroup_file 
option to the mpirun command, and use the TCP/IP protocol. This is the 
default.

mpijob -mpl mpirun program arguments

Write the LSF hosts to a MACHINE file, supply the 
-machinefile machine_file option to the mpirun command, and use the 
MPL on an SP-2 system.

◆ program—The parallel executable to be run

◆ arguments—Any arguments required by the parallel executable

Example To submit a job requesting four hosts and using the default TCP/IP protocol, 
use:

% bsub -n 4 mpijob mpirun myjob

Submitting jobs to a pool of IBM SP-2 nodes
Before you can submit a job to a particular pool of IBM SP-2 nodes, an LSF 
administrator must install the SP-2 ELIM. The SP-2 ELIM provides the pool 
number and lock status of each node.

To submit the same job to run on four nodes in pool 1 on an IBM SP-2 system 
using MPL, use:

% bsub -n 4 -R "pool == 1" mpijob -mpl mpirun myjob

To submit the same job to run on four nodes in pool 1 that are not locked 
(dedicated to using the High Performance Switch) on an SP-2 system using 
MPL, use:

% bsub -n 4 -q mpiq -R "pool == 1 && lock == 0" mpijob -mpl mpirun myjob
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Submitting jobs using the IBM SP-2 High Performance switch
Before you can submit a job using the IBM SP-2 High Performance Switch in 
dedicated mode, an LSF administrator must set up a queue for automatic 
requeue on job failure. The job queue will automatically requeue a job that 
failed because an SP-2 node was locked after LSF selected the node but before 
the job was dispatched.

Note that exclusive job requeue does not work for parallel jobs.
Administering Platform LSF 435



Starting Parallel Tasks with LSF Utilities

436
Starting Parallel Tasks with LSF Utilities
For simple parallel jobs you can use LSF utilities to start parts of the job on 
other hosts. Because LSF utilities handle signals transparently, LSF can suspend 
and resume all components of your job without additional programming.

The simplest parallel job runs an identical copy of the executable on every 
host. The lsgrun command takes a list of host names and runs the specified 
task on each host. The lsgrun -p command specifies that the task should be 
run in parallel on each host.

Example This example submits a job that uses lsgrun to run myjob on all the selected 
hosts in parallel:

% bsub -n 10 ’lsgrun -p -m "$LSB_HOSTS" myjob’
Job <3856> is submitted to default queue <normal>.

For more complicated jobs, you can write a shell script that runs lsrun in the 
background to start each component.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Job Slot Limits For Parallel Jobs
A job slot is the basic unit of processor allocation in LSF. A sequential job uses 
one job slot. A parallel job that has N components (tasks) uses N job slots, which 
can span multiple hosts.

By default, running and suspended jobs count against the job slot limits for 
queues, users, hosts, and processors that they are associated with.

With processor reservation, job slots reserved by pending jobs also count 
against all job slot limits.

When backfilling occurs, the job slots used by backfill jobs count against the 
job slot limits for the queues and users, but not hosts or processors. This means 
when a pending job and a running job occupy the same physical job slot on a 
host, both jobs count towards the queue limit, but only the pending job counts 
towards host limit.
Administering Platform LSF 437



Specifying a Minimum and Maximum Number of Processors

438
Specifying a Minimum and Maximum Number of 
Processors

When submitting a parallel job, you can also specify a minimum number and 
a maximum number of processors.

If you specify a maximum and minimum number of processors, the job will 
start as soon as the minimum number of processors is available, but it will use 
up to the maximum number of processors, depending on how many 
processors are available at the time. Once the job starts running, no more 
processors will be allocated to it even though more may be available later on.

Jobs that request fewer processors than the minimum PROCLIMIT defined for 
the queue to which the job is submitted, or more processors than the maximum 
PROCLIMIT cannot use the queue and are rejected. If the job requests 
minimum and maximum processors, the maximum requested cannot be less 
than the minimum PROCLIMIT, and the minimum requested cannot be more 
than the maximum PROCLIMIT.

Syntax
bsub -n min_proc[,max_proc]

Example
% bsub -n 4,16 myjob

At most, 16 processors can be allocated to this job. If there are less than 16 
processors eligible to run the job, this job can still be started as long as the 
number of eligible processors is greater than or equal to 4.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Specifying a Mandatory First Execution Host 
In general, the first execution host satisfies certain resource requirements that 
might not be present on other available hosts.

LSF normally selects the first execution host dynamically according to the 
resource availability and host load for a parallel job. You can also specify a 
mandatory first execution host.

Specify a mandatory first execution host
Use an exclamation point (!) to indicate mandatory first execution host. You 
can specify first execution host at job submission, or in the queue definition.

Job level Use the -m option of bsub:

% bsub -n 32 -m "hostA! hostB hostC" myjob

hostA is the mandatory first execution host.

Queue level Specify the first execution host in the list of hosts in the HOSTS parameter in 
lsb.queues:

HOSTS = hostA! hostB hostC

The queue-level specification of mandatory first execution host applies to all 
jobs submitted to the queue.

Rules The following rules apply when specifying first execution host:

◆ First execution host cannot be a host group or host partition, even if only 
one host is in the group or partition. Jobs that specify a host group or host 
partition as first execution host are rejected.

◆ The first execution host must satisfy the corresponding resource 
requirement specified at submission or on the queue. The order string in 
the resource requirement is ignored: the select, span and rusage strings in 
a resource requirement apply to the first execution host but the order string 
does not.

If the specified first execution host does not satisfy the resource 
requirement, the job will stay in the pending state until the resource 
requirement is satisfied.

◆ The first execution host can appear anywhere in the host string, but you 
can specify only one first execution host.

If multiple first execution hosts are specified in HOSTS on a queue, only 
the first valid first execution host is used, the others will be ignored as if 
they were not specified.

◆ The keyword all is ignored if it is specified in the execution host list. The 
keyword others is valid in the host list, but it cannot be the first execution 
host. Both keywords are ignored if they are specified as the first execution 
host.

If the first execution host is incorrect at job submission, the job will be rejected. 
If incorrect configurations exist on the queue level, warning messages will be 
logged and displayed when LSF starts, restarts or is reconfigured.
Administering Platform LSF 439



Specifying a Mandatory First Execution Host

440
Job chunking Specifying a mandatory first execution host affects job chunking. For example, 
the following jobs have different job requirements, and will not be placed in 
the same job chunk:

% bsub -m "hostA! hostB hostC" myjob

% bsub -m "hostA hostB hostC" myjob
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Controlling Processor Allocation Across Hosts
Sometimes you need to control how the selected processors for a parallel job 
are distributed across the hosts in the cluster. 

You can control this at the job level or at the queue level. The queue 
specification is ignored if your job specifies its own locality.

Specifying parallel job locality at the job level
By default, LSF will allocate the required processors for the job from the 
available set of processors.

A parallel job may span multiple hosts, with a specifiable number of processes 
allocated to each host. A job may be scheduled on to a single multiprocessor 
host to take advantage of its efficient shared memory, or spread out on to 
multiple hosts to take advantage of their aggregate memory and swap space. 
Flexible spanning may also be used to achieve parallel I/O.

You are able to specify “select all the processors for this parallel batch job on 
the same host”, or “do not choose more than n processors on one host” by 
using the span section in the resource requirement string (bsub -R or 
RES_REQ in the queue definition in lsb.queues).

Syntax Two kinds of span string are supported:

◆ span[hosts=1]

Indicates that all the processors allocated to this job must be on the same 
host.

◆ span[ptile=value]

Indicates the number of processors (value) on each host that should be 
allocated to the job.

where value is:

❖ Default ptile value, specified by n processors. For example:
span[ptile=4]

LSF allocates 4 processors on each available host, regardless of how 
many processors the host has. 

❖ Predefined ptile value, specified by ’!’. For example:
span[ptile='!']

uses the predefined maximum job slot limit in lsb.hosts (MXJ per 
host type/model) as its value.

If the host or host type/model does not define MXJ, the default predefined 
ptile value is 1.

❖ Predefined ptile value with optional multiple ptile values, per host 
type or host model.
Administering Platform LSF 441



Controlling Processor Allocation Across Hosts

442
Specifying multiple ptile values
In a span string with multiple ptile values, you must specify a predefined 
default value (ptile='!') and either host model or host type:

◆ For host type, you must specify same[type] in the resource requirement. 
For example:
span[ptile='!',HP:8,SGI:8,LINUX:2] same[type]

The job requests 8 processors on a host of type HP or SGI, and 2 processors 
on a host of type LINUX, and the predefined maximum job slot limit in 
lsb.hosts (MXJ) for other host types. 

◆ For host model, you must specify same[model] in the resource 
requirement. For example:
span[ptile='!',PC1133:4,PC233:2] same[model]

The job requests 4 processors on hosts of model PC1133, and 2 processors 
on hosts of model PC233, and the predefined maximum job slot limit in 
lsb.hosts (MXJ) for other host models.

◆ You cannot mix host model and host type in the same span string. The 
following span strings are incorrect:
span[ptile='!',LINUX:2,PC1133:4] same[model]

span[ptile='!',LINUX:2,PC1133:4] same[type]

The LINUX host type and PC1133 host model cannot appear in the same 
span string.

◆ You can specify both type and model in the same section in the resource 
requirement string, but the ptile values must be the same type.

If you specify same[type:model], you cannot specify a predefined 
ptile value (!) in the span section. The following span strings are valid:

same[type:model] span[LINUX:2,SGI:4]

LINUX and SGI are both host types and can appear in the same span string.

same[type:model] span[PC233:2,PC1133:4]

PC233 and PC1133 are both host models and can appear in the same span 
string.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Examples
% bsub -n 4 -R "span[hosts=1]" myjob

Runs the job on a host that has at least 4 processors currently eligible to run 
the 4 components of this job.

% bsub -n 4 -R "span[ptile=2]" myjob

Runs the job on 2 hosts, using 2 processors on each host. Each host may have 
more than 2 processors available.

% bsub -n 4 -R "span[ptile=3]" myjob

Runs the job on 2 hosts, using 3 processors on the first host and 1 processor 
on the second host.

% bsub -n 4 -R "span[ptile=1]" myjob

Runs the job on 4 hosts, even though some of the 4 hosts may have more than 
one processor currently available.

% bsub -n 4 -R "type==any same[type] span[ptile='!',LINUX:2, SGI:4]" myjob

Submits myjob to request 4 processors running on 2 hosts of type LINUX (2 
processors per host), or a single host of type SGI, or for other host types, the 
predefined maximum job slot limit in lsb.hosts (MXJ).

% bsub -n 16 -R "type==any same[type] span[ptile='!',HP:8,SGI:8,LINUX:2]" myjob

Submits myjob to request 16 processors on 2 hosts of type HP or SGI (8 
processors per hosts), or on 8 hosts of type LINUX (2 processors per host), or 
the predefined maximum job slot limit in lsb.hosts (MXJ) for other host 
types.

% bsub -n 4 -R "same[model] span[ptile='!',PC1133:4,PC233:2]" myjob

Submits myjob to request a single host of model PC1133 (4 processors), or 2 
hosts of model PC233 (2 processors per host), or the predefined maximum job 
slot limit in lsb.hosts (MXJ) for other host models.

Specifying parallel job locality at the queue level
The queue may also define the locality for parallel jobs using the RES_REQ 
parameter.
Administering Platform LSF 443



Running Parallel Processes on Homogeneous Hosts

444
Running Parallel Processes on Homogeneous Hosts
Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts 
some processes from a parallel job may for example, run on Solaris and some 
on SGI IRIX. However, for performance reasons you may want all processes of 
a job to run on the same type of host instead of having some processes run on 
one type of host and others on another type of host.

You can use the same section in the resource requirement string to indicate to 
LSF that processes are to run on one type or model of host. You can also use 
a custom resource to define the criteria for homogeneous hosts.

Examples
Running all parallel processes on the same host type

% bsub -n 4 -R"select[type==SGI6 || type==SOL7] same[type]" 
myjob

Allocate 4 processors on the same host type—either SGI IRIX, or Solaris 7, but 
not both. 

Running all parallel processes on the same host type and model
% bsub -n 6 -R"select[type==any] same[type:model]" myjob

Allocate 6 processors on any host type or model as long as all the processors 
are on the same host type and model.

Running all parallel processes on hosts in the same high-speed connection group
% bsub -n 12 -R "select[type==any && (hgconnect==hg1 || hgconnect==hg2 || 
hgconnect==hg3)] same[hgconnect:type]" myjob

For performance reasons, you want to have LSF allocate 12 processors on hosts 
in high-speed connection group hg1, hg2, or hg3, but not across hosts in hg1, 
hg2 or hg3 at the same time. You also want hosts that are chosen to be of the 
same host type.

This example reflects a network in which network connections among hosts 
in the same group are high-speed, and network connections between host 
groups are low-speed. 

In order to specify this, you create a custom resource hgconnect in 
lsf.shared.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION
hgconnect STRING () () () (OS release)
...
End Resource

In the lsf.cluster.cluster_name file, identify groups of hosts that share 
high-speed connections. 

Begin ResourceMap
RESOURCENAME    LOCATION
hgconnect       (hg1@[hostA hostB] hg2@[hostD hostE] hg3@[hostF hostG hostX])
End ResourceMap
Administering Platform LSF



Chapter 34
Running Parallel Jobs
If you want to specify the same resource requirement at the queue-level, define 
a custom resource in lsf.shared as in the previous example, map hosts to 
high-speed connection groups in lsf.cluster.cluster_name, and define 
the following queue in lsb.queues: 

Begin Queue 
QUEUE_NAME = My_test 
PRIORITY = 30 
NICE = 20 
RES_REQ = "select[mem > 1000 && type==any && (hgconnect==hg1 
|| hgconnect==hg2 || hgconnect=hg3)]same[hgconnect:type]" 
DESCRIPTION = either hg1 or hg2 or hg3
End Queue

This example allocates processors on hosts that:

◆ Have more than 1000 MB in memory

◆ Are of the same host type

◆ Are in high-speed connection group hg1 or hg2 or hg3
Administering Platform LSF 445



Using LSF Make to Run Parallel Jobs

446
Using LSF Make to Run Parallel Jobs
For parallel jobs that have a variety of different components to run, you can 
use Platform Make. Create a makefile that lists all the components of your 
batch job and then submit the Platform Make command to LSF.

Example
The following example shows a bsub command and makefile for a simple 
parallel job.

% bsub -n 4 lsmake -f Parjob.makefile
Job <3858> is submitted to default queue <normal>.

Parjob.makefile # Makefile to run example parallel job using lsbatch and 
# Platform Make

all: part1 part2 part3 part4

part1 part2 part3: myjob data.$@

part4: myjob2 data.part1 data.part2 data.part3

The batch job has four components. The first three components run the myjob 
command on the data.part1, data.part2 and data.part3 files. The fourth 
component runs the myjob2 command on all three data files. There are no 
dependencies between the components, so Platform Make runs them in 
parallel.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Limiting the Number of Processors Allocated
Use the PROCLIMIT parameter in lsb.queues to limit the number of 
processors that can be allocated to a parallel job in the queue.

◆ “Syntax” on page 447

◆ “How PROCLIMIT affects submission of parallel jobs” on page 447

◆ “Changing PROCLIMIT” on page 448

◆ “MultiCluster” on page 448

◆ “Automatic queue selection” on page 448

◆ “Examples” on page 449

Syntax
PROCLIMIT = [minimum_limit [default_limit]] maximum_limit

All limits must be positive numbers greater than or equal to 1 that satisfy the 
following relationship:

1 <= minimum <= default <= maximum

You can specify up to three limits in the PROCLIMIT parameter:

How PROCLIMIT affects submission of parallel jobs
The -n option of bsub specifies the number of processors to be used by a 
parallel job, subject to the processor limits of the queue.

Jobs that specify fewer processors than the minimum PROCLIMIT or more 
processors than the maximum PROCLIMIT cannot use this queue and are 
rejected.

If a default value for PROCLIMIT is specified in the queue, jobs submitted 
without specifying -n use the default number of processors. If the queue has 
only minimum and maximum values for PROCLIMIT, the number of processors 
is equal to the minimum value. If only a maximum value for PROCLIMIT is 
specified, or the queue has no PROCLIMIT, the number of processors is equal 
to 1.

Incorrect processor limits are ignored, and a warning message is displayed 
when LSF is reconfigured or restarted. A warning message is also logged to the 
mbatchd log file when LSF is started.

If You Specify ... Then ...

One limit It is the maximum processor limit. The minimum and default 
limits are set to 1.

Two limits The first is the minimum processor limit, and the second is the 
maximum. The default is set equal to the minimum.
The minimum must be less than or equal to the maximum.

Three limits The first is the minimum processor limit, the second is the default 
processor limit, and the third is the maximum.
The minimum must be less than the default and the maximum.
Administering Platform LSF 447



Limiting the Number of Processors Allocated

448
Changing PROCLIMIT
If you change the PROCLIMIT parameter, the new processor limit does not 
affect running jobs. Pending jobs with no processor requirements use the new 
default PROCLIMIT value. If the pending job does not satisfy the new 
processor limits for the queue, it remains in PEND state, and the pending 
reason changes to the following:

Job no longer satisfies queue PROCLIMIT configuration

If PROCLIMIT specification is incorrect (for example, too many parameters), a 
reconfiguration error message is issued. Reconfiguration proceeds and the 
incorrect PROCLIMIT is ignored.

MultiCluster
Jobs forwarded to a remote cluster are subject to the processor limits of the 
remote queues. Any processor limits specified on the local cluster are not 
applied to the remote job.

Automatic queue selection
When you submit a parallel job without specifying a queue name, LSF 
automatically selects the most suitable queue from the queues listed in the 
DEFAULT_QUEUE parameter in lsb.params or the LSB_DEFAULTQUEUE 
environment variable. Automatic queue selection takes into account any 
maximum and minimum PROCLIMIT values for the queues available for 
automatic selection.

If you specify -n min_proc,max_proc, but do not specify a queue, the first 
queue that satisfies the processor requirements of the job is used. If no queue 
satisfies the processor requirements, the job is rejected.

Example For example, queues with the following PROCLIMIT values are defined in 
lsb.queues:

◆ queueA with PROCLIMIT=1 1 1

◆ queueB with PROCLIMIT=2 2 2

◆ queueC with PROCLIMIT=4 4 4

◆ queueD with PROCLIMIT=8 8 8

◆ queueE with PROCLIMIT=16 16 16

In lsb.params: DEFAULT_QUEUE=queueA queueB queueC queueD queueE

For the following jobs:

% bsub -n 8 myjob

LSF automatically selects queueD to run myjob.

% bsub -n 5 myjob

Job myjob fails because no default queue has the correct number of 
processors.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Examples
Maximum

processor limit
PROCLIMIT is specified in the default queue in lsb.queues as: 

PROCLIMIT = 3

The maximum number of processors that can be allocated for this queue is 3.

Minimum and
maximum

processor limits

PROCLIMIT is specified in lsb.queues as:

PROCLIMIT = 3 8

The minimum number of processors that can be allocated for this queue is 3 
and the maximum number of processors that can be allocated for this queue 
is 8.

Minimum, default,
and maximum

processor limits

PROCLIMIT is specified in lsb.queues as:

PROCLIMIT = 4 6 9

◆ Minimum number of processors that can be allocated for this queue is 4

◆ Default number of processors for the queue is 6

◆ Maximum number of processors that can be allocated for this queue is 9

Example Description

% bsub -n 2 myjob The job myjob runs on 2 processors.
% bsub -n 4 myjob The job myjob is rejected from the queue because it requires more 

than the maximum number of processors configured for the queue (3).
% bsub -n 2,3 myjob The job myjob runs on 2 or 3 processors.
% bsub -n 2,5 myjob The job myjob runs on 2 or 3 processors, depending on how many 

slots are currently available on the host.
% bsub myjob No default or minimum is configured, so the job myjob runs on 1 

processor.

Example Description

% bsub -n 5 myjob The job myjob runs on 5 processors.
% bsub -n 2 myjob The job myjob is rejected from the queue because the number of 

processors requested is less than the minimum number of processors 
configured for the queue (3).

% bsub -n 4,5 
myjob

The job myjob runs on 4 or 5 processors.

% bsub -n 2,6 
myjob

The job myjob runs on 3 to 6 processors.

% bsub -n 4,9 
myjob

The job myjob runs on 4 to 8 processors.

% bsub myjob The default number of processors is equal to the minimum number (3). 
The job myjob runs on 3 processors.

Example Description

% bsub myjob Because a default number of processors is configured, the job myjob 
runs on 6 processors.
Administering Platform LSF 449



Reserving Processors

450
Reserving Processors

About processor reservation
When parallel jobs have to compete with sequential jobs for resources, job 
slots that become available are likely to be taken immediately by a sequential 
job. Parallel jobs need multiple job slots to be available before they can be 
dispatched. If the cluster is always busy, a large parallel job could be pending 
indefinitely. The more processors a parallel job requires, the worse the 
problem is.

Processor reservation solves this problem by reserving job slots as they become 
available, until there are enough reserved job slots to run the parallel job.

You might want to configure processor reservation if your cluster has a lot of 
sequential jobs that compete for resources with parallel jobs.

How processor reservation works
Processor reservation is disabled by default. 

If processor reservation is enabled, and a parallel job cannot be dispatched 
because there are not enough job slots to satisfy its minimum processor 
requirements, the job slots that are currently available will be reserved and 
accumulated.

A reserved job slot is unavailable to any other job. To avoid deadlock situations 
in which the system reserves job slots for multiple parallel jobs and none of 
them can acquire sufficient resources to start, a parallel job will give up all its 
reserved job slots if it has not accumulated enough to start within a specified 
time. The reservation time starts from the time the first slot is reserved. When 
the reservation time expires, the job cannot reserve any slots for one 
scheduling cycle, but then the reservation process can begin again.

Configuring processor reservation
To enable processor reservation, set SLOT_RESERVE in lsb.queues and 
specify the reservation time (a job cannot hold any reserved slots after its 
reservation time expires).

Syntax SLOT_RESERVE=MAX_RESERVE_TIME[n].

where n is an integer by which to multiply MBD_SLEEP_TIME. 
MBD_SLEEP_TIME is defined in lsb.params; the default value is 60 seconds.

Example Begin Queue
.
PJOB_LIMIT=1
SLOT_RESERVE = MAX_RESERVE_TIME[5]
.
End Queue

In this example, if MBD_SLEEP_TIME is 60 seconds, a job can reserve job slots 
for 5 minutes. If MBD_SLEEP_TIME is 30 seconds, a job can reserve job slots 
for 5 *30= 150 seconds, or 2.5 minutes.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Viewing information about reserved job slots
Reserved slots can be displayed with the bjobs command. The number of 
reserved slots can be displayed with the bqueues, bhosts, bhpart, and 
busers commands. Look in the RSV column.
Administering Platform LSF 451



Reserving Memory for Pending Parallel Jobs

452
Reserving Memory for Pending Parallel Jobs
By default, the rusage string reserves resources for running jobs. Because 
resources are not reserved for pending jobs, some memory-intensive jobs 
could be pending indefinitely because smaller jobs take the resources 
immediately before the larger jobs can start running. The more memory a job 
requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory 
as it becomes available, until the total required memory specified on the 
rusage string is accumulated and the job can start. Use memory reservation 
for pending jobs if memory-intensive jobs often compete for memory with 
smaller jobs in your cluster.

Unlike slot reservation, which only applies to parallel jobs, memory reservation 
applies to both sequential and parallel jobs.

Configuring memory reservation for pending parallel jobs
Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host 
memory for pending jobs, as described in “Memory Reservation for Pending 
Jobs” on page 272.

lsb.queues Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.

The RESOURCE_RESERVE parameter overrides the SLOT_RESERVE parameter. 
If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same 
queue, job slot reservation and memory reservation are enabled and an error 
is displayed when the cluster is reconfigured. SLOT_RESERVE is ignored. 
Backfill on memory may still take place.

The following queue enables both memory reservation and backfill in the same 
queue:

Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue

Enabling per-slot memory reservation
By default, memory is reserved for parallel jobs on a per-host basis. For 
example, by default, the command:

% bsub -n 4 -R "rusage[mem=500]" -q reservation myjob

requires the job to reserve 500 MB on each host where the job runs.

To enable per-slot memory reservation, define 
RESOURCE_RESERVE_PER_SLOT=y in lsb.params. In this example, if per-
slot reservation is enabled, the job must reserve 500 MB of memory for each 
job slot (4 * 500 = 2 GB) on the host in order to run.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Allowing Jobs to Use Reserved Job Slots

About backfill scheduling
By default, a reserved job slot cannot be used by another job. To make better 
use of resources and improve performance of LSF, you can configure backfill 
scheduling. Backfill scheduling allows other jobs to use the reserved job slots, 
as long as the other jobs will not delay the start of another job. Backfilling, 
together with processor reservation, allows large parallel jobs to run while not 
underutilizing resources.

In a busy cluster, processor reservation helps to schedule large parallel jobs 
sooner. However, by default, reserved processors remain idle until the large 
job starts. This degrades the performance of LSF because the reserved 
resources are idle while jobs are waiting in the queue.

Backfill scheduling allows the reserved job slots to be used by small jobs that 
can run and finish before the large job starts. This improves the performance 
of LSF because it increases the utilization of resources.

How backfilling works
For backfill scheduling, LSF assumes that a job will run until its run limit 
expires. Backfill scheduling works most efficiently when all the jobs in the 
cluster have a run limit.

Since jobs with a shorter run limit have more chance of being scheduled as 
backfill jobs, users who specify appropriate run limits in a backfill queue will 
be rewarded by improved turnaround time.

Once the big parallel job has reserved sufficient job slots, LSF calculates the 
start time of the big job, based on the run limits of the jobs currently running 
in the reserved slots. LSF cannot backfill if the big job is waiting for a job that 
has no run limit defined.

If LSF can backfill the idle job slots, only jobs with run limits that expire before 
the start time of the big job will be allowed to use the reserved job slots. LSF 
cannot backfill with a job that has no run limit.

Example
Administering Platform LSF 453



Allowing Jobs to Use Reserved Job Slots

454
In this scenario, assume the cluster consists of a 4-CPU multiprocessor host.

1 A sequential job (job1) with a run limit of 2 hours is submitted and gets 
started at 8:00 am (figure a).

2 Shortly afterwards, a parallel job (job2) requiring all 4 CPUs is submitted. 
It cannot start right away because job1 is using one CPU, so it reserves the 
remaining 3 processors (figure b).

3 At 8:30 am, another parallel job (job3) is submitted requiring only two 
processors and with a run limit of 1 hour. Since job2 cannot start until 
10:00am (when job1 finishes), its reserved processors can be backfilled by 
job3 (figure c). Therefore job3 can complete before job2's start time, 
making use of the idle processors.

4 Job3 will finish at 9:30am and job1 at 10:00am, allowing job2 to start 
shortly after 10:00am.

In this example, if job3's run limit was 2 hours, it would not be able to backfill 
job2's reserved slots, and would have to run after job2 finishes.

Limitations ◆ A job will not have an estimated start time immediately after mbatchd is 
reconfigured.

◆ Jobs in a backfill queue cannot be preempted (a job in a backfill queue 
might be running in a reserved job slot, and starting a new job in that slot 
might delay the start of the big parallel job):

❖ A backfill queue cannot be preemptable.

❖ A preemptive queue whose priority is higher than the backfill queue 
cannot preempt the jobs in backfill queue.

Backfilling and job
slot limits

A backfill job borrows a job slot that is already taken by another job. The 
backfill job will not run at the same time as the job that reserved the job slot 
first. Backfilling can take place even if the job slot limits for a host or processor 
have been reached. Backfilling cannot take place if the job slot limits for users 
or queues have been reached.

Configuring backfill scheduling
Backfill scheduling is enabled at the queue level. Only jobs in a backfill queue 
can backfill reserved job slots. If the backfill queue also allows processor 
reservation, then backfilling can occur among jobs within the same queue.

Configuring a
backfill queue

To configure a backfill queue, define BACKFILL in lsb.queues.

Specify Y to enable backfilling. To disable backfilling, specify N or blank space.

Example BACKFILL=Y

Enforcing run limits
Backfill scheduling works most efficiently when all the jobs in a cluster have a 
run limit specified at the job level (bsub -W). You can use the external 
submission executable, esub, to make sure that all users specify a job-level run 
limit.

Otherwise, you can specify ceiling and default run limits at the queue level 
(RUNLIMIT in lsb.queues ).
Administering Platform LSF



Chapter 34
Running Parallel Jobs
Viewing information about job start time
Use bjobs -l to view the estimated start time of a job.

Using backfill on memory
If BACKFILL is configured in a queue, and a run limit is specified with -W on 
bsub or with RUNLIMIT in the queue, backfill jobs can use the accumulated 
memory reserved by the other jobs, as long as the backfill job can finish before 
the predicted start time of the jobs with the reservation.

Unlike slot reservation, which only applies to parallel jobs, backfill on memory 
applies to sequential and parallel jobs.

The following queue enables both memory reservation and backfill on 
memory in the same queue:

Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue

Examples of memory reservation and backfill on memory
lsb.queues The following queues are defined in lsb.queues:

Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Begin Queue
QUEUE_NAME = backfill
DESCRIPTION = For backfill scheduling
PRIORITY = 30
BACKFILL = y
End Queue

lsb.params Per-slot memory reservation is enabled by RESOURCE_RESERVE_PER_SLOT=y 
in lsb.params.

Assumptions Assume one host in the cluster with 10 CPUs and 1 GB of free memory 
currently available.

Sequential jobs Each of the following sequential jobs requires 400 MB of memory. The first 
three jobs will run for 300 minutes.

◆ Job 1: 
% bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job will start running, using 400M of memory and one job slot.
Administering Platform LSF 455



Allowing Jobs to Use Reserved Job Slots

456
◆ Job 2:

Submitting a second job with same requirements will get the same result.

◆ Job 3: 

Submitting a third job with same requirements will reserve one job slot, 
and reserve all free memory, if the amount of free memory is between 20 
MB and 200 MB (some free memory may be used by the operating system 
or other software.)

◆ Job 4: 
% bsub -W 400 -q backfill -R "rusage[mem=50]" myjob4

The job will keep pending, since memory is reserved by job 3 and it will 
run longer than job 1 and job 2.

◆ Job 5: 
% bsub -W 100 -q backfill -R "rusage[mem=50]" myjob5

The job will start running. It uses one free slot and memory reserved by 
job 3. If the job does not finish in 100 minutes, it will be killed by LSF 
automatically.

◆ Job 6: 
% bsub -W 100 -q backfill -R "rusage[mem=300]" myjob6

The job will keep pending with no resource reservation because it cannot 
get enough memory from the memory reserved by job 3.

◆ Job 7: 
% bsub -W 100 -q backfill myjob7

The job will start running. LSF assumes it does not require any memory and 
enough job slots are free.

Parallel jobs Each process of a parallel job requires 100 MB memory, and each parallel job 
needs 4 cpus. The first two of the following parallel jobs will run for 300 
minutes.

◆ Job 1: 
% bsub -W 300 -n 4 -R "rusage[mem=100]" -q reservation 
myJob1

The job will start running and use 4 slots and get 400MB memory.

◆ Job 2:

Submitting a second job with same requirements will get the same result.

◆ Job 3: 

Submitting a third job with same requirements will reserve 2 slots, and 
reserve all 200 MB of available memory, assuming no other applications 
are running outside of LSF. 

◆ Job 4: 
% bsub -W 400 -q backfill -R "rusage[mem=50]" myJob4

The job will keep pending since all available memory is already reserved 
by job 3. It will run longer than job 1 and job 2, so no backfill happens.
Administering Platform LSF



Chapter 34
Running Parallel Jobs
◆ Job 5: 
% bsub -W 100 -q backfill -R "rusage[mem=50]" myJob5

This job will start running. It can backfill the slot and memory reserved by 
job 3. If the job does not finish in 100 minutes, it will be killed by LSF 
automatically.
Administering Platform LSF 457



Parallel Fairshare

458
Parallel Fairshare
LSF can consider the number of CPUs when using fairshare scheduling with 
parallel jobs.

If the job is submitted with bsub -n, the following formula is used to calculate 
dynamic priority:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + 
run_time * number_CPUs * RUN_TIME_FACTOR + (1 + job_slots )* 
RUN_JOB_FACTOR)

where number_CPUs is the number of CPUs used by the job.

Configuring parallel fairshare
To configure parallel fairshare:

1 Configure fairshare at the queue or host partition level as indicated in 
“Fairshare Scheduling” on page 201.

2 To enable parallel fairshare, set the parameter LSB_NCPU_ENFORCE=1 in 
lsf.conf.

3 To make your changes take effect, use the following commands to restart 
all LSF daemons:
lsadmin reconfig

lsadmin resrestart all

badmin hrestart all

badmin mbdrestart
Administering Platform LSF



Chapter 34
Running Parallel Jobs
How Deadline Constraint Scheduling Works For 
Parallel Jobs

For information about deadline constraint scheduling, see “Deadline Constraint 
Scheduling” on page 174. Deadline constraint scheduling is enabled by default.

If deadline constraint scheduling is enabled and a parallel job has a CPU limit 
but no run limit, LSF considers the number of processors when calculating how 
long the job will take.

LSF assumes that the minimum number of processors will be used, and that 
they will all be the same speed as the candidate host. If the job cannot finish 
under these conditions, LSF will not place the job.

The formula is:

(deadline time - current time) > (CPU limit on candidate host / minimum 
number of processors)
Administering Platform LSF 459



Optimized Preemption of Parallel Jobs

460
Optimized Preemption of Parallel Jobs
You can configure preemption for parallel jobs to reduce the number of jobs 
suspended in order to run a large parallel job.

When a high-priority parallel job preempts multiple low-priority parallel jobs, 
sometimes LSF preempts more low-priority jobs than are necessary to release 
sufficient job slots to start the high-priority job.

The PREEMPT_FOR parameter in lsb.params with the MINI_JOB keyword 
enables the optimized preemption of parallel jobs, so LSF preempts fewer of 
the low-priority parallel jobs.

Enabling the feature only improves the efficiency in cases where both 
preemptive and preempted jobs are parallel jobs. 

How optimized preemption works
When you run many parallel jobs in your cluster, and parallel jobs preempt 
other parallel jobs, you can enable a feature to optimize the preemption 
mechanism among parallel jobs. 

By default, LSF can over-preempt parallel jobs. When a high-priority parallel 
job preempts multiple low-priority parallel jobs, sometimes LSF preempts more 
low-priority jobs than are necessary to release sufficient job slots to start the 
high-priority job. The optimized preemption mechanism reduces the number 
of jobs that are preempted.

Enabling the feature only improves the efficiency in cases where both 
preemptive and preempted jobs are parallel jobs. Enabling or disabling this 
feature has no effect on the scheduling of jobs that require only a single 
processor.

Configuring optimized preemption
Use the PREEMPT_FOR parameter in lsb.params and specify the keyword 
MINI_JOB to configure optimized preemption at the cluster level.

If the parameter is already set, the MINI_JOB keyword can be used along with 
other keywords; the other keywords do not enable or disable the optimized 
preemption mechanism.
Administering Platform LSF



C H A P T E R

35
Advance Reservation

Contents ◆ “About Advance Reservation” on page 462

◆ “Configuring Advance Reservation” on page 463

◆ “Using Advance Reservation” on page 465
Administering Platform LSF 461



About Advance Reservation

462
About Advance Reservation
Advance reservations ensure access to specific hosts during specified times. An 
advance reservation is essentially a lock on a number of processors.

Each reservation consists of the number of processors to reserve, a list of hosts 
for the reservation, a start time, an end time, and an owner. You can also 
specify a resource requirement string instead of or in addition to a list of hosts.

During the time the reservation is active, only users or groups associated with 
the reservation have access to start new jobs on the reserved hosts. The 
reservation is active only within the time frame specified, and any given host 
may have several reservations in place, some of which may be active at the 
same time.

When an advance reservation becomes active, LSF attempts to start all jobs that 
reference the reservation. By default, jobs that are already running on the hosts 
may continue, even though they do not reference the reservation. However, if 
a job that references a reservation is pending because the host has reached its 
job slot limit, LSF frees up a job slot on the host by suspending one of the jobs 
that does not reference the reservation. This is the only case where advance 
reservation overrides another LSF job scheduling policy.

LSF treats advance reservation like other deadlines, such as dispatch windows 
or run windows; LSF does not schedule jobs that are likely to be suspended 
when a reservation becomes active. Jobs referencing the reservation are killed 
when the reservation expires. LSF administrators can prevent running jobs 
from being killed when the reservation expires by changing the termination 
time of the job using the reservation (bmod -t) before the reservation window 
closes.

Reservations can also be created for system maintenance. If a system 
reservation is active, no other jobs can use the reserved hosts, and LSF does 
not dispatch jobs to the specified hosts while the reservation is active.

Only LSF administrators or root can create or delete advance reservations. Any 
LSF user can view existing advance reservations.
Administering Platform LSF



Chapter 35
Advance Reservation
Configuring Advance Reservation

Advance reservation plugin
To enable advance reservation in your cluster, configure the advance 
reservation scheduling plugin schmod_advrsv in lsb.modules.

Configuring lsb.modules
Begin PluginModule
SCH_PLUGIN               RB_PLUGIN                SCH_DISABLE_PHASES
schmod_default              ()                              ()
schmod_advrsv               ()                              ()
End PluginModule

Advance reservation license
Advance reservation requires the lsf_sched_advance_reservation license 
feature in your license file and LSF_Sched_Advance_Reservation 
configured in the PRODUCTS line of lsf.cluster.cluster_name.

Allowing users to create advance reservations
Advance

reservation user
policies

By default, only LSF administrators or root can add or delete advance 
reservations. To allow other users to use brsvadd to create advance 
reservations and brsvdel to delete advance reservations, use the 
ResourceReservation section of lsb.resources to configure advance 
reservation policies for users.

ResourceReservation section (lsb.resources)
A ResourceReservation section specifies:

◆ Users or user groups that can create reservations

◆ Hosts that can be used for the reservation

◆ Time window when reservations can be created

Each advance reservation policy is defined in a separate ResourceReservation 
section, so it is normal to have multiple ResourceReservation sections in 
lsb.resources.

Examples ◆ Only user1 and user2 can make advance reservations on hostA and 
hostB. The reservation time window is between 8:00 a.m. and 6:00 p.m. 
every day:
Begin ResourceReservation
NAME        = dayPolicy
USERS       = user1 user2 # optional
HOSTS       = hostA hostB # optional
TIME_WINDOW = 8:00-18:00 # weekly recurring reservation
End ResourceReservation 

user1 can add the following reservation for user user2 to use on hostA 
every Friday between 9:00 a.m. and 11:00 a.m.:

% user1@hostB> brsvadd -m "hostA" -n 1 -u "user2" -t "5:9:0-5:11:0"
Reservation "user2#2" is created
Administering Platform LSF 463



Configuring Advance Reservation

464
Users can only delete reservations they created themselves. In the example, 
only user user1 can delete the reservation; user2 cannot. Administrators 
can delete any reservations created by users.

◆ All users in user group ugroup1 except user1 can make advance 
reservations on any host in hgroup1, except hostB, between 10:00 p.m. 
and 6:00 a.m. every day:
Begin ResourceReservation
NAME        = nightPolicy
USERS       = ugroup1 ~user1
HOSTS       = hgroup1 ~hostB
TIME_WINDOW = 20:00-8:00 
End ResourceReservation

The not operator (~) does not exclude LSF administrators from the policy.

USER_ADVANCE_RESERVATION is obsolete (lsb.params)
USER_ADVANCE_RESERVATION in lsb.params is obsolete in LSF Version 6.0. 
Use the ResourceReservation section configuration in lsb.resources to 
configure advance reservation policies for your cluster.
Administering Platform LSF



Chapter 35
Advance Reservation
Using Advance Reservation

Advance reservation commands
Use the following commands to work with advance reservations:

brsvadd Add a reservation

brsvdel Delete a reservation

brsvs View reservations

Adding and removing reservations

By default, only LSF administrators or root can add or delete advance 
reservations.

brsvadd
command

Use brsvadd to create new advance reservations. You must specify the 
following for the reservation:

◆ Number of processors to reserve

This number should less than or equal to the actual number of CPUs for 
the hosts defined in the reservation.

◆ Hosts for the reservation

◆ Owners of the reservation

◆ Time period for the reservation: Either:

❖ Begin time and end time for a one-time reservation

OR

❖ Time window for a recurring reservation

The brsvadd command returns a reservation ID that you use when you submit 
a job that uses the reserved hosts. Any single user or user group can have a 
maximum of 100 reservation IDs.

Specifying hosts for the reservation
Use one or both of the following brsvadd options to specify hosts for which 
processors are reserved:

◆ The -m option lists the hosts needed for the reservation

The hosts listed the -m option can be local to the cluster or hosts leased 
from remote clusters. At job submission, LSF considers the hosts in the 
specified order.

If you also specify a resource requirement string with the -R option, -m is 
optional.

◆ The -R option selects hosts for the reservation according to a resource 
requirements string

Only hosts that satisfy the resource requirement expression are reserved. 
-R accepts any valid resource requirement string, but only the select string 
takes effect.

If you also specify a host list with the -m option, -R is optional.
Administering Platform LSF 465



Using Advance Reservation

466
Adding a one-time
reservation (-b

and -e)

Use the -b and -e options of brsvadd to specify the begin time and end time 
of a one-time advance reservation. One-time reservations are useful for 
dedicating hosts to a specific user or group for critical projects.

The day and time are in the form:

[[[year:]month:]day:]hour:minute

with the following ranges:

◆ year: any year after 1900 (YYYY)

◆ month: 1-12 (MM)

◆ day of the month: 1-31 (dd)

◆ hour: 0-23 (hh)

◆ minute: 0-59 (mm)

You must specify at least hour:minute. Year, month, and day are optional. 
Three fields are assumed to be day:hour:minute, four fields are assumed to 
be month:day:hour:minute, and five fields are 
year:month:day:hour:minute.

If you do not specify a day, LSF assumes the current day. If you do not specify 
a month, LSF assumes the current month. If you specify a year, you must 
specify a month.

You must specify a begin and an end time. The time value for -b must use the 
same syntax as the time value for -e. It must be earlier than the time value for 
-e, and cannot be earlier than the current time.

Examples ◆ The following command creates a one-time advance reservation for 1024 
processors on host hostA for user user1 between 6:00 a.m. and 8:00 a.m. 
today:
% brsvadd -n 1024 -m hostA -u user1 -b 6:0 -e 8:0
Reservation "user1#0" is created

The hosts specified by -m can be local to the cluster or hosts leased from 
remote clusters.

◆ The following command creates a one-time advance reservation for 1024 
processors on a host of any type for user user1 between 6:00 a.m. and 
8:00 a.m. today:
% brsvadd -n 1024 -R "type==any" -u user1 -b 6:0 -e 8:0
Reservation "user1#1" is created

◆ The following command creates a one-time advance reservation that 
reserves 12 CPUs on hostA between 6:00 p.m. on 01 December 2003 and 
6:00 a.m. on 31 January 2004:
% brsvadd -n 12 -m hostA -u user1 -b 2003:12:01:18:00 -e 
2004:01:31:06:00
Reservation user1#2 is created

Adding a
recurring

reservation (-t)

Use the -t option of brsvadd to specify a recurring advance reservation. The 
-t option specifies a time window for the reservation. Recurring reservations 
are useful for scheduling regular system maintenance jobs. 

The day and time are in the form:
Administering Platform LSF



Chapter 35
Advance Reservation
[day:]hour[:minute]

with the following ranges:

◆ day of the week: 0-6

◆ hour: 0-23

◆ minute: 0-59

Specify a time window one of the following ways:

◆ hour-hour

◆ hour:minute-hour:minute

◆ day:hour:minute-day:hour:minute

You must specify at least the hour. Day of the week and minute are optional. 
Both the start time and end time values must use the same syntax. If you do 
not specify a minute, LSF assumes the first minute of the hour (:00). If you do 
not specify a day, LSF assumes every day of the week. If you do specify the 
day, you must also specify the minute.

When the job starts running, the run limit of the reservation is set to the 
minimum of the job run limit (if specified), the queue run limit (if specified), 
or the duration of the reservation time window. LSF administrators can prevent 
running jobs from being killed when the reservation expires by changing the 
termination time of the job using the reservation (bmod -t) before the 
reservation window closes.

Examples ◆ The following command creates an advance reservation for 1024 
processors on two hosts hostA and hostB for user group groupA every 
Wednesday from 12:00 midnight to 3:00 a.m.:
% brsvadd -n 2048 -m "hostA hostB" -g groupA -t "3:0:0-
3:3:0"
Reservation "groupA#0" is created

◆ The following command creates an advance reservation for 1024 
processors on hostA for user user2 every weekday from 12:00 noon to 
2:00 p.m.:
% brsvadd -n 1024 -m "hostA" -u user2 -t "12:0-14:0"
Reservation "user2#0" is created

◆ The following command creates a system reservation on hostA every 
Friday from 6:00 p.m. to 8:00 p.m.:
% brsvadd -n 1024 -m hostA -s -t "5:18:0-5:20:0"
Reservation "system#0" is created

While the system reservation is active, no other jobs can use the reserved 
hosts, and LSF does not dispatch jobs to the specified hosts.

◆ The following command creates an advance reservation for 1024 
processors on hosts hostA and hostB with more that 50 MB of swap space 
for user user2 every weekday from 12:00 noon to 2:00 p.m.:

% brsvadd -n 1024 -R "swp > 50" -m "hostA hostB" -u user2 -t "12:0-14:0"
Reservation "user2#1" is created
Administering Platform LSF 467



Using Advance Reservation

468
Removing an
advance

reservation
(brsvdel)

Use brsvdel to delete reservations. Specify the reservation ID for the 
reservation you want to delete. For example:

% brsvdel user1#0
Reservation user1#0 is being deleted

You can only delete one reservation at a time.

For more
information

See Chapter 10, “Time Syntax and Configuration” for more information about 
specifying time windows in LSF.
Administering Platform LSF



Chapter 35
Advance Reservation
Viewing reservations
brsvs command Use brsvs to show current reservations:

% brsvs
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 1024 hostA:1024 11/12/6/0-11/12/8/0
user2#0 user user2 1024 hostA:1024 12:0-14:0 *
groupA#0 group groupA 2048 hostA:1024 3:0:0-3:3:0 *

hostB:1024
system#0 sys system 1024 hostA:1024 5:18:0-5:20:0 *

In the TIME_WINDOW column:

◆ A one-time reservation displays fields separated by slashes 
(month/day/hour/minute). For example:
11/12/14/0-11/12/18/0

◆ A recurring reservation displays fields separated by colons 
(day:hour:minute). An asterisk (*) indicates a recurring reservation. For 
example:
5:18:0 5:20:0 *

Showing a weekly
planner (brsvs -p)

Use brsvs -p to show a weekly planner for specified hosts using advance 
reservation. The all keyword shows the planner for all hosts with 
reservations. MAX indicates the configured maximum number of job slots for 
the host.

% brsvs -p all
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 1024 hostA:1024 11/12/6/0-11/12/8/0
user2#0 user user2 1024 hostA:1024 12:0-14:0 *
groupA#0 group groupA 2048 hostA:1024 3:0:0-3:3:0 *

hostB:1024
system#0 sys system 1024 hostA:1024 5:18:0-5:20:0 *

HOST: hostA  (MAX = 1024)
Week: 11/11/2004 - 11/17/2004
Hour:Min     Sun     Mon     Tue     Wed     Thu     Fri     Sat
-------------------------------------------------------------------
0:0          0       0       0       1024    0       0       0
0:10         0       0       0       1024    0       0       0
0:20         0       0       0       1024    0       0       0
...
2:30         0       0       0       1024    0       0       0
2:40         0       0       0       1024    0       0       0
2:50         0       0       0       1024    0       0       0
3:0          0       0       0       0       0       0       0
3:10         0       0       0       0       0       0       0
3:20         0       0       0       0       0       0       0
...
5:30         0       0       0       0       0       0       0
5:40         0       0       0       0       0       0       0
5:50         0       0       0       0       0       0       0
6:0          0       1024    0       0       0       0       0
Administering Platform LSF 469



Using Advance Reservation

470
6:10         0       1024    0       0       0       0       0
6:20         0       1024    0       0       0       0       0
...
7:30         0       1024    0       0       0       0       0
7:40         0       1024    0       0       0       0       0
7:50         0       1024    0       0       0       0       0
8:0          0       0       0       0       0       0       0
8:10         0       0       0       0       0       0       0
8:20         0       0       0       0       0       0       0
...
11:30        0       0       0       0       0       0       0
11:40        0       0       0       0       0       0       0
11:50        0       0       0       0       0       0       0
12:0         1024    1024    1024    1024    1024    1024    1024
12:10        1024    1024    1024    1024    1024    1024    1024
12:20        1024    1024    1024    1024    1024    1024    1024
...
13:30        1024    1024    1024    1024    1024    1024    1024
13:40        1024    1024    1024    1024    1024    1024    1024
13:50        1024    1024    1024    1024    1024    1024    1024
14:0         0       0       0       0       0       0       0
14:10        0       0       0       0       0       0       0
14:20        0       0       0       0       0       0       0
...
17:30        0       0       0       0       0       0       0
17:40        0       0       0       0       0       0       0
17:50        0       0       0       0       0       0       0
18:0         0       0       0       0       0       1024    0
18:10        0       0       0       0       0       1024    0
18:20        0       0       0       0       0       1024    0
...
19:30        0       0       0       0       0       1024    0
19:40        0       0       0       0       0       1024    0
19:50        0       0       0       0       0       1024    0
20:0         0       0       0       0       0       0       0
20:10        0       0       0       0       0       0       0
20:20        0       0       0       0       0       0       0
...
23:30        0       0       0       0       0       0       0
23:40        0       0       0       0       0       0       0
23:50        0       0       0       0       0       0       0

HOST: hostB  (MAX = 1024)
Week: 11/11/2004 - 11/17/2004
Hour:Min     Sun     Mon     Tue     Wed     Thu     Fri     Sat
-------------------------------------------------------------------
0:0          0       0       0       1024    0       0       0
0:10         0       0       0       1024    0       0       0
0:20         0       0       0       1024    0       0       0
...
2:30         0       0       0       1024    0       0       0
2:40         0       0       0       1024    0       0       0
Administering Platform LSF



Chapter 35
Advance Reservation
2:50         0       0       0       1024    0       0       0
3:0          0       0       0       0       0       0       0
3:10         0       0       0       0       0       0       0
3:20         0       0       0       0       0       0       0
...
23:30        0       0       0       0       0       0       0
23:40        0       0       0       0       0       0       0
23:50        0       0       0       0       0       0       0

bjobs command Use bjobs -l to show the reservation ID used by a job:

% bjobs -l
Job <1152>, User <user1>, Project <default>, Status <PEND>, 
Queue <normal>, Reservation <user1#0>, Command <myjob>

Mon Nov 12 5:13:21: Submitted from host <hostB>, CWD 
</home/user1/jobs>;

Submitting and modifying jobs using advance reservations
Submitting and

running jobs
(bsub -U)

Use the -U option of bsub to submit jobs with a reservation ID. For example:

%bsub -U user1#0 myjob

The job can only use hosts reserved by the reservation user1#0. By default, 
LSF selects only hosts in the reservation. Use the -m option to specify particular 
hosts within the list of hosts reserved by the reservation; you can only select 
from hosts that were included in the original reservation.

If you do not specify hosts (bsub -m) or resource requirements (bsub -R), the 
default resource requirement is to select hosts that are of any host type (LSF 
assumes "type==any" instead of "type==local" as the default select string.)

A job can only use one reservation. There is no restriction on the number of 
jobs that can be submitted to a reservation; however, the number of slots 
available on the hosts in the reservation may run out. For example, reservation 
user2#0 reserves 1024 slots on hostA. When all 1024 slots on hostA are used 
by jobs referencing user2#0, hostA is no longer available to other jobs using 
reservation user2#0. Any single user or user group can have a maximum of 
100 reservation IDs.

Jobs referencing the reservation are killed when the reservation expires. LSF 
administrators can prevent running jobs from being killed when the reservation 
expires by changing the termination time of the job using the reservation 
(bmod -t) before the reservation window closes.
Administering Platform LSF 471



Using Advance Reservation

472
Modifying jobs
(bmod -U)

Administrators can use the -U option of bmod to change a job to another 
reservation ID. For example:

%bmod -U user1#0 1234

To cancel the reservation, use the -Un option of bmod. For example:

%bmod -Un 1234

Changing job
termination time

(bmod -t)

Before the reservation window closes, administrators can use the -t option of 
bmod to change the termination time of a running job that is using the 
reservation. This prevents the job from being killed when the reservation 
expires; it does not extend the actual reservation window. For example:

%bmod -t 15:0 1234

You must set LSB_MOD_ALL_JOBS=Y in lsf.conf to use bmod -t for 
advance reservations.

IMPORTANT bmod -t will not change the termination time of a pending job.

Job resource
usage limits

A job using a reservation is subject to all job resource usage limits. If a limit is 
reached on a particular host in a reservation, jobs using that reservation cannot 
start on that host.

Preemption and
fairshare

Higher priority jobs can only preempt other jobs that use the same reservation. 
In fairshare, a lower priority job can run as long as no other higher priority 
share holders can access the same reservation as the lower priority job.

Forcing a job to run before a reservation is active
LSF administrators can use brun to force jobs to run before the reservation is 
active, but the job must finish running before the time window of the 
reservation expires.

For example, if the administrator forces a job with a reservation to run one 
hour before the reservation is active, and the reservation period is 3 hours, a 
4 hour run limit takes effect.

Advance reservations across clusters
You can create and use advance reservation for the MultiCluster job forwarding 
model. To enable this feature, you must upgrade all clusters to LSF Version 6.0 
or later.

See the Using Platform LSF MultiCluster for more information.
Administering Platform LSF



Chapter 35
Advance Reservation
Viewing historical accounting information for advance reservations

bacct -U Use the -U option of the bacct command to display accounting information 
about advance reservations. bacct -U displays information similar to the 
brsvs command:

◆ The reservation ID specified on the -U option.

◆ The type of reservation: user or system

◆ The user names of users who used the brsvadd command to create the 
advance reservations

◆ The user names of the users who can use the advance reservations (with 
bsub -U)

◆ Number of CPUs reserved

◆ List of hosts for which processors are reserved

◆ Time window for the reservation. 

❖ A one-time reservation displays fields separated by slashes 
(month/day/hour/minute). For example:
11/12/14/0-11/12/18/0

❖ A recurring reservation displays fields separated by colons 
(day:hour:minute). For example:
5:18:0 5:20:0

Example
% bacct -U user1#2
Accounting for:
  - advanced reservation IDs: user1#2,
  - advanced reservations created by user1,
-----------------------------------------------------------------------------
RSVID       TYPE      CREATOR    USER    NCPUS       RSV_HOSTS     TIME_WINDOW
user1#2     user        user1   user1      1           hostA:1    9/16/17/36-
9/16/17/38
SUMMARY:
Total number of jobs:          4
Total CPU time consumed:     0.5 second
Maximum memory of a job:     4.2 MB
Maximum swap of a job:       5.2 MB
Total duration time:            0 hour    2 minute    0 secon
Administering Platform LSF 473



Using Advance Reservation

474
 Administering Platform LSF



P A R T

VIII
Monitoring Your Cluster

Contents ◆ Chapter 36, “Event Generation”

◆ Chapter 37, “Tuning the Cluster”

◆ Chapter 38, “Authentication”

◆ Chapter 39, “Job Email, and Job File Spooling”

◆ Chapter 40, “Non-Shared File Systems”

◆ Chapter 41, “Error and Event Logging”

◆ Chapter 42, “Troubleshooting and Error Messages”





C H A P T E R

36
Event Generation

Contents ◆ “Event Generation” on page 478

◆ “Enabling event generation” on page 478

◆ “Events list” on page 479

◆ “Arguments passed to the LSF event program” on page 479
Administering Platform LSF 477



Event Generation

478
Event Generation
LSF detects events occurring during the operation of LSF daemons. LSF 
provides a program which translates LSF events into SNMP traps. You can also 
write your own program that runs on the master host to interpret and respond 
to LSF events in other ways. For example, your program could:

◆ Page the system administrator

◆ Send email to all users

◆ Integrate with your existing network management software to validate and 
correct the problem

On Windows NT, use the Windows NT Event Viewer to view LSF events.

Enabling event generation
SNMP trap

program
If you use the LSF SNMP trap program as the event handler, see the SNMP 
documentation for instructions on how to enable event generation.

Custom event
handling

programs

If you use a custom program to handle the LSF events, take the following steps 
to enable event generation.

1 Write a custom program to interpret the arguments passed by LSF. See 
“Arguments passed to the LSF event program” on page 479 and “Events list” 
on page 479 for more information.

2 To enable event generation, define LSF_EVENT_RECEIVER in lsf.conf. 
You must specify an event receiver even if your program ignores it.

The event receiver maintains cluster-specific or changeable information 
that you do not want to hard-code into the event program. For example, 
the event receiver could be the path to a current log file, the email address 
of the cluster administrator, or the host to send SNMP traps to.

3 Set LSF_EVENT_PROGRAM in lsf.conf and specify the name of your 
custom event program. If you name your event program genevent 
(genevent.exe on Windows) and place it in LSF_SERVERDIR, you can 
skip this step.

4 Reconfigure the cluster with the commands lsadmin reconfig and 
badmin reconfig.
Administering Platform LSF



Chapter 36
Event Generation
Events list
The following daemon operations cause mbatchd or the master LIM to call the 
event program to generate an event. Each LSF event is identified by a 
predefined number, which is passed as an argument to the event program. 
Events 1-9 also return the name of the host on which on an event occurred.

1 LIM goes down (detected by the master LIM). This event may also occur if 
LIM temporarily stops communicating to the master LIM.

2 RES goes down (detected by the master LIM).

3 sbatchd goes down (detected by mbatchd).

4 An LSF server or client host becomes unlicensed (detected by the master 
LIM).

5 A host becomes the new master host (detected by the master LIM).

6 The master host stops being the master (detected by the master LIM).

7 mbatchd comes up and is ready to schedule jobs (detected by mbatchd).

8 mbatchd goes down (detected by mbatchd).

9 mbatchd receives a reconfiguration request and is being reconfigured 
(detected by mbatchd).

10 LSB_SHAREDIR becomes full (detected by mbatchd).

Arguments passed to the LSF event program
If LSF_EVENT_RECEIVER is defined, a function called ls_postevent() allows 
specific daemon operations to generate LSF events. This function then calls the 
LSF event program and passes the following arguments:

◆ The event receiver (LSF_EVENT_RECEIVER in lsf.conf)

◆ The cluster name

◆ The LSF event number (LSF events list or LSF_EVENT_XXXX macros in 
lsf.h)

◆ The event argument (for events that take an argument)

Example For example, if the event receiver is the string xxx and LIM goes down on 
HostA in Cluster1, the function returns:

xxx Cluster1 1 HostA

The custom LSF event program can interpret or ignore these arguments.
Administering Platform LSF 479



Event Generation

480
 Administering Platform LSF



C H A P T E R

37
Tuning the Cluster

Contents ◆ “Tuning LIM” on page 482

◆ “Tuning mbatchd on UNIX” on page 491
Administering Platform LSF 481



Tuning LIM

482
Tuning LIM
LIM provides critical services to all LSF components. In addition to the timely 
collection of resource information, LIM provides host selection and job 
placement policies. If you are using Platform MultiCluster, LIM determines how 
different clusters should exchange load and resource information. You can 
tune LIM policies and parameters to improve performance.

LIM uses load thresholds to determine whether to place remote jobs on a host. 
If one or more LSF load indices exceeds the corresponding threshold (too 
many users, not enough swap space, etc.), then the host is regarded as busy 
and LIM will not recommend jobs to that host. You can also tune LIM load 
thresholds.

You can also change default LIM behavior and pre-select hosts to be elected 
master to improve performance.

In this section ◆ “Adjusting LIM Parameters” on page 483

◆ “Load Thresholds” on page 484

◆ “Changing Default LIM Behavior to Improve Performance” on page 487
Administering Platform LSF



Chapter 37
Tuning the Cluster
Adjusting LIM Parameters 
There are two main goals in adjusting LIM configuration parameters: improving 
response time, and reducing interference with interactive use. To improve 
response time, tune LSF to correctly select the best available host for each job. 
To reduce interference, tune LSF to avoid overloading any host.

LIM policies are advisory information for applications. Applications can either 
use the placement decision from LIM, or make further decisions based on 
information from LIM.

Most of the LSF interactive tools use LIM policies to place jobs on the network. 
LSF uses load and resource information from LIM and makes its own placement 
decisions based on other factors in addition to load information.

Files that affect LIM are lsf.shared, lsf.cluster.cluster_name, where 
cluster_name is the name of your cluster.

RUNWINDOW parameter 
LIM thresholds and run windows affect the job placement advice of LIM. Job 
placement advice is not enforced by LIM.

The RUNWINDOW parameter defined in lsf.cluster.cluster_name 
specifies one or more time windows during which a host is considered 
available. If the current time is outside all the defined time windows, the host 
is considered locked and LIM will not advise any applications to run jobs on 
the host.
Administering Platform LSF 483



Load Thresholds

484
Load Thresholds
Load threshold parameters define the conditions beyond which a host is 
considered busy by LIM and are a major factor in influencing performance. No 
jobs will be dispatched to a busy host by LIM’s policy. Each of these parameters 
is a load index value, so that if the host load goes beyond that value, the host 
becomes busy.

LIM uses load thresholds to determine whether to place remote jobs on a host. 
If one or more LSF load indices exceeds the corresponding threshold (too 
many users, not enough swap space, etc.), then the host is regarded as busy 
and LIM will not recommend jobs to that host.

Thresholds can be set for any load index supported internally by the LIM, and 
for any external load index.

If a particular load index is not specified, LIM assumes that there is no 
threshold for that load index. Define looser values for load thresholds if you 
want to aggressively run jobs on a host.

See “Load Thresholds” on page 359 for more details.

In this section ◆ “Load indices that affect LIM performance” on page 484

◆ “Comparing LIM load thresholds” on page 485

◆ “If LIM often reports a host as busy” on page 485

◆ “If interactive jobs slow down response” on page 485

◆ “Multiprocessor systems” on page 486

Load indices that affect LIM performance

For more details on load indices see “Load Indices” on page 144.

Load index Description

r15s 15-second CPU run queue length

r1m 1-minute CPU run queue length

r15m 15-minute CPU run queue length

pg Paging rate in pages per second

swp Available swap space

it Interactive idle time

ls Number of users logged in
Administering Platform LSF



Chapter 37
Tuning the Cluster
Comparing LIM load thresholds 
To tune LIM load thresholds, compare the output of lsload to the thresholds 
reported by lshosts -l.

The lsload and lsmon commands display an asterisk * next to each load 
index that exceeds its threshold.

Example For example, consider the following output from lshosts -l and lsload:

% lshosts -l
HOST_NAME: hostD
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

HOST_NAME: hostA
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

% lsload 
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 0.0 0.0 0.0 0% 0.0 6 0 30M 32M 10M
hostA busy 1.9 2.1 1.9 47% *69.6 21 0 38M 96M 60M

In this example:

◆ hostD is ok.

◆ hostA is busy—The pg (paging rate) index is 69.6, above the threshold of 
15.

If LIM often reports a host as busy
If LIM often reports a host as busy when the CPU utilization and run queue 
lengths are relatively low and the system is responding quickly, the most likely 
cause is the paging rate threshold. Try raising the pg threshold.

Different operating systems assign subtly different meanings to the paging rate 
statistic, so the threshold needs to be set at different levels for different host 
types. In particular, HP-UX systems need to be configured with significantly 
higher pg values; try starting at a value of 50.

There is a point of diminishing returns. As the paging rate rises, eventually the 
system spends too much time waiting for pages and the CPU utilization 
decreases. Paging rate is the factor that most directly affects perceived 
interactive response. If a system is paging heavily, it feels very slow.

If interactive jobs slow down response
If you find that interactive jobs slow down system response too much while 
LIM still reports your host as ok, reduce the CPU run queue lengths (r15s, r1m, 
r15m). Likewise, increase CPU run queue lengths if hosts become busy at low 
loads.
Administering Platform LSF 485



Load Thresholds

486
Multiprocessor systems
On multiprocessor systems, CPU run queue lengths (r15s, r1m, r15m) are 
compared to the effective run queue lengths as displayed by the lsload -E 
command.

CPU run queue lengths should be configured as the load limit for a single 
processor. Sites with a variety of uniprocessor and multiprocessor machines 
can use a standard value for r15s, r1m and r15m in the configuration files, and 
the multiprocessor machines will automatically run more jobs.

Note that the normalized run queue length displayed by lsload -N is scaled 
by the number of processors. See “Load Indices” on page 144 and 
lsfintro(1) for the concept of effective and normalized run queue lengths.
Administering Platform LSF



Chapter 37
Tuning the Cluster
Changing Default LIM Behavior to Improve 
Performance 

You may want to change the default LIM behavior in the following cases:

◆ In very large sites. As the size of the cluster becomes large (500 hosts or 
more), reconfiguration of the cluster causes each LIM to re-read the 
configuration files. This can take quite some time.

◆ In sites where each host in the cluster cannot share a common 
configuration directory or exact replica.

In this section ◆ “Default LIM behavior” on page 487

◆ “Change default LIM behavior” on page 487

◆ “Reconfiguration and LSF_MASTER_LIST” on page 488

◆ “How LSF works with LSF_MASTER_LIST” on page 488

◆ “Considerations” on page 489

Default LIM behavior
By default, each LIM running in an LSF cluster must read the configuration files 
lsf.shared and lsf.cluster.cluster_name to obtain information about 
resource definitions, host types, host thresholds, etc. This includes master and 
slave LIMs.

This requires that each host in the cluster share a common configuration 
directory or an exact replica of the directory.

Change default LIM behavior
The parameter LSF_MASTER_LIST in lsf.conf allows you to identify for the 
LSF system which hosts can become masters. Hosts not listed in 
LSF_MASTER_LIST will be considered as slave-only hosts and will never be 
considered to become master.

By setting this parameter, you can reduce the time it takes to reconfigure a 
cluster and requests made to the file server. Only hosts listed in 
LSF_MASTER_LIST will read lsf.shared and lsf.cluster.cluster_name. 
Configuration information will then be propagated from the master LIM to 
slave-only LIMs.

Setting LSF_MASTER_LIST (lsf.conf)
1 Edit lsf.conf and set the parameter LSF_MASTER_LIST to indicate hosts 

that are candidates to become the master host. For example:
LSF_MASTER_LIST="hostA hostB hostC"

The order in which you specify hosts in LSF_MASTER_LIST is the preferred 
order for selecting hosts to become the master LIM.

2 Save your changes.

3 Reconfigure the cluster with the commands lsadmin reconfig and 
badmin mbdrestart.
Administering Platform LSF 487



Changing Default LIM Behavior to Improve Performance

488
Reconfiguration and LSF_MASTER_LIST
If you change LSF_MASTER_LIST

Whenever you change the parameter LSF_MASTER_LIST, reconfigure the 
cluster with lsadmin reconfig and badmin mbdrestart.

If you change lsf.cluster.cluster_name or lsf.shared
If you make changes that do not affect load report messages such as adding or 
removing slave-only hosts, you only need to restart the LIMs on all master 
candidates with the command lsadmin limrestart and the specific host 
names. For example:

% lsadmin limrestart hostA hostB hostC

If you make changes that affect load report messages such as load indices, you 
need to restart all the LIMs in the cluster. Use the command lsadmin 
reconfig.

How LSF works with LSF_MASTER_LIST
LSF_MASTER_LIST undefined

In this example, lsf.shared and lsf.cluster.cluster_name are shared 
among all LIMs through an NFS file server. The preferred master host is the first 
available server host in the cluster list in lsf.cluster.cluster_name.

Any slave LIM can become the master LIM. Whenever you reconfigure, all LIMs 
read lsf.shared and lsf.cluster.cluster_name to get updated 
information.

For this example, slave LIMs read local lsf.conf files.

LSF_MASTER_LIST defined
The files lsf.shared and lsf.cluster.cluster_name are shared only 
among LIMs listed as candidates to be elected master with the parameter 
LSF_MASTER_LIST.

The preferred master host is no longer the first host in the cluster list in 
lsf.cluster.cluster_name, but the first host in the list specified by 
LSF_MASTER_LIST in lsf.conf.

lsf.shared  lsf.cluster.cluster_name 

Master LIM

HostB

lsf.conf

HostC
slave LIM
HostD
lsf.conf lsf.conf

slave LIM
HostF

lsf.conf

slave LIM
HostG

lsf.conf

slave LIM
HostH

slave LIM
HostE
lsf.conf
Administering Platform LSF



Chapter 37
Tuning the Cluster
Whenever you reconfigure, only master LIM candidates read lsf.shared and 
lsf.cluster.cluster_name to get updated information. The elected master 
LIM sends configuration information to slave LIMs.

The order in which you specify hosts in LSF_MASTER_LIST is the preferred 
order for selecting hosts to become the master LIM.

Considerations
Generally, the files lsf.cluster.cluster_name and lsf.shared for hosts 
that are master candidates should be identical.

When the cluster is started up or reconfigured, LSF rereads configuration files 
and compares lsf.cluster.cluster_name and lsf.shared for hosts that 
are master candidates.

In some cases in which identical files are not shared, files may be out of sync. 
This section describes situations that may arise should 
lsf.cluster.cluster_name and lsf.shared for hosts that are master 
candidates not be identical to those of the elected master host.

LSF_MASTER_LIST
undefined

When LSF_MASTER_LIST is not defined, LSF rejects candidate master hosts 
from the cluster if their lsf.cluster.cluster_name and lsf.shared files 
are different from the files of the elected master. Even if only comment lines 
are different, hosts are rejected.

A warning is logged in the log file lim.log.master_host_name and the 
cluster continues to run, but without the hosts that were rejected.

If you want the hosts that were rejected to be part of the cluster, ensure 
lsf.cluster.cluster_name and lsf.shared are identical for all hosts 
and restart all LIMs in the cluster with the command:

% lsadmin limrestart all

lsf.shared     lsf.cluster.cluster_name 

Master LIM

hostB

lsf.conf

hostC

master LIM
candidate

hostD
lsf.conf lsf.conf

slave-only
 LIM
hostF

lsf.conf lsf.conflsf.conf

LSF_MASTER_LIST=hostC hostD hostE

master LIM
candidate

hostE

slave-only
 LIM
hostG

slave-only
 LIM
hostH
Administering Platform LSF 489



Changing Default LIM Behavior to Improve Performance

490
LSF_MASTER_LIST
Defined

When LSF_MASTER_LIST is defined, LSF only rejects candidate master hosts 
listed in LSF_MASTER_LIST from the cluster if:

◆ The number of load indices in lsf.cluster.cluster_name or 
lsf.shared for master candidates is different from the number of load 
indices in the lsf.cluster.cluster_name or lsf.shared files of the 
elected master.

A warning is logged in the log file lim.log.master_host_name and the 
cluster continues to run, but without the hosts that were rejected.

If you want the hosts that were rejected to be part of the cluster, ensure the 
number of load indices in lsf.cluster.cluster_name and lsf.shared 
are identical for all master candidates and restart LIMs on the master and all 
master candidates:

% lsadmin limrestart hostA hostB hostC

LSF_MASTER_LIST defined, and master host goes down
If LSF_MASTER_LIST is defined and the elected master host goes down, and if 
the number of load indices in lsf.cluster.cluster_name or lsf.shared 
for the new elected master is different from the number of load indices in the 
files of the master that went down, LSF will reject all master candidates that do 
not have the same number of load indices in their files as the newly elected 
master. LSF will also reject all slave-only hosts. This could cause a situation in 
which only the newly elected master is considered part of the cluster.

A warning is logged in the log file lim.log.new_master_host_name and 
the cluster continues to run, but without the hosts that were rejected.

To resolve this, from the current master host, restart all LIMs:

% lsadmin limrestart all

All slave-only hosts will be considered part of the cluster. Master candidates 
with a different number of load indices in their 
lsf.cluster.cluster_name or lsf.shared files will be rejected.

When the master that was down comes back up, you will have the same 
situation as described in “LSF_MASTER_LIST Defined” on page 490. You will 
need to ensure load indices defined in lsf.cluster.cluster_name and 
lsf.shared for all master candidates are identical and restart LIMs on all 
master candidates.
Administering Platform LSF



Chapter 37
Tuning the Cluster
Tuning mbatchd on UNIX 
On UNIX platforms that support thread programming, you can change default 
mbatchd behavior to use multithreading and increase performance of query 
requests when you use the bjobs command. 

Multithreading is beneficial for busy clusters with many jobs and frequent 
query requests. This may indirectly increase overall mbatchd performance.

Operating system
support

See the Online Support area of the Platform Computing Web site at 
www.platform.com for the latest information about operating systems that support 
multithreaded mbatchd.

In this section ◆ “How mbatchd works without multithreading” on page 491

◆ “How mbatchd works with multithreading” on page 491

◆ “Setting a query-dedicated port for mbatchd” on page 492

◆ “Specifying an expiry time for child mbatchds” on page 492

How mbatchd works without multithreading 
Ports By default, mbatchd uses the port defined by the parameter LSB_MBD_PORT 

in lsf.conf or looks into the system services database for port numbers to 
communicate with LIM and job request commands.

It uses this port number to receive query requests from clients.

Servicing
Requests

For every query request received, mbatchd forks a child mbatchd to service 
the request. Each child mbatchd processes the request and then exits.

How mbatchd works with multithreading
To change mbatchd behavior to use multithreading, complete the following 
procedures:

1 Mandatory.

Specify a query-dedicated port for the mbatchd. You do this by setting the 
parameter LSB_QUERY_PORT in lsf.conf.

See “Setting a query-dedicated port for mbatchd” on page 492.

2 Optional.

Set an interval of time to indicate when a new child mbatchd is to be 
forked. You do this by setting the parameter MBD_REFRESH_TIME in 
lsb.params. The default value of MBD_REFRESH_TIME is 5 seconds, and 
valid values are 5-300 seconds.

See “Specifying an expiry time for child mbatchds” on page 492.

When mbatchd has a dedicated port specified by the parameter 
LSB_QUERY_PORT in lsf.conf, it forks a child mbatchd which in turn 
creates threads to process query requests.

As soon as mbatchd has forked a child mbatchd, the child mbatchd takes over 
and listens on the port to process more query requests. For each query request, 
the child mbatchd creates a thread to process it.
Administering Platform LSF 491

http://www.platform.com
http://www.platform.com/services/support/services/platforms.asp


Tuning mbatchd on UNIX

492
The child mbatchd continues to listen to the port number specified by 
LSB_QUERY_PORT and creates threads to service requests until the job status 
changes, a new job is submitted, or until the time specified in 
MBD_REFRESH_TIME in lsb.params has passed. 

◆ If MBD_REFRESH_TIME is < 10 seconds, the child mbatchd exits at 
MBD_REFRESH_TIME even if the job changes status or a new job is 
submitted before MBD_REFRESH_TIME expires

◆ If MBD_REFRESH_TIME > 10 seconds, the child mbatchd exits at 10 
seconds even if the job changes status or a new job is submitted before the 
10 seconds 

◆ If MBD_REFRESH_TIME > 10 seconds and no job changes status or a new 
job is submitted, the child mbatchd exits at MBD_REFRESH_TIME

Setting a query-dedicated port for mbatchd
To enable a query-dedicated port for mbatchd and change the default mbatchd 
behavior so that mbatchd forks a child mbatchd that can create threads, 
specify a port number with the parameter LSB_QUERY_PORT in lsf.conf.

This configuration only works on UNIX platforms that support thread 
programming.

1 Log on to the host as the primary LSF administrator.

2 Edit lsf.conf.

3 Add the LSB_QUERY_PORT parameter and specify a port number that will 
be dedicated to receiving requests from hosts.

4 Save the lsf.conf file.

Where to go next If you want to change the default value for MBD_REFRESH_TIME (default: 5 
seconds), proceed to “Specifying an expiry time for child mbatchds” on 
page 492.

Otherwise, you have completed configuration. Reconfigure the cluster with the 
badmin mbdrestart command.

Specifying an expiry time for child mbatchds
You define how often mbatchd forks a new child mbatchd with the parameter 
MBD_REFRESH_TIME in lsb.params.

The default value for this parameter is 5 seconds. Valid values are 5 to 300 
seconds.

1 Log on to the host as the primary LSF administrator.

2 Edit lsb.params.

3 Add the MBD_REFRESH_TIME parameter and specify a time interval in 
seconds to fork a child mbatchd.

4 Save the lsb.params file.

5 Reconfigure the cluster:
% badmin reconfig
Administering Platform LSF



C H A P T E R

38
Authentication

Controlling access to remote execution has two requirements:

◆ Authenticate the user.

When a user executes a remote command, the command must be run with 
that user’s permission. The LSF daemons need to know which user is 
requesting the remote execution.

◆ Check access controls on the remote host.

The user must be authorized to execute commands remotely on the host.

This chapter describes user, host, and daemon authentication in LSF.

Contents ◆ “About User Authentication” on page 494

◆ “About Host Authentication” on page 500

◆ “About Daemon Authentication” on page 501

◆ “LSF in Multiple Authentication Environments” on page 502

◆ “User Account Mapping” on page 503
Administering Platform LSF 493



About User Authentication

494
About User Authentication
LSF recognizes UNIX and Windows authentication environments, including 
different Windows domains and individual Windows workgroup hosts.

◆ In a UNIX environment, user accounts are validated at the system level, so 
your user account is valid on all hosts.

◆ In a Windows domain environment, user accounts are validated at the 
domain level, and your user account is valid on all hosts in your domain 
(and might be valid in other domains, if there is a trust relationship).

◆ In a Windows workgroup environment, each host authenticates the user 
account, so your local account is only valid on one host.

User authentication options
To enable LSF users to execute commands remotely, you must specify the 
authentication method LSF uses to authorize remote execution across the 
network. 

You have the following choices:

◆ External authentication (eauth)

◆ Privileged ports (setuid)

◆ Identification daemon (identd)

If you change the authentication type while the LSF daemons are running, you 
must shut down and restart the LSF daemons on each LSF server host, so that 
the daemons will use the new authentication method.

External authentication (eauth)
External authentication uses the LSF eauth executable installed in 
LSF_SERVERDIR. Optionally, you may choose to write your own eauth 
executable that uses some site-specific authentication method such as Kerberos 
or DCE client authentication using the GSSAPI.

Examples of these can be found in the LSF_MISC/examples/krb and 
LSF_MISC/examples/dce directories. Installation instructions are found in the 
README file in these directories.

By default, eauth uses an internal key to encrypt authentication data. To use 
an external key to improve security, configure the parameter LSF_EAUTH_KEY 
in the lsf.sudoers file. The default eauth program is installed without 
setuid permission. If you use LSF_EAUTH_KEY, eauth must be setuid.

The eauth mechanism can pass data (such as authentication credentials) from 
users to execution hosts. The environment variable LSF_EAUTH_AUX_DATA 
specifies the full path to a file where data, such as a credential, is stored. The 
mechanisms of eauth -c and eauth -s allow the LSF daemons to pass this 
data using a secure exchange.

LSF_EAUTH in
lsf.conf

Installation with lsfinstall sets LSF_AUTH=eauth in lsf.conf automatically. To use 
another authentication mechanism, you must change the value of LSF_AUTH and 
restart all LSF daemons.
Administering Platform LSF



Chapter 38
Authentication
eauth -c
host_name

When a command is invoked, the client program automatically executes 
eauth -c host_name to get the external authentication data, where 
host_name is the name of the host running the LSF daemon (for example, 
RES) on which the operation will take place. The external user authentication 
data is passed to LSF through the standard output of the eauth program.

eauth -s When the LSF daemon receives the request, it executes eauth -s under the 
primary LSF administrator user ID to process the user authentication data.

If your site cannot run authentication under the primary LSF administrator user 
ID, configure the parameter LSF_EAUTH_USER in the /etc/lsf.sudoers file.

The LSF daemon expects eauth -s to write to standard output:

◆ 1 if authentication succeeds

◆ 0 if authentication fails

The same eauth -s process can service multiple authentication requests; if 
the process terminates, the LSF daemon will re-invoke eauth -s on the next 
authentication request.

See the Platform LSF Reference for information about configuring the 
lsf.sudoers file.

Standard input stream for the eauth program 
User authentication data is passed to eauth -s via its standard input. The 
standard input stream to eauth has the following format:

uid gid user_name client_addr client_port user_auth_data_len 
user_auth_data

where:

◆ uid is the user ID in ASCII of the client user

◆ gid is the group ID in ASCII of the client user

◆ user_name is the user name of the client user

◆ client_addr is the host address of the client host in ASCII dot notation

◆ client_port is the port number from where the client request is made

◆ user_auth_data_len is the length of the external authentication data in 
ASCII passed from the client

◆ user_auth_data is the external user authentication data passed from the 
client
Administering Platform LSF 495



About User Authentication

496
Privileged ports authentication (setuid)
This is the mechanism most UNIX remote utilities use. The LSF commands must 
be installed as setuid programs and owned by root.

If a load-sharing program is owned by root and has the setuid bit set, the LSF 
API functions use a privileged port to communicate with LSF servers, and the 
servers accept the user ID supplied by the caller. This is the same user 
authentication mechanism as used by the UNIX rlogin and rsh commands.

When a setuid application calls the LSLIB initialization routine, a number of 
privileged ports are allocated for remote connections to LSF servers. The 
effective user ID then reverts to the real user ID. Therefore, the number of 
remote connections is limited.

An LSF utility reuses the connection to RES for all remote task executions on 
that host, so the number of privileged ports is only a limitation on the number 
of remote hosts that can be used by a single application, not on the number of 
remote tasks. Programs using LSLIB can specify the number of privileged ports 
to be created at initialization time.

LSF_EAUTH in
lsf.conf

If you do not define LSF_AUTH in lsf.conf, privileged ports (setuid) authentication is 
the default user authentication used by LSF. Installation with lsfinstall sets 
LSF_AUTH=eauth automatically. To use setuid authentication, you must remove 
LSF_AUTH from lsf.conf.

Identification daemon (identd)
LSF also supports authentication using the RFC 931 or RFC 1413 identification 
protocols. Under these protocols, user commands do not need to be installed 
as setuid programs owned by root. You must install the identd daemon 
available in the public domain.

The RFC 1413 and RFC 931 protocols use an identification daemon running on 
each client host. RFC 1413 is a more recent standard than RFC 931. LSF is 
compatible with both. Using an identification daemon incurs more overhead, 
but removes the need for LSF applications to allocate privileged ports.

You should use identification daemons if your site cannot install programs 
owned by root with the setuid bit set, or if you have software developers 
creating new load-sharing applications in C using LSLIB.

An implementation of RFC 931 or RFC 1413 such as pidentd or authd can be 
obtained from the public domain. If you have Internet FTP access, a good 
source for identification daemons is host ftp.lysator.liu.se, directory 
pub/ident/servers.

LSF_EAUTH in
lsf.conf

Installation with lsfinstall sets LSF_AUTH=eauth in lsf.conf automatically. To use 
identd authentication, you must set LSF_AUTH=ident in lsf.conf.
Administering Platform LSF



Chapter 38
Authentication
How LSF determines the user authentication method
LSF uses the LSF_AUTH parameter in the lsf.conf file to determine which 
type of authentication to use:

LSF_AUTH=eauth LSF_AUTH=eauth is set automatically during installation with lsfinstall. 
LSF runs the external executable eauth in the LSF_SERVERDIR directory to 
perform the authentication.

If a load-sharing application is not setuid to root, library functions use a non-
privileged port. If the LSF_AUTH parameter is not set in lsf.conf, the 
connection is rejected.

LSF_AUTH=ident
or undefined

If LSF_AUTH is defined to be ident, RES on the remote host, or mbatchd in 
the case of a bsub command, contacts the identification daemon on the local 
host to verify the user ID. The identification daemon looks directly into the 
kernel to make sure the network port number being used is attached to a 
program being run by the specified user.

LSF allows both the setuid and identification daemon methods to be in effect 
simultaneously. If the effective user ID of a load-sharing application is root, 
then a privileged port number is used in contacting RES. RES always accepts 
requests from a privileged port on a known host even if LSF_AUTH is defined 
to be ident. If the effective user ID of the application is not root, and the 
LSF_AUTH parameter is defined to be ident, then a normal port number is 
used and RES tries to contact the identification daemon to verify the user’s 
identity.

setuid permission on LSF administration commands
The LSF administration commands (lsadmin and badmin, etc.) are installed 
setuid by default. All other LSF commands except the administration 
commands can be run without setuid permission if an identification daemon 
is used.

If your file server does not permit setuid permission, you should install 
LSF_BINDIR on a file system that does allow setuid.

If LSF_AUTH is ... LSF uses ...

eauth External authentication (eauth)

Not defined Privileged ports (setuid)

ident Identification daemon (identd)
Administering Platform LSF 497



About User Authentication

498
Security of LSF authentication
All authentication methods supported by LSF depend on the security of the 
root account on all hosts in the cluster. If a user can get access to the root 
account, they can subvert any of the authentication methods. There are no 
known security holes that allow a non-root user to execute programs with 
another user’s permission.

Some system adminstrators have particular concerns about security schemes 
involving RFC 1413 identification daemons. When a request is coming from an 
unknown host, there is no way to know whether the identification daemon on 
that host is correctly identifying the originating user.

LSF only accepts job execution requests that originate from hosts within the 
LSF cluster, so the identification daemon can be trusted.

The system environment variable LSF_ENVDIR is used by LSF to obtain the 
location of lsf.conf, which points to the LSF configuration files. Any user 
who can modify system environment variables can modify LSF_ENVDIR to 
point to their own configuration and start up programs under the lsfadmin 
account.

All external binaries invoked by the LSF daemons (such as esub, eexec, elim, 
eauth, and queue level pre- and post-execution commands) are run under the 
lsfadmin account.

UNIX By default, external authentication is installed on UNIX. If you use the 
identification protocol (identd) for authentication, LSF uses a port in the UNIX 
privileged port range, so it is not possible for an ordinary user to start a hacked 
identification daemon on an LSF host.

On UNIX, this means that authentication is done using privileged ports and 
binaries that need to be authenticated (for example, bsub) are installed setuid 
to root.

Windows By default, external authentication is installed on Windows. You may disable 
external authentication by disabling the LSF_AUTH parameter in the lsf.conf 
file.

On Windows, privileged ports authentication does not provide any security 
because Windows does not have the concept of setuid binaries and does not 
restrict which binaries can use privileged ports. A security risk exists in that a 
user can discover the format of LSF protocol messages and write a program 
that tries to communicate with an LSF server. The LSF default external 
authentication should be used where this security risk is a concern.

Only the parameters LSF_STARTUP_USERS and LSF_STARTUP_PATH are used 
on Windows. You should ensure that only authorized users modify the files 
under the %SYSTEMROOT% directory.

Once the LSF services on Windows are started, they will only accept requests 
from LSF cluster administrators. To allow other users to interact with the LSF 
services, you must set up the lsf.sudoers file under the directory specified 
by the %SYSTEMROOT% environment variable.

See the Platform LSF Reference for the format of the lsf.sudoers file.
Administering Platform LSF



Chapter 38
Authentication
Correcting user authentication errors
If LSF cannot verify the user’s identity, the error message User permission 
denied is displayed by LSF commands.

This error has several possible causes:

◆ The LSF applications are not installed setuid.

◆ The NFS directory is mounted with the nosuid option.

◆ The identification daemon is not available on the local or submitting host.

◆ External authentication failed.

◆ You configured LSF to use ruserok() and the client host is not found in 
either the /etc/hosts.equiv or the $HOME/.rhosts file on the master or 
remote host.

Password problem notification on Windows
A Windows job may not be able to run because of a problem with the user's 
LSF password (entered and updated using lspasswd). If LSF does not 
recognize the password, the problem could be:

◆ The user never gave their Windows user account password to LSF 
(lspasswd).

◆ The user changed their password in Windows but did not update LSF 
(lspasswd).

If a job is in PEND state and LSF cannot run it because of a password problem, 
by default, LSF puts the job into USUSP and then notifies the user via email. 
The user can fix the problem, and then use bresume to release the job from 
USUSP.
Administering Platform LSF 499



About Host Authentication

500
About Host Authentication
When a batch job or a remote execution request is received, LSF first 
determines the user’s identity. Once the user’s identity is known, LSF decides 
whether it can trust the host from which the request comes from.

Trust LSF host
LSF normally allows remote execution by all users except root, from all hosts 
in the LSF cluster; LSF trusts all hosts that are configured into your cluster. The 
reason behind this is that by configuring an LSF cluster you are turning a 
network of machines into a single computer. Users must have valid accounts 
on all hosts. This allows any user to run a job with their own permission on 
any host in the cluster. Remote execution requests and batch job submissions 
are rejected if they come from a host not in the LSF cluster.

A site can configure an external executable to perform additional user or host 
authorization. By defining LSF_AUTH to be eauth in lsf.conf, the LSF 
daemon will invoke eauth -s when it receives a request that needs 
authentication and authorization. For example, eauth can check if the client 
user is on a list of authorized users or if a host has the necessary privilege to 
be trusted.

/etc/hosts.equiv (UNIX)
If the LSF_USE_HOSTEQUIV parameter is set in the lsf.conf file, LSF uses 
the same remote execution access control mechanism as the rsh command. 
When a job is run on a remote host, the user name and originating host are 
checked using the ruserok(3) function on the remote host.

The ruserok(3) function checks in the /etc/hosts.equiv file and the user’s 
$HOME/.rhosts file to decide if the user has permission to execute jobs.

The name of the local host should be included in this list. RES calls ruserok() 
for connections from the local host. mbatchd calls ruserok() on the master 
host, so every LSF user must have a valid account and remote execution 
permission on the master host.

The disadvantage of using the /etc/hosts.equiv and $HOME/.rhosts files 
is that these files also grant permission to use the rlogin and rsh commands 
without giving a password. Such access is restricted by security policies at 
some sites.

For more information
See the hosts.equiv(5) and ruserok(3) man pages for details on the format 
of the files and the access checks performed.
Administering Platform LSF



Chapter 38
Authentication
About Daemon Authentication

Daemon authentication
By default, LSF calls the eauth program only for user authentication 
(authenticate LSF user requests to either RES or mbatchd).

LSF can also authenticate the following communications between daemons, 
using the same eauth program:

◆ mbatchd requests to sbatchd

◆ sbatchd updates to mbatchd

◆ PAM to sbatchd interactions

◆ mbatchd to mbatchd (in a Platform MultiCluster environment)

The eauth can use these environment variables to provide context:

◆ LSF_EAUTH_CLIENT - sender of the authentication request

◆ LSF_EAUTH_SERVER - receiver of the authentication request

Configuring daemon authentication
Set LSF_AUTH_DAEMONS in lsf.conf. For example,

LSF_AUTH_DAEMONS=1
Administering Platform LSF 501



LSF in Multiple Authentication Environments

502
LSF in Multiple Authentication Environments 
In some environments, such as a UNIX system or a Windows domain, you can 
have one user account that works on all hosts. However, when you build an 
LSF cluster in a heterogeneous environment, you can have a different user 
account on each system, and each system does its own password 
authentication.

This means that LSF cannot always use the submission account to run a job, 
because the job will fail if the execution host cannot validate the password of 
the account you used on the submission host.

In an environment of multiple authentication systems, user mapping 
determines which account LSF uses when it runs your job. User mapping can 
be defined all of the following ways:

◆ For clusters containing Windows hosts, LSF default user mapping 
(LSF_USER_DOMAIN in lsf.conf) might be enabled. This should be 
configured only once, when you install and set up LSF.

◆ User mapping at the user level (lsb.hosts) is configurable by the user.

◆ User mapping at the system level (lsb.users) is configurable by the 
administrator.
Administering Platform LSF



Chapter 38
Authentication
User Account Mapping
LSF allows user account mapping across a non-uniform user name space.

By default, LSF assumes uniform user accounts throughout the cluster. This 
means that jobs will be executed on any host with exactly the same user ID 
and user login name.

The LSF administrator can disable user account mapping.

For information about account mapping between clusters in a MultiCluster 
environment, see the Using Platform LSF MultiCluster.

Configuring user-level account mapping (.lsfhosts)
1 Set up a hidden .lsfhosts file in your home directory that tells what 

accounts to use when you send jobs to remote hosts and which remote 
users are allowed to run jobs under your local account. This is similar to 
the .rhosts file used by rcp, rlogin and rsh.

2 Specify each line in the form:
host_name user_name [send|recv]

where send indicates that if you send a job to host host_name, then the 
account user_name should be used, and recv indicates that your local 
account is enabled to run jobs from user user_name on host host_name. 
If neither send nor recv are specified, your local account can both send 
jobs to and receive jobs from the account user_name on host_name. 
Lines beginning with ‘#’ are ignored. A plus sign (+) in the host_name or 
user_name field indicates any LSF host or user respectively.

3 Set the permission on your .lsfhosts file to read/write only by the 
owner. Otherwise, your .lsfhosts file is silently ignored

MultiCluster The cluster name can be substituted for host_name in a MultiCluster 
environment. For more information, see the Using Platform LSF 
MultiCluster.

Example 1 For example, assume that hostB and hostA in your cluster do not share the 
same user name/user ID space. You have an account user1 on host hostB 
and an account ruser_1 on host hostA. You want to be able to submit jobs 
from hostB to run on hostA. Set up your .lsfhosts files as follows:

On hostB:

% cat ~user1/.lsfhosts
hostA ruser_1 send

On hostA:

% cat ~ruser_1/.lsfhosts
hostB user1 recv
Administering Platform LSF 503



User Account Mapping

504
Example 2 As another example, assume you have account user1 on host hostB and want 
to use the lsfguest account when sending jobs to be run on host hostA. The 
lsfguest account is intended to be used by any user submitting jobs from any 
LSF host. Set up your .lsfhosts files as follows:

On hostB:

% cat ~user1/.lsfhosts
hostA lsfguest send

On hostA:

% cat ~lsfguest/.lsfhosts
+ + recv
Administering Platform LSF



C H A P T E R

39
Job Email, and Job File Spooling

Contents ◆ “Mail Notification When a Job Starts” on page 506

◆ “File Spooling for Job Input, Output, and Command Files” on page 509
Administering Platform LSF 505



Mail Notification When a Job Starts

506
Mail Notification When a Job Starts
When a batch job completes or exits, LSF by default sends a job report by 
electronic mail to the submitting user account. The report includes the 
following information:

◆ Standard output (stdout) of the job

◆ Standard error (stderr) of the job

◆ LSF job information such as CPU, process and memory usage

The output from stdout and stderr are merged together in the order printed, 
as if the job was run interactively. The default standard input (stdin) file is the 
null device. The null device on UNIX is /dev/null.

bsub mail options
-B Sends email to the job submitter when the job is dispatched and begins 

running. The default destination for email is defined by LSB_MAILTO in 
lsf.conf.

-u user_name If you want mail sent to another user, use the -u user_name option to the 
bsub command. Mail associated with the job will be sent to the named user 
instead of to the submitting user account.

-N If you want to separate the job report information from the job output, use the 
-N option to specify that the job report information should be sent by email.

-o and -e Options The output file created by the -o option to the bsub command normally 
contains job report information as well as the job output. This information 
includes the submitting user and host, the execution host, the CPU time (user 
plus system time) used by the job, and the exit status.

If you specify a -o output_file option and do not specify a -e error_file 
option, the standard output and standard error are merged and stored in 
output_file. You can also specify the standard input file if the job needs to 
read input from stdin.

The output files specified by the -o and -e options are created on the 
execution host. 

See “Remote File Access” on page 516 for an example of copying the output 
file back to the submission host if the job executes on a file system that is not 
shared between the submission and execution hosts.

Disabling job
email

If you do not want job output to be sent by mail, specify stdout and stderr 
as the files for -o and -e. For example, the following command directs stderr 
and stdout to file named /tmp/job_out, and no email is sent.

bsub -o /tmp/job_out sleep 5

On UNIX, If you want no job output or email at all, specify /dev/null as the 
output file:

bsub -o /dev/null sleep 5
Administering Platform LSF



Chapter 39
Job Email, and Job File Spooling
Example The following example submits myjob to the night queue:

% bsub -q night -i job_in -o job_out -e job_err myjob

The job reads its input from file job_in. Standard output is stored in file 
job_out, and standard error is stored in file job_err.

Size of job email
Some batch jobs can create large amounts of output. To prevent large job 
output files from interfering with your mail system, you can use the 
LSB_MAILSIZE_LIMIT parameter in lsf.conf to limit the size of the email 
containing the job output information.

By default, LSB_MAILSIZE_LIMIT is not enabled—no limit is set on size of 
batch job output email.

If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is 
saved to a file under JOB_SPOOL_DIR, or the default job output directory if 
JOB_SPOOL_DIR is undefined. The email informs users where the job output 
is located.

If the -o option of bsub is used, the size of the job output is not checked 
against LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE
environment

variable

LSF sets LSB_MAILSIZE to the approximate size in KB of the email containing 
job output information, allowing a custom mail program to intercept output 
that is larger than desired. If you use the LSB_MAILPROG parameter to specify 
the custom mail program that can make use of the LSB_MAILSIZE environment 
variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE is not recognized by the LSF default mail program. To prevent 
large job output files from interfering with your mail system, use 
LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email 
containing the job information.

LSB_MAILSIZE
values

The LSB_MAILSIZE environment variable can take the following values:

◆ A positive integer

If the output is being sent by email, LSB_MAILSIZE is set to the estimated 
mail size in KB.

◆ -1

If the output fails or cannot be read, LSB_MAILSIZE is set to -1 and the 
output is sent by email using LSB_MAILPROG if specified in lsf.conf.

◆ Undefined

If you use the -o or -e options of bsub, the output is redirected to an 
output file. Because the output is not sent by email in this case, 
LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the -N option is used with the -o option of bsub, LSB_MAILSIZE is not 
set.
Administering Platform LSF 507



Mail Notification When a Job Starts

508
Directory for job output
The -o and -e options of the bsub and bmod commands can accept a file name 
or directory path. LSF creates the standard output and standard error files in 
this directory. If you specify only a directory path, job output and error files 
are created with unique names based on the job ID so that you can use a single 
directory for all job output, rather than having to create separate output 
directories for each job.

Specifying a directory for job output
Make the final character in the path a slash (/) on UNIX, or a double backslash 
(\\) on Windows. If you omit the trailing slash or backslash characters, LSF 
treats the specification as a file name.

If the specified directory does not exist, LSF creates it on the execution host 
when it creates the standard error and standard output files.

By default, the output files have the following format:

Standard output output_directory/job_ID.out

Standard error error_directory/job_ID.err

Example The following command creates the directory /usr/share/lsf_out if it does 
not exist, and creates the standard output file job_ID.out in this directory 
when the job completes:

% bsub -o /usr/share/lsf_out/ myjob

The following command creates the directory C:\lsf\work\lsf_err if it 
does not exist, and creates the standard error file job_ID.err in this directory 
when the job completes:

% bsub -e C:\lsf\work\lsf_err\\ myjob

For more information
See the Platform LSF Reference for information about the LSB_MAILSIZE 
environment variable and the LSB_MAILTO, LSB_MAILSIZE_LIMIT parameters 
in lsf.conf, and JOB_SPOOL_DIR in lsb.params.
Administering Platform LSF



Chapter 39
Job Email, and Job File Spooling
File Spooling for Job Input, Output, and Command 
Files

About job file spooling
LSF enables spooling of job input, output, and command files by creating 
directories and files for buffering input and output for a job. LSF removes these 
files when the job completes.

You can make use of file spooling when submitting jobs with the -is and -Zs 
options to bsub. Use similar options in bmod to modify or cancel the spool file 
specification for the job. Use the file spooling options if you need to modify or 
remove the original job input or command files before the job completes. 
Removing or modifying the original input file does not affect the submitted job.

File spooling is not supported across MultiClusters.

Specifying job input files
Use the bsub -i input_file and bsub -is input_file commands to get 
the standard input for the job from the file path name specified by input_file. 
The path can be an absolute path or a relative path to the current working 
directory. The input file can be any type of file, though it is typically a shell 
script text file.

LSF first checks the execution host to see if the input file exists. If the file exists 
on the execution host, LSF uses this file as the input file for the job.

If the file does not exist on the execution host, LSF attempts to copy the file 
from the submission host to the execution host. For the file copy to be 
successful, you must allow remote copy (rcp) access, or you must submit the 
job from a server host where RES is running. The file is copied from the 
submission host to a temporary file in the directory specified by the 
JOB_SPOOL_DIR parameter in lsb.params, or your $HOME/.lsbatch 
directory on the execution host. LSF removes this file when the job completes.

The -is option of bsub spools the input file to the directory specified by the 
JOB_SPOOL_DIR parameter in lsb.params, and uses the spooled file as the 
input file for the job.

Use the bsub -is command if you need to change the original input file 
before the job completes. Removing or modifying the original input file does 
not affect the submitted job.

Unless you use -is, you can use the special characters %J and %I in the name 
of the input file. %J is replaced by the job ID. %I is replaced by the index of 
the job in the array, if the job is a member of an array, otherwise by 0 (zero). 
The special characters %J and %I are not valid with the -is option.
Administering Platform LSF 509



File Spooling for Job Input, Output, and Command Files

510
Specifying a job command file (bsub -Zs)
Use the bsub -Zs command to spool a job command file to the directory 
specified by the JOB_SPOOL_DIR parameter in lsb.params. LSF uses the 
spooled file as the command file for the job.

Use the bmod -Zs command if you need to change the command file after the 
job has been submitted. Changing the original input file does not affect the 
submitted job. Use bmod -Zsn to cancel the last spooled command file and 
use the original spooled file.

The bsub -Zs option is not supported for embedded job commands because 
LSF is unable to determine the first command to be spooled in an embedded 
job command.

About the job spooling directory (JOB_SPOOL_DIR)
If JOB_SPOOL_DIR is specified in lsb.params:

◆ The job input file for bsub -is is spooled to 
JOB_SPOOL_DIR/lsf_indir. If the lsf_indir directory does not exist, 
LSF creates it before spooling the file. LSF removes the spooled file when 
the job completes.

◆ The job command file for bsub -Zs is spooled to 
JOB_SPOOL_DIR/lsf_cmddir. If the lsf_cmddir directory does not exist, 
LSF creates it before spooling the file. LSF removes the spooled file when 
the job completes.

The JOB_SPOOL_DIR directory should be a shared directory accessible from 
the master host and the submission host. The directory must be readable and 
writable by the job submission users.

Except for bsub -is and bsub -Zs, if JOB_SPOOL_DIR is not accessible or 
does not exist, output is spooled to the default job output directory .lsbatch.

For bsub -is and bsub -Zs, JOB_SPOOL_DIR must be readable and writable 
by the job submission user. If the specified directory is not accessible or does 
not exist, bsub -is and bsub -Zs cannot write to the default directory and 
the job will fail.

If JOB_SPOOL_DIR is not specified in lsb.params:

◆ The job input file for bsub -is is spooled to 
LSB_SHAREDIR/cluster_name/lsf_indir. If the lsf_indir directory 
does not exist, LSF creates it before spooling the file. LSF removes the 
spooled file when the job completes.

◆ The job command file for bsub -Zs is spooled to 
LSB_SHAREDIR/cluster_name/lsf_cmddir. If the lsf_cmddir 
directory does not exist, LSF creates it before spooling the file. LSF removes 
the spooled file when the job completes.

If you want to use job file spooling, but do not specify JOB_SPOOL_DIR, the 
LSB_SHAREDIR/cluster_name directory must be readable and writable by 
all the job submission users. If your site does not permit this, you must 
Administering Platform LSF



Chapter 39
Job Email, and Job File Spooling
manually create lsf_indir and lsf_cmddir directories under 
LSB_SHAREDIR/cluster_name that are readable and writable by all job 
submission users.

Modifying the job input file
Use the -i and -is options of bmod to specify a new job input file. The -in 
and -isn options cancel the last job input file modification made with either 
-i or -is.

Modifying the job command file
Use the -Z and -Zs options of bmod to modify the job command file 
specification. -Z modifies a command submitted without spooling, and Zs 
modifies a spooled command file. The -Zsn option of bmod cancels the last 
job command file modification made with -Zs and uses the original spooled 
command.

For more information
See the Platform LSF Reference for more information about the bsub and 
bmod commands, the JOB_SPOOL_DIR parameter in lsb.params, and the 
LSF_TMPDIR environment variable.
Administering Platform LSF 511



File Spooling for Job Input, Output, and Command Files

512
 Administering Platform LSF



C H A P T E R

40
Non-Shared File Systems

Contents ◆ “About Directories and Files” on page 514

◆ “Using LSF with Non-Shared File Systems” on page 515

◆ “Remote File Access” on page 516

◆ “File Transfer Mechanism (lsrcp)” on page 518
Administering Platform LSF 513



About Directories and Files

514
About Directories and Files
LSF is designed for networks where all hosts have shared file systems, and files 
have the same names on all hosts.

LSF includes support for copying user data to the execution host before 
running a batch job, and for copying results back after the job executes.

In networks where the file systems are not shared, this can be used to give 
remote jobs access to local data.

Supported file systems
UNIX On UNIX systems, LSF supports the following shared file systems:

◆ Network File System (NFS)

NFS file systems can be mounted permanently or on demand using 
automount.

◆ Andrew File System (AFS)

◆ Distributed File System (DCE/DFS)

Windows On Windows, directories containing LSF files can be shared among hosts from 
a Windows server machine.

Non-shared directories and files
LSF is usually used in networks with shared file space. When shared file space 
is not available, LSF can copy needed files to the execution host before running 
the job, and copy result files back to the submission host after the job 
completes. See “Remote File Access” on page 516 for more information.

Some networks do not share files between hosts. LSF can still be used on these 
networks, with reduced fault tolerance. See “Using LSF with Non-Shared File 
Systems” on page 515 for information about using LSF in a network without a 
shared file system.
Administering Platform LSF



Chapter 40
Non-Shared File Systems
Using LSF with Non-Shared File Systems

LSF installation
To install LSF on a cluster without shared file systems, follow the complete 
installation procedure on every host to install all the binaries, man pages, and 
configuration files.

Configuration files
After you have installed LSF on every host, you must update the configuration 
files on all hosts so that they contain the complete cluster configuration. 
Configuration files must be the same on all hosts.

Master host
You must choose one host to act as the LSF master host. LSF configuration files 
and working directories must be installed on this host, and the master host 
must be listed first in lsf.cluster.cluster_name.

You can use the parameter LSF_MASTER_LIST in lsf.conf to define which 
hosts can be considered to be elected master hosts. In some cases, this may 
improve performance. 

Fault tolerance
Some fault tolerance can be introduced by choosing more than one host as a 
possible master host, and using NFS to mount the LSF working directory on 
only these hosts. All the possible master hosts must be listed first in 
lsf.cluster.cluster_name. As long as one of these hosts is available, LSF 
continues to operate.
Administering Platform LSF 515



Remote File Access

516
Remote File Access

Using LSF with non-shared file space
LSF is usually used in networks with shared file space. When shared file space 
is not available, use the bsub -f command to have LSF copy needed files to 
the execution host before running the job, and copy result files back to the 
submission host after the job completes.

LSF attempts to run a job in the directory where the bsub command was 
invoked. If the execution directory is under the user’s home directory, 
sbatchd looks for the path relative to the user’s home directory. This handles 
some common configurations, such as cross-mounting user home directories 
with the /net automount option.

If the directory is not available on the execution host, the job is run in /tmp. 
Any files created by the batch job, including the standard output and error files 
created by the -o and -e options to bsub, are left on the execution host.

LSF provides support for moving user data from the submission host to the 
execution host before executing a batch job, and from the execution host back 
to the submitting host after the job completes. The file operations are specified 
with the -f option to bsub.

LSF uses the lsrcp command to transfer files. lsrcp contacts RES on the 
remote host to perform file transfer. If RES is not available, the UNIX rcp 
command is used. See “File Transfer Mechanism (lsrcp)” on page 518 for more 
information.

bsub -f
The -f "[local_file operator [remote_file]]" option to the bsub 
command copies a file between the submission host and the execution host. 
To specify multiple files, repeat the -f option.

local_file File name on the submission host

remote_file File name on the execution host

The files local_file and remote_file can be absolute or relative file path 
names. You must specific at least one file name. When the file remote_file is 
not specified, it is assumed to be the same as local_file. Including local_file 
without the operator results in a syntax error.

operator Operation to perform on the file. The operator must be surrounded by white 
space.

Valid values for operator are:

> local_file on the submission host is copied to remote_file on the execution 
host before job execution. remote_file is overwritten if it exists.

< remote_file on the execution host is copied to local_file on the submission 
host after the job completes. local_file is overwritten if it exists.

<< remote_file is appended to local_file after the job completes. local_file is 
created if it does not exist.
Administering Platform LSF



Chapter 40
Non-Shared File Systems
><, <> Equivalent to performing the > and then the < operation. The file local_file is 
copied to remote_file before the job executes, and remote_file is copied 
back, overwriting local_file, after the job completes. <> is the same as ><

If the submission and execution hosts have different directory structures, you 
must ensure that the directory where remote_file and local_file will be 
placed exists. LSF tries to change the directory to the same path name as the 
directory where the bsub command was run. If this directory does not exist, 
the job is run in your home directory on the execution host.

You should specify remote_file as a file name with no path when running in 
non-shared file systems; this places the file in the job’s current working 
directory on the execution host. This way the job will work correctly even if 
the directory where the bsub command is run does not exist on the execution 
host. Be careful not to overwrite an existing file in your home directory.

bsub -i
If the input file specified with bsub -i is not found on the execution host, the 
file is copied from the submission host using the LSF remote file access facility 
and is removed from the execution host after the job finishes.

bsub -o and bsub -e
The output files specified with the -o and -e arguments to bsub are created 
on the execution host, and are not copied back to the submission host by 
default. You can use the remote file access facility to copy these files back to 
the submission host if they are not on a shared file system.

For example, the following command stores the job output in the job_out file 
and copies the file back to the submission host:

% bsub -o job_out -f "job_out <" myjob

Example
To submit myjob to LSF, with input taken from the file /data/data3 and the 
output copied back to /data/out3, run the command:

% bsub -f "/data/data3 > data3" -f "/data/out3 < out3" myjob data3 out3

To run the job batch_update, which updates the batch_data file in place, 
you need to copy the file to the execution host before the job runs and copy 
it back after the job completes:

% bsub -f "batch_data <>" batch_update batch_data
Administering Platform LSF 517



File Transfer Mechanism (lsrcp)

518
File Transfer Mechanism (lsrcp)
The LSF remote file access mechanism (bsub -f) uses lsrcp to process the 
file transfer. The lsrcp command tries to connect to RES on the submission 
host to handle the file transfer.

See “Remote File Access” on page 516 for more information about using 
bsub -f.

Limitations to lsrcp
Because LSF client hosts do not run RES, jobs that are submitted from client 
hosts should only specify bsub -f if rcp is allowed. You must set up the 
permissions for rcp if account mapping is used.

File transfer using lscrp is not supported in the following contexts:

◆ If LSF account mapping is used; lsrcp fails when running under a different 
user account

◆ LSF client hosts do not run RES, so lsrcp cannot contact RES on the 
submission host

See “User Account Mapping” on page 503 for more information.

Workarounds
In these situations, use the following workarounds:

rcp on UNIX If lsrcp cannot contact RES on the submission host, it attempts to use rcp to 
copy the file. You must set up the /etc/hosts.equiv or HOME/.rhosts file 
in order to use rcp.

See the rcp(1) and rsh(1) man pages for more information on using the rcp 
command.

Custom file
transfer

mechanism

You can replace lsrcp with your own file transfer mechanism as long as it 
supports the same syntax as lsrcp. This might be done to take advantage of 
a faster interconnection network, or to overcome limitations with the existing 
lsrcp. sbatchd looks for the lsrcp executable in the LSF_BINDIR directory 
as specified in the lsf.conf file.
Administering Platform LSF



C H A P T E R

41
Error and Event Logging

Contents ◆ “System Directories and Log Files” on page 520

◆ “Managing Error Logs” on page 522

◆ “System Event Log” on page 523

◆ “Duplicate Logging of Event Logs” on page 524
Administering Platform LSF 519



System Directories and Log Files

520
System Directories and Log Files
LSF uses directories for temporary work files, log files and transaction files and 
spooling.

LSF keeps track of all jobs in the system by maintaining a transaction log in the 
work subtree. The LSF log files are found in the directory 
LSB_SHAREDIR/cluster_name/logdir.

The following files maintain the state of the LSF system:

lsb.events
LSF uses the lsb.events file to keep track of the state of all jobs. Each job is 
a transaction from job submission to job completion. LSF system keeps track 
of everything associated with the job in the lsb.events file.

lsb.events.n
The events file is automatically trimmed and old job events are stored in 
lsb.event.n files. When mbatchd starts, it refers only to the lsb.events file, 
not the lsb.events.n files. The bhist command can refer to these files.

Job script files in the info directory
When a user issues a bsub command from a shell prompt, LSF collects all of 
the commands issued on the bsub line and spools the data to mbatchd, which 
saves the bsub command script in the info directory for use at dispatch time 
or if the job is rerun. The info directory is managed by LSF and should not be 
modified by anyone.

Log directory permissions and ownership
Ensure that the permissions on the LSF_LOGDIR directory to be writable by 
root. The LSF administrator must own LSF_LOGDIR.

Support for UNICOS accounting 
In Cray UNICOS environments, LSF writes to the Network Queuing System 
(NQS) accounting data file, nqacct, on the execution host. This lets you track 
LSF jobs and other jobs together, through NQS.
Administering Platform LSF



Chapter 41
Error and Event Logging
Support for IRIX Comprehensive System Accounting (CSA)
The IRIX 6.5.9 Comprehensive System Accounting facility (CSA) writes an 
accounting record for each process in the pacct file, which is usually located 
in the /var/adm/acct/day directory. IRIX system administrators then use the 
csabuild command to organize and present the records on a job by job basis.

The LSF_ENABLE_CSA parameter in lsf.conf enables LSF to write job events 
to the pacct file for processing through CSA. For LSF job accounting, records 
are written to pacct at the start and end of each LSF job.

See the Platform LSF Reference for more information about the 
LSF_ENABLE_CSA parameter.

See the IRIX 6.5.9 resource administration documentation for information 
about CSA.
Administering Platform LSF 521



Managing Error Logs

522
Managing Error Logs 
Error logs maintain important information about LSF operations. When you see 
any abnormal behavior in LSF, you should first check the appropriate error logs 
to find out the cause of the problem.

LSF log files grow over time. These files should occasionally be cleared, either 
by hand or using automatic scripts.

Daemon error log
LSF log files are reopened each time a message is logged, so if you rename or 
remove a daemon log file, the daemons will automatically create a new log file.

The LSF daemons log messages when they detect problems or unusual 
situations.

The daemons can be configured to put these messages into files.

The error log file names for the LSF system daemons are:

◆ lim.log.host_name

◆ res.log.host_name

◆ pim.log.host_name

◆ sbatchd.log.host_name

◆ mbatchd.log.host_name

◆ mbschd.log.host_name

LSF daemons log error messages in different levels so that you can choose to 
log all messages, or only log messages that are deemed critical. Message 
logging is controlled by the parameter LSF_LOG_MASK in lsf.conf. Possible 
values for this parameter can be any log priority symbol that is defined in 
/usr/include/sys/syslog.h. The default value for LSF_LOG_MASK is 
LOG_WARNING.

Error logging
If the optional LSF_LOGDIR parameter is defined in lsf.conf, error messages 
from LSF servers are logged to files in this directory.

If LSF_LOGDIR is defined, but the daemons cannot write to files there, the 
error log files are created in /tmp.

If LSF_LOGDIR is not defined, errors are logged to the system error logs 
(syslog) using the LOG_DAEMON facility. syslog messages are highly 
configurable, and the default configuration varies widely from system to 
system. Start by looking for the file /etc/syslog.conf, and read the man 
pages for syslog(3) and syslogd(1).

If the error log is managed by syslog, it is probably already being 
automatically cleared.

If LSF daemons cannot find lsf.conf when they start, they will not find the 
definition of LSF_LOGDIR. In this case, error messages go to syslog. If you 
cannot find any error messages in the log files, they are likely in the syslog.
Administering Platform LSF



Chapter 41
Error and Event Logging
System Event Log
The LSF daemons keep an event log in the lsb.events file. The mbatchd 
daemon uses this information to recover from server failures, host reboots, and 
mbatchd restarts. The lsb.events file is also used by the bhist command to 
display detailed information about the execution history of batch jobs, and by 
the badmin command to display the operational history of hosts, queues, and 
daemons.

By default, mbatchd automatically backs up and rewrites the lsb.events file 
after every 1000 batch job completions. This value is controlled by the 
MAX_JOB_NUM parameter in the lsb.params file. The old lsb.events file 
is moved to lsb.events.1, and each old lsb.events.n file is moved to 
lsb.events.n+1. LSF never deletes these files. If disk storage is a concern, 
the LSF administrator should arrange to archive or remove old lsb.events.n 
files periodically.

CAUTION Do not remove or modify the current lsb.events file. Removing or 
modifying the lsb.events file could cause batch jobs to be lost.
Administering Platform LSF 523



Duplicate Logging of Event Logs

524
Duplicate Logging of Event Logs 
To recover from server failures, host reboots, or mbatchd restarts, LSF uses 
information stored in lsb.events. To improve the reliability of LSF, you can 
configure LSF to maintain copies of these logs, to use as a backup.

If the host that contains the primary copy of the logs fails, LSF will continue to 
operate using the duplicate logs. When the host recovers, LSF uses the 
duplicate logs to update the primary copies.

How duplicate logging works
By default, the event log is located in LSB_SHAREDIR. Typically, 
LSB_SHAREDIR resides on a reliable file server that also contains other critical 
applications necessary for running jobs, so if that host becomes unavailable, 
the subsequent failure of LSF is a secondary issue. LSB_SHAREDIR must be 
accessible from all potential LSF master hosts.

When you configure duplicate logging, the duplicates are kept on the file 
server, and the primary event logs are stored on the first master host. In other 
words, LSB_LOCALDIR is used to store the primary copy of the batch state 
information, and the contents of LSB_LOCALDIR are copied to a replica in 
LSB_SHAREDIR, which resides on a central file server. This has the following 
effects: 

◆ Creates backup copies of lsb.events

◆ Reduces the load on the central file server

◆ Increases the load on the LSF master host

Failure of file
server

If the file server containing LSB_SHAREDIR goes down, LSF continues to 
process jobs. Client commands such as bhist, which directly read 
LSB_SHAREDIR will not work. 

When the file server recovers, the current log files are replicated to 
LSB_SHAREDIR.

Failure of first
master host

If the first master host fails, the primary copies of the files (in LSB_LOCALDIR) 
become unavailable. Then, a new master host is selected. The new master host 
uses the duplicate files (in LSB_SHAREDIR) to restore its state and to log future 
events. There is no duplication by the second or any subsequent LSF master 
hosts.

When the first master host becomes available after a failure, it will update the 
primary copies of the files (in LSB_LOCALDIR) from the duplicates (in) and 
continue operations as before.

If the first master host does not recover, LSF will continue to use the files in 
LSB_SHAREDIR, but there is no more duplication of the log files.

Simultaneous
failure of both

hosts

If the master host containing LSB_LOCALDIR and the file server containing 
LSB_SHAREDIR both fail simultaneously, LSF will be unavailable.
Administering Platform LSF



Chapter 41
Error and Event Logging
Network
partioning

We assume that Network partitioning does not cause a cluster to split into two 
independent clusters, each simultaneously running mbatchd.

This may happen given certain network topologies and failure modes. For 
example, connectivity is lost between the first master, M1, and both the file 
server and the secondary master, M2. Both M1 and M2 will run mbatchd 
service with M1 logging events to LSB_LOCALDIR and M2 logging to 
LSB_SHAREDIR. When connectivity is restored, the changes made by M2 to 
LSB_SHAREDIR will be lost when M1 updates LSB_SHAREDIR from its copy in 
LSB_LOCALDIR.

The archived event files are only available on LSB_LOCALDIR, so in the case 
of network partitioning, commands such as bhist cannot access these files. As 
a precaution, you should periodically copy the archived files from 
LSB_LOCALDIR to LSB_SHAREDIR.

Setting an event
update interval

If NFS traffic is too high and you want to reduce network traffic, use 
EVENT_UPDATE_INTERVAL in lsb.params to specify how often to back up 
the data and synchronize the LSB_SHAREDIR and LSB_LOCALDIR directories.

The directories are always synchronized when data is logged to the files, or 
when mbatchd is started on the first LSF master host.

Automatic archiving and duplicate logging
Event logs Archived event logs, lsb.events.n, are not replicated to LSB_SHAREDIR. If 

LSF starts a new event log while the file server containing LSB_SHAREDIR is 
down, you might notice a gap in the historical data in LSB_SHAREDIR.

Configuring duplicate logging
To enable duplicate logging, set LSB_LOCALDIR in lsf.conf to a directory on 
the first master host (the first host configured in lsf.cluster.cluster_name) 
that will be used to store the primary copies of lsb.events. This directory 
should only exist on the first master host.

1 Edit lsf.conf and set LSB_LOCALDIR to a local directory that exists only 
on the first master host.

2 Use the commands lsadmin reconfig and badmin mbdrestart to make 
the changes take effect.
Administering Platform LSF 525



Duplicate Logging of Event Logs

526
 Administering Platform LSF



C H A P T E R

42
Troubleshooting and Error

Messages

Contents ◆ “Shared File Access” on page 528

◆ “Common LSF Problems” on page 529

◆ “Error Messages” on page 534

◆ “Setting Daemon Message Log to Debug Level” on page 540

◆ “Setting Daemon Timing Levels” on page 543
Administering Platform LSF 527



Shared File Access

528
Shared File Access
A frequent problem with LSF is non-accessible files due to a non-uniform file 
space. If a task is run on a remote host where a file it requires cannot be 
accessed using the same name, an error results. Almost all interactive LSF 
commands fail if the user’s current working directory cannot be found on the 
remote host.

Shared files on UNIX
If you are running NFS, rearranging the NFS mount table may solve the 
problem. If your system is running the automount server, LSF tries to map the 
filenames, and in most cases it succeeds. If shared mounts are used, the 
mapping may break for those files. In such cases, specific measures need to be 
taken to get around it.

The automount maps must be managed through NIS. When LSF tries to map 
filenames, it assumes that automounted file systems are mounted under the 
/tmp_mnt directory.

Shared files on Windows
To share files among Windows machines, set up a share on the server and 
access it from the client. You can access files on the share either by specifying 
a UNC path (\\server\share\path) or connecting the share to a local drive 
name and using a drive:\path syntax. Using UNC is recommended because 
drive mappings may be different across machines, while UNC allows you to 
unambiguously refer to a file on the network.

Shared files across UNIX and Windows
For file sharing across UNIX and Windows, you require a third party NFS 
product on Windows to export directories from Windows to UNIX.
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
Common LSF Problems
This section lists some other common problems with the LIM, RES, mbatchd, 
sbatchd, and interactive applications.

Most problems are due to incorrect installation or configuration. Check the 
error log files; often the log message points directly to the problem.

LIM dies quietly
Run the following command to check for errors in the LIM configuration files.

% lsadmin ckconfig -v

This displays most configuration errors. If this does not report any errors, check 
in the LIM error log.

LIM unavailable
Sometimes the LIM is up, but executing the lsload command prints the 
following error message:

Communication time out.

If the LIM has just been started, this is normal, because the LIM needs time to 
get initialized by reading configuration files and contacting other LIMs.

If the LIM does not become available within one or two minutes, check the 
LIM error log for the host you are working on.

When the local LIM is running but there is no master LIM in the cluster, LSF 
applications display the following message:

Cannot locate master LIM now, try later.

Check the LIM error logs on the first few hosts listed in the Host section of the 
lsf.cluster.cluster_name file. If LSF_MASTER_LIST is defined in 
lsf.conf, check the LIM error logs on the hosts listed in this parameter 
instead.

RES does not start
Check the RES error log.

UNIX If the RES is unable to read the lsf.conf file and does not know where to 
write error messages, it logs errors into syslog(3).

Windows If the RES is unable to read the lsf.conf file and does not know where to 
write error messages, it logs errors into C:\temp.
Administering Platform LSF 529



Common LSF Problems

530
User permission denied
If remote execution fails with the following error message, the remote host 
could not securely determine the user ID of the user requesting remote 
execution.

User permission denied.

Check the RES error log on the remote host; this usually contains a more 
detailed error message.

If you are not using an identification daemon (LSF_AUTH is not defined in the 
lsf.conf file), then all applications that do remote executions must be owned 
by root with the setuid bit set. This can be done as follows.

% chmod 4755 filename

If the binaries are on an NFS-mounted file system, make sure that the file 
system is not mounted with the nosuid flag.

If you are using an identification daemon (defined in the lsf.conf file by 
LSF_AUTH), inetd must be configured to run the daemon. The identification 
daemon must not be run directly.

If LSF_USE_HOSTEQUIV is defined in the lsf.conf file, check if 
/etc/hosts.equiv or HOME/.rhosts on the destination host has the client 
host name in it. Inconsistent host names in a name server with /etc/hosts 
and /etc/hosts.equiv can also cause this problem.

On SGI hosts running a name server, you can try the following command to 
tell the host name lookup code to search the /etc/hosts file before calling 
the name server.

% setenv HOSTRESORDER "local,nis,bind"

Non-uniform file name space
A command may fail with the following error message due to a non-uniform 
file name space.

chdir(...) failed: no such file or directory

You are trying to execute a command remotely, where either your current 
working directory does not exist on the remote host, or your current working 
directory is mapped to a different name on the remote host.

If your current working directory does not exist on a remote host, you should 
not execute commands remotely on that host.

On UNIX If the directory exists, but is mapped to a different name on the remote host, 
you have to create symbolic links to make them consistent.

LSF can resolve most, but not all, problems using automount. The automount 
maps must be managed through NIS. Follow the instructions in your Release 
Notes for obtaining technical support if you are running automount and LSF is 
not able to locate directories on remote hosts.
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
Batch daemons die quietly
First, check the sbatchd and mbatchd error logs. Try running the following 
command to check the configuration.

% badmin ckconfig

This reports most errors. You should also check if there is any email in the LSF 
administrator’s mailbox. If the mbatchd is running but the sbatchd dies on 
some hosts, it may be because mbatchd has not been configured to use those 
hosts. 

See “Host not used by LSF” on page 531.

sbatchd starts but mbatchd does not
Check whether LIM is running. You can test this by running the lsid 
command. If LIM is not running properly, follow the suggestions in this chapter 
to fix the LIM first. It is possible that mbatchd is temporarily unavailable 
because the master LIM is temporarily unknown, causing the following error 
message.

sbatchd: unknown service

Check whether services are registered properly. See “Registering Service Ports” 
on page 85 for information about registering LSF services.

Host not used by LSF
If you configure a list of server hosts in the Host section of the lsb.hosts file, 
mbatchd allows sbatchd to run only on the hosts listed. If you try to configure 
an unknown host in the HostGroup or HostPartition sections of the 
lsb.hosts file, or as a HOSTS definition for a queue in the lsb.queues file, 
mbatchd logs the following message.

mbatchd on host: LSB_CONFDIR/cluster/configdir/file(line #): 
Host hostname is not used by lsbatch;

ignored

If you start sbatchd on a host that is not known by mbatchd, mbatchd rejects 
the sbatchd. The sbatchd logs the following message and exits.

This host is not used by lsbatch system.

Both of these errors are most often caused by not running the following 
commands, in order, after adding a host to the configuration.

lsadmin reconfig
badmin reconfig

You must run both of these before starting the daemons on the new host.
Administering Platform LSF 531



Common LSF Problems

532
UNKNOWN host type or model
Viewing UNKNOWN host type or model

Run lshosts. A model or type UNKNOWN indicates the host is down or the 
LIM on the host is down. You need to take immediate action. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA UNKNOWN Ultra2 20.2 2 256M 710M Yes ()

Fixing UNKNOWN
host type or

model

1 Start the host.

2 Run lsadmin limstartup to start up the LIMs on the host. For example:
# lsadmin limstartup hostA
Starting up LIM on <hostA> .... done

You can specify more than one host name to start up LIM on multiple hosts. 
If you do not specify a host name, LIM is started up on the host from which 
the command is submitted.

On UNIX, in order to start up LIM remotely, you must be root or listed in 
lsf.sudoers and be able to run the rsh command across all hosts 
without entering a password. See “Prerequisites” on page 62 for more 
details.

3 Wait a few seconds, then run lshosts again. You should now be able to 
see a specific model or type for the host or DEFAULT. If you see DEFAULT, 
you can leave it as is. When automatic detection of host type or model fails, 
the type or model is set to DEFAULT. LSF will work on the host. A 
DEFAULT model may be inefficient because of incorrect CPU factors. A 
DEFAULT type may cause binary incompatibility because a job from a 
DEFAULT host type can be migrated to another.

DEFAULT host type or model
Viewing DEFAULT

host type or
model

Run lshosts. If Model or Type are displayed as DEFAULT when you use 
lshosts and automatic host model and type detection is enabled, you can 
leave it as is or change it. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCE
S
hostA DEFAULT DEFAULT 1 2 256M 710M Yes ()

If model is DEFAULT, LSF will work correctly but the host will have a CPU 
factor of 1, which may not make efficient use of the host model.

If type is DEFAULT, there may be binary incompatibility. For example, there 
are 2 hosts, one is Solaris, the other is HP. If both hosts are set to type 
DEFAULT, it means jobs running on the Solaris host can be migrated to the HP 
host and vice-versa.
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
Fixing DEFAULT
host type

1 Run lim -t on the host whose type is DEFAULT:
% lim -t

Host Type : sun4
Host Architecture : SUNWUltra2_200_sparcv9
Matched Type : DEFAULT
Matched Architecture : SUNWUltra2_300_sparc
Matched Model : Ultra2
CPU Factor : 20.2

Note the value of Host Type and Host Architecture.

2 Edit lsf.shared.

In the HostType section, enter a new host type. Use the host type name 
detected with lim -t. For example:

Begin HostType
TYPENAME 
DEFAULT 
CRAYJ
sun4
...

3 Save changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.

Fixing DEFAULT
host model

1 Run the lim -t command on the host whose model is DEFAULT:
% lim -t

Host Type : sun4
Host Architecture : SUNWUltra2_200_sparcv9
Matched Type : DEFAULT
Matched Architecture : SUNWUltra2_300_sparc
Matched Model : DEFAULT
CPU Factor : 20.2

Note the value of Host Architecture.

2 Edit lsf.shared.

In the HostModel section, add the new model with architecture and CPU 
factor. Add the host model to the end of the host model list. The limit for 
host model entries is 127. Lines commented out with # are not counted as 
part of the 127 line limit.

Use the architecture detected with lim -t. For example:

Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
Ultra2 20 SUNWUltra2_200_sparcv9
End HostModel

3 Save changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.
Administering Platform LSF 533



Error Messages

534
Error Messages
The following error messages are logged by the LSF daemons, or displayed by 
the following commands.

lsadmin ckconfig

badmin ckconfig 

General errors
The messages listed in this section may be generated by any LSF daemon.

can’t open file: error

The daemon could not open the named file for the reason given by error. This 
error is usually caused by incorrect file permissions or missing files. All 
directories in the path to the configuration files must have execute (x) 
permission for the LSF administrator, and the actual files must have read (r) 
permission. Missing files could be caused by incorrect path names in the 
lsf.conf file, running LSF daemons on a host where the configuration files 
have not been installed, or having a symbolic link pointing to a nonexistent 
file or directory.

file(line): malloc failed

Memory allocation failed. Either the host does not have enough available 
memory or swap space, or there is an internal error in the daemon. Check the 
program load and available swap space on the host; if the swap space is full, 
you must add more swap space or run fewer (or smaller) programs on that 
host.

auth_user: getservbyname(ident/tcp) failed: error; ident must be registered in 
services

LSF_AUTH=ident is defined in the lsf.conf file, but the ident/tcp service 
is not defined in the services database. Add ident/tcp to the services 
database, or remove LSF_AUTH from the lsf.conf file and setuid root 
those LSF binaries that require authentication.

auth_user: operation(<host>/<port>) failed: error

LSF_AUTH=ident is defined in the lsf.conf file, but the LSF daemon failed to 
contact the identd daemon on host. Check that identd is defined in 
inetd.conf and the identd daemon is running on host.

auth_user: Authentication data format error (rbuf=<data>) from <host>/<port>

auth_user: Authentication port mismatch (...) from <host>/<port>

LSF_AUTH=ident is defined in the lsf.conf file, but there is a protocol error 
between LSF and the ident daemon on host. Make sure the ident daemon on 
the host is configured correctly.

userok: Request from bad port (<port_number>), denied

LSF_AUTH is not defined, and the LSF daemon received a request that 
originates from a non-privileged port. The request is not serviced.
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
Set the LSF binaries to be owned by root with the setuid bit set, or define 
LSF_AUTH=ident and set up an ident server on all hosts in the cluster. If the 
binaries are on an NFS-mounted file system, make sure that the file system is 
not mounted with the nosuid flag.

userok: Forged username suspected from <host>/<port>: 
<claimed_user>/<actual_user>

The service request claimed to come from user claimed_user but ident 
authentication returned that the user was actually actual_user. The request 
was not serviced.

userok: ruserok(<host>,<uid>) failed

LSF_USE_HOSTEQUIV is defined in the lsf.conf file, but host has not been 
set up as an equivalent host (see /etc/host.equiv), and user uid has not set 
up a .rhosts file.

init_AcceptSock: RES service(res) not registered, exiting

init_AcceptSock: res/tcp: unknown service, exiting

initSock: LIM service not registered.

initSock: Service lim/udp is unknown. Read LSF Guide for help

get_ports: <serv> service not registered

The LSF services are not registered. See “Registering Service Ports” on page 85 
for information about configuring LSF services.

init_AcceptSock: Can’t bind daemon socket to port <port>: error, exiting

init_ServSock: Could not bind socket to port <port>: error

These error messages can occur if you try to start a second LSF daemon (for 
example, RES is already running, and you execute RES again). If this is the 
case, and you want to start the new daemon, kill the running daemon or use 
the lsadmin or badmin commands to shut down or restart the daemon.

Configuration errors
The messages listed in this section are caused by problems in the LSF 
configuration files. General errors are listed first, and then errors from specific 
files.

file(line): Section name expected after Begin; ignoring section

file(line): Invalid section name name; ignoring section

The keyword begin at the specified line is not followed by a section name, or 
is followed by an unrecognized section name.

file(line): section section: Premature EOF

The end of file was reached before reading the end section line for the 
named section.

file(line): keyword line format error for section section; Ignore this section

The first line of the section should contain a list of keywords. This error is 
printed when the keyword line is incorrect or contains an unrecognized 
keyword.
Administering Platform LSF 535



Error Messages

536
file(line): values do not match keys for section section; Ignoring line

The number of fields on a line in a configuration section does not match the 
number of keywords. This may be caused by not putting () in a column to 
represent the default value.

file: HostModel section missing or invalid

file: Resource section missing or invalid

file: HostType section missing or invalid

The HostModel, Resource, or HostType section in the lsf.shared file is 
either missing or contains an unrecoverable error.

file(line): Name name reserved or previously defined. Ignoring index

The name assigned to an external load index must not be the same as any 
built-in or previously defined resource or load index.

file(line): Duplicate clustername name in section cluster. Ignoring current 
line

A cluster name is defined twice in the same lsf.shared file. The second 
definition is ignored.

file(line): Bad cpuFactor for host model model. Ignoring line

The CPU factor declared for the named host model in the lsf.shared file is 
not a valid number.

file(line): Too many host models, ignoring model name

You can declare a maximum of 127 host models in the lsf.shared file.

file(line): Resource name name too long in section resource. Should be less 
than 40 characters. Ignoring line

The maximum length of a resource name is 39 characters. Choose a shorter 
name for the resource.

file(line): Resource name name reserved or previously defined. Ignoring line.

You have attempted to define a resource name that is reserved by LSF or 
already defined in the lsf.shared file. Choose another name for the resource.

file(line): illegal character in resource name: name, section resource. Line ignored.

Resource names must begin with a letter in the set [a-zA-Z], followed by letters, 
digits or underscores [a-zA-Z0-9_].

LIM messages
The following messages are logged by the LIM:

main: LIM cannot run without licenses, exiting

The LSF software license key is not found or has expired. Check that FLEXlm 
is set up correctly, or contact your LSF technical support.

main: Received request from unlicensed host <host>/<port>

LIM refuses to service requests from hosts that do not have licenses. Either your 
LSF license has expired, or you have configured LSF on more hosts than your 
license key allows.
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
initLicense: Trying to get license for LIM from source 
<LSF_CONFDIR/license.dat>

getLicense: Can’t get software license for LIM from license file 
<LSF_CONFDIR/license.dat>: feature not yet available.

Your LSF license is not yet valid. Check whether the system clock is correct.

findHostbyAddr/<proc>: Host <host>/<port> is unknown by <myhostname>

function: Gethostbyaddr_(<host>/<port>) failed: error

main: Request from unknown host <host>/<port>: error

function: Received request from non-LSF host <host>/<port>

The daemon does not recognize host. The request is not serviced. These 
messages can occur if host was added to the configuration files, but not all the 
daemons have been reconfigured to read the new information. If the problem 
still occurs after reconfiguring all the daemons, check whether the host is a 
multi-addressed host. 

See “Host Naming” on page 88 for information about working with multi-
addressed hosts.

rcvLoadVector: Sender (<host>/<port>) may have different config?

MasterRegister: Sender (host) may have different config?

LIM detected inconsistent configuration information with the sending LIM. Run 
the following command so that all the LIMs have the same configuration 
information.

% lsadmin reconfig

Note any hosts that failed to be contacted.

rcvLoadVector: Got load from client-only host <host>/<port>. Kill LIM on 
<host>/<port>

A LIM is running on a client host. Run the following command, or go to the 
client host and kill the LIM daemon.

% lsadmin limshutdown host

saveIndx: Unknown index name <name> from ELIM

LIM received an external load index name that is not defined in the 
lsf.shared file. If name is defined in lsf.shared, reconfigure the LIM. 
Otherwise, add name to the lsf.shared file and reconfigure all the LIMs.

saveIndx: ELIM over-riding value of index <name>

This is a warning message. The ELIM sent a value for one of the built-in index 
names. LIM uses the value from ELIM in place of the value obtained from the 
kernel.

getusr: Protocol error numIndx not read (cc=num): error

getusr: Protocol error on index number (cc=num): error

Protocol error between ELIM and LIM.
Administering Platform LSF 537



Error Messages

538
RES messages
These messages are logged by the RES.

doacceptconn: getpwnam(<username>@<host>/<port>) failed: error

doacceptconn: User <username> has uid <uid1> on client host <host>/<port>, uid 
<uid2> on RES host; assume bad user

authRequest: username/uid <userName>/<uid>@<host>/<port> does not exist

authRequest: Submitter’s name <clname>@<clhost> is different from name <lname> 
on this host

RES assumes that a user has the same userID and username on all the LSF 
hosts. These messages occur if this assumption is violated. If the user is 
allowed to use LSF for interactive remote execution, make sure the user’s 
account has the same userID and username on all LSF hosts.

doacceptconn: root remote execution permission denied

authRequest: root job submission rejected

Root tried to execute or submit a job but LSF_ROOT_REX is not defined in the 
lsf.conf file.

resControl: operation permission denied, uid = <uid>

The user with user ID uid is not allowed to make RES control requests. Only 
the LSF manager, or root if LSF_ROOT_REX is defined in lsf.conf, can make 
RES control requests.

resControl: access(respath, X_OK): error

The RES received a reboot request, but failed to find the file respath to re-
execute itself. Make sure respath contains the RES binary, and it has 
execution permission.

mbatchd and sbatchd messages
The following messages are logged by the mbatchd and sbatchd daemons:

renewJob: Job <jobId>: rename(<from>,<to>) failed: error

mbatchd failed in trying to re-submit a rerunnable job. Check that the file from 
exists and that the LSF administrator can rename the file. If from is in an AFS 
directory, check that the LSF administrator’s token processing is properly setup.

See the document “Installing LSF on AFS” on the Platform Web site for more 
information about installing on AFS.

logJobInfo_: fopen(<logdir/info/jobfile>) failed: error

logJobInfo_: write <logdir/info/jobfile> <data> failed: error

logJobInfo_: seek <logdir/info/jobfile> failed: error

logJobInfo_: write <logdir/info/jobfile> xdrpos <pos> failed: error

logJobInfo_: write <logdir/info/jobfile> xdr buf len <len> failed: error

logJobInfo_: close(<logdir/info/jobfile>) failed: error

rmLogJobInfo: Job <jobId>: can’t unlink(<logdir/info/jobfile>): error

rmLogJobInfo_: Job <jobId>: can’t stat(<logdir/info/jobfile>): error

readLogJobInfo: Job <jobId> can’t open(<logdir/info/jobfile>): error
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
start_job: Job <jobId>: readLogJobInfo failed: error

readLogJobInfo: Job <jobId>: can’t read(<logdir/info/jobfile>) size size: error

initLog: mkdir(<logdir/info>) failed: error

<fname>: fopen(<logdir/file> failed: error

getElogLock: Can’t open existing lock file <logdir/file>: error

getElogLock: Error in opening lock file <logdir/file>: error

releaseElogLock: unlink(<logdir/lockfile>) failed: error

touchElogLock: Failed to open lock file <logdir/file>: error

touchElogLock: close <logdir/file> failed: error

mbatchd failed to create, remove, read, or write the log directory or a file in 
the log directory, for the reason given in error. Check that LSF administrator 
has read, write, and execute permissions on the logdir directory.

If logdir is on AFS, check that the instructions in the document “Installing LSF 
on AFS” on the Platform Web site have been followed. Use the fs ls 
command to verify that the LSF administrator owns logdir and that the 
directory has the correct acl.

replay_newjob: File <logfile> at line <line>: Queue <queue> not found, saving 
to queue <lost_and_found>

replay_switchjob: File <logfile> at line <line>: Destination queue <queue> not 
found, switching to queue <lost_and_found>

When mbatchd was reconfigured, jobs were found in queue but that queue is 
no longer in the configuration.

replay_startjob: JobId <jobId>: exec host <host> not found, saving to host 
<lost_and_found>

When mbatchd was reconfigured, the event log contained jobs dispatched to 
host, but that host is no longer configured to be used by LSF.

do_restartReq: Failed to get hData of host <host_name>/<host_addr>

mbatchd received a request from sbatchd on host host_name, but that host 
is not known to mbatchd. Either the configuration file has been changed but 
mbatchd has not been reconfigured to pick up the new configuration, or 
host_name is a client host but the sbatchd daemon is running on that host. 
Run the following command to reconfigure the mbatchd or kill the sbatchd 
daemon on host_name.

% badmin reconfig
Administering Platform LSF 539



Setting Daemon Message Log to Debug Level

540
Setting Daemon Message Log to Debug Level
The message log level for LSF daemons is set in lsf.conf with the parameter 
LSF_LOG_MASK. To include debugging messages, set LSF_LOG_MASK to one 
of:

◆ LOG_DEBUG

◆ LOG_DEBUG1

◆ LOG_DEBUG2

◆ LOG_DEBUG3

By default, LSF_LOG_MASK=LOG_WARNING and these debugging messages 
are not displayed.

The debugging log classes for LSF daemons is set in lsf.conf with the 
parameters LSB_DEBUG_CMD, LSB_DEBUG_MBD, LSB_DEBUG_SBD, 
LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES.

The location of log files is specified with the parameter LSF_LOGDIR in 
lsf.conf.

You can use the lsadmin and badmin commands to temporarily change the 
class, log file, or message log level for specific daemons such as LIM, RES, 
mbatchd, sbatchd, and mbschd without changing lsf.conf.

How the message
log level takes

effect

The message log level you set will only be in effect from the time you set it until you 
turn it off or the daemon stops running, whichever is sooner. If the daemon is 
restarted, its message log level is reset back to the value of LSF_LOG_MASK and the 
log file is stored in the directory specified by LSF_LOGDIR.

Limitations
When debug or timing level is set for RES with lsadmin resdebug, or 
lsadmin restime, the debug level only affects root RES. The root RES is the 
RES that runs under the root user ID.

Application RESs always use lsf.conf to set the debug environment. 
Application RESs are the RESs that have been created by sbatchd to service 
jobs and run under the ID of the user who submitted the job.

This means that any RES that has been launched automatically by the LSF 
system will not be affected by temporary debug or timing settings. The 
application RES will retain settings specified in lsf.conf.
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
Debug commands for daemons
The following commands set temporary message log level options for LIM, 
RES, mbatchd, sbatchd, and mbschd.

lsadmin limdebug [-c class_name] [-l debug_level ] [-f logfile_name] [-o] 
[host_name]
lsadmin resdebug [-c class_name] [-l debug_level ] [-f logfile_name] [-o] 
[host_name]
badmin mbddebug [-c class_name] [-l debug_level ] [-f logfile_name] [-o]
badmin sbddebug [-c class_name] [-l debug_level ] [-f logfile_name] [-o] 
[host_name]
badmin schddebug [-c class_name] [-l debug_level ] [-f logfile_name] [-o]

For a detailed description of lsadmin and badmin, see the Platform LSF 
Reference.

Examples
◆ % lsadmin limdebug -c "LC_MULTI LC_PIM" -f myfile hostA 

hostB

Log additional messages for the LIM daemon running on hostA and hostB, 
related to MultiCluster and PIM. Create log files in the LSF_LOGDIR 
directory with the name myfile.lim.log.hostA, and 
myfile.lim.log.hostB. The debug level is the default value, 
LOG_DEBUG level in parameter LSF_LOG_MASK.

◆ % lsadmin limdebug -o hostA hostB

Turn off temporary debug settings for LIM on hostA and hostB and reset 
them to the daemon starting state. The message log level is reset back to 
the value of LSF_LOG_MASK and classes are reset to the value of 
LSF_DEBUG_RES, LSF_DEBUG_LIM, LSB_DEBUG_MBD, 
LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is reset to the LSF 
system log file in the directory specified by LSF_LOGDIR in the format 
daemon_name.log.host_name.

◆ % badmin sbddebug -o

Turn off temporary debug settings for sbatchd on the local host (host from 
which the command was submitted) and reset them to the daemon starting 
state. The message log level is reset back to the value of LSF_LOG_MASK 
and classes are reset to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM, 
LSB_DEBUG_MBD, LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file 
is reset to the LSF system log file in the directory specified by LSF_LOGDIR 
in the format daemon_name.log.host_name.

◆ % badmin mbddebug -l 1

Log messages for mbatchd running on the local host and set the log 
message level to LOG_DEBUG1. This command must be submitted from 
the host on which mbatchd is running because host_name cannot be 
specified with mbddebug.
Administering Platform LSF 541



Setting Daemon Message Log to Debug Level

542
◆ % badmin sbddebug -f hostB/myfolder/myfile hostA

Log messages for sbatchd running on hostA, to the directory myfile on 
the server hostB, with the file name myfile.sbatchd.log.hostA. The 
debug level is the default value, LOG_DEBUG level in parameter 
LSF_LOG_MASK.

◆ % badmin schddebug -l 2

Log messages for mbatchd running on the local host and set the log 
message level to LOG_DEBUG2. This command must be submitted from 
the host on which mbatchd is running because host_name cannot be 
specified with schddebug.

◆ % lsadmin resdebug -o hostA

Turn off temporary debug settings for RES on hostA and reset them to the 
daemon starting state. The message log level is reset back to the value of 
LSF_LOG_MASK and classes are reset to the value of LSF_DEBUG_RES, 
LSF_DEBUG_LIM, LSB_DEBUG_MBD, LSB_DEBUG_SBD, and 
LSB_DEBUG_SCH. The log file is reset to the LSF system log file in the 
directory specified by LSF_LOGDIR in the format 
daemon_name.log.host_name.

For timing level examples, see “Setting Daemon Timing Levels” on page 543.
Administering Platform LSF



Chapter 42
Troubleshooting and Error Messages
Setting Daemon Timing Levels
The timing log level for LSF daemons is set in lsf.conf with the parameters 
LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSB_TIME_SCH, 
LSF_TIME_LIM, LSF_TIME_RES.

The location of log files is specified with the parameter LSF_LOGDIR in 
lsf.conf. Timing is included in the same log files as messages.

To change the timing log level, you need to stop any running daemons, change 
lsf.conf, and then restart the daemons.

It is useful to track timing to evaluate the performance of the LSF system. You 
can use the lsadmin and badmin commands to temporarily change the timing 
log level for specific daemons such as LIM, RES, mbatchd, sbatchd, and 
mbschd without changing lsf.conf.

How the timing
log level takes

effect

The timing log level you set will only be in effect from the time you set it until you 
turn the timing log level off or the daemon stops running, whichever is sooner. If the 
daemon is restarted, its timing log level is reset back to the value of the 
corresponding parameter for the daemon (LSB_TIME_MBD, LSB_TIME_SBD, 
LSF_TIME_LIM, LSF_TIME_RES). Timing log messages are stored in the same file as 
other log messages in the directory specified with the parameter LSF_LOGDIR in 
lsf.conf.

Limitations
When debug or timing level is set for RES with lsadmin resdebug, or 
lsadmin restime, the debug level only affects root RES. The root RES is the 
RES that runs under the root user ID.

An application RES always uses lsf.conf to set the debug environment. An 
application RES is the RES that has been created by sbatchd to service jobs 
and run under the ID of the user who submitted the job.

This means that any RES that has been launched automatically by the LSF 
system will not be affected by temporary debug or timing settings. The 
application RES will retain settings specified in lsf.conf.

Timing level commands for daemons
The total execution time of a function in the LSF system is recorded to evaluate 
response time of jobs submitted locally or remotely.

The following commands set temporary timing options for LIM, RES, mbatchd, 
sbatchd, and mbschd.

lsadmin limtime [-l timing_level] [-f logfile_name] [-o] [host_name]
lsadmin restime [-l timing_level] [-f logfile_name] [-o] [host_name]
badmin mbdtime [-l timing_level] [-f logfile_name] [-o]
badmin sbdtime [-l timing_level] [-f logfile_name] [-o] [host_name]
badmin schdtime [-l timing_level] [-f logfile_name] [-o]

For debug level examples, see “Setting Daemon Message Log to Debug Level” 
on page 540.

For a detailed description of lsadmin and badmin, see the Platform LSF 
Reference.
Administering Platform LSF 543



Setting Daemon Timing Levels

544
 Administering Platform LSF



P A R T

IX
LSF Utilities

Contents ◆ Chapter 43, “Using lstcsh”





C H A P T E R

43
Using lstcsh

This chapter describes lstcsh, an extended version of the tcsh command 
interpreter. The lstcsh interpreter provides transparent load sharing of user 
jobs.

This chapter is not a general description of the tcsh shell. Only load sharing 
features are described in detail.

Interactive tasks, including lstcsh, are not supported on Windows.

Contents ◆ “About lstcsh” on page 548

◆ “Starting lstcsh” on page 554

◆ “Using lstcsh as Your Login Shell” on page 555

◆ “Host Redirection” on page 556

◆ “Task Control” on page 557

◆ “Built-in Commands” on page 558

◆ “Writing Shell Scripts in lstcsh” on page 560
Administering Platform LSF 547



About lstcsh

548
About lstcsh
The lstcsh shell is a load-sharing version of the tcsh command interpreter. 
It is compatible with csh and supports many useful extensions. csh and tcsh 
users can use lstcsh to send jobs to other hosts in the cluster without needing 
to learn any new commands. You can run lstcsh from the command-line, or 
use the chsh command to set it as your login shell.

With lstcsh, your commands are sent transparently for execution on faster 
hosts to improve response time or you can run commands on remote hosts 
explicitly.

lstcsh provides a high degree of network transparency. Command lines 
executed on remote hosts behave the same as they do on the local host. The 
remote execution environment is designed to mirror the local one as closely as 
possible by using the same values for environment variables, terminal setup, 
current working directory, file creation mask, and so on. Each modification to 
the local set of environment variables is automatically reflected on remote 
hosts. Note that shell variables, the nice value, and resource usage limits are 
not automatically propagated to remote hosts.

For more details on lstcsh, see the lstcsh(1) man page.

In this section ◆ “Task Lists” on page 549

◆ “Local and Remote Modes” on page 550

◆ “Automatic Remote Execution” on page 551
Administering Platform LSF



Chapter 43
Using lstcsh
Task Lists
LSF maintains two task lists for each user, a local list (.lsftask) and a remote 
list (lsf.task). Commands in the local list must be executed locally. 
Commands in the remote list can be executed remotely. 

See the Platform LSF Reference for information about the .lsftask and 
lsf.task files.

Changing task list membership
You can use the LSF commands lsltasks and lsrtasks to inspect and 
change the memberships of the local and remote task lists. 

Task lists and resource requirements
Resource requirements for specific commands can be configured using task 
lists. You can optionally associate resource requirements with each command 
in the remote list to help LSF find a suitable execution host for the command. 

If there are multiple eligible commands on a command-line, their resource 
requirements are combined for host selection. 

If a command is in neither list, you can choose how lstcsh handles the 
command. 
Administering Platform LSF 549



Local and Remote Modes

550
Local and Remote Modes
lstcsh has two modes of operation:

◆ Local

◆ Remote

Local mode
The local mode is the default mode. In local mode, a command line is eligible 
for remote execution only if all of the commands on the line are present in the 
remote task list, or if the @ character is specified on the command-line to force 
it to be eligible.

See “@ character” on page 556 for more details.

Local mode is conservative and can fail to take advantage of the performance 
benefits and load-balancing advantages of LSF. 

Remote mode
In remote mode, a command line is considered eligible for remote execution 
if none of the commands on the line is in the local task list.

Remote mode is aggressive and makes more extensive use of LSF. However, 
remote mode can cause inconvenience when lstcsh attempts to send host-
specific commands to other hosts.
Administering Platform LSF



Chapter 43
Using lstcsh
Automatic Remote Execution
Every time you enter a command, lstcsh looks in your task lists to determine 
whether the command can be executed on a remote host and to find the 
configured resource requirements for the command.

See the Platform LSF Reference for information about task lists and 
lsf.task file.

If the command can be executed on a remote host, lstcsh contacts LIM to 
find the best available host. 

The first time a command is run on a remote host, a server shell is started on 
that host. The command is sent to the server shell, and the server shell starts 
the command on the remote host. All commands sent to the same host use the 
same server shell, so the start-up overhead is only incurred once.

If no host is found that meets the resource requirements of your command, the 
command is run on the local host.
Administering Platform LSF 551



Differences from Other Shells

552
Differences from Other Shells
When a command is running in the foreground on a remote host, all keyboard 
input (type-ahead) is sent to the remote host. If the remote command does not 
read the input, it is lost. 

lstcsh has no way of knowing whether the remote command reads its 
standard input. The only way to provide any input to the command is to send 
everything available on the standard input to the remote command in case the 
remote command needs it. As a result, any type-ahead entered while a remote 
command is running in the foreground, and not read by the remote command, 
is lost.

@ character 
The @ character has a special meaning when it is preceded by white space. This 
means that the @ must be escaped with a backslash \ to run commands with 
arguments that start with @, like finger. This is an example of using finger 
to get a list of users on another host:

% finger @other.domain

Normally the finger command attempts to contact the named host. Under 
lstcsh, the @ character is interpreted as a request for remote execution, so the 
shell tries to contact the RES on the host other.domain to remotely execute 
the finger command. If this host is not in your LSF cluster, the command fails. 
When the @ character is escaped, it is passed to finger unchanged and 
finger behaves as expected.

% finger \@hostB

For more details on the @ character, see “@ character” on page 556.
Administering Platform LSF



Chapter 43
Using lstcsh
Limitations
A shell is a very complicated application by itself. lstcsh has certain 
limitations:

Native language system
Native Language System is not supported. To use this feature of the tcsh, you 
must compile tcsh with SHORT_STRINGS defined. This causes complications 
for characters flowing across machines.

Shell variables 
Shell variables are not propagated across machines. When you set a shell 
variable locally, then run a command remotely, the remote shell will not see 
that shell variable. Only environment variables are automatically propagated.

fg command
The fg command for remote jobs must use @, as shown by examples in “Task 
Control” on page 557. 

tcsh version
lstcsh is based on tcsh 6.03 (7 bit mode). It does not support the new 
features of the latest tcsh.
Administering Platform LSF 553



Starting lstcsh

554
Starting lstcsh

Starting lstcsh
If you normally use some other shell, you can start lstcsh from the command-
line. 

Make sure that the LSF commands are in your PATH environment variable, then 
enter:

% lstcsh

If you have a .cshrc file in your home directory, lstcsh reads it to set 
variables and aliases. 

Exiting lstcsh
Use the exit command to get out of lstcsh.
Administering Platform LSF



Chapter 43
Using lstcsh
Using lstcsh as Your Login Shell
If your system administrator allows, you can use LSF as your login shell. The 
/etc/shells file contains a list of all the shells you are allowed to use as your 
login shell. 

Setting your login shell
Using csh The chsh command can set your login shell to any of those shells. If the 

/etc/shells file does not exist, you cannot set your login shell to lstcsh.

For example, user3 can run the command:

% chsh user3 /usr/share/lsf/bin/lstcsh

The next time user3 logs in, the login shell will be lstcsh.

Using a standard
system shell

if you cannot set your login shell using chsh, you can use one of the standard 
system shells to start lstcsh when you log in. 

To set up lstcsh to start when you log in:

1 Use chsh to set /bin/sh to be your login shell.

2 Edit the .profile file in your home directory to start lstcsh, as shown 
below:
SHELL=/usr/share/lsf/bin/lstcsh
export SHELL
exec $SHELL -l
Administering Platform LSF 555



Host Redirection

556
Host Redirection
Host redirection overrides the task lists, so you can force commands from your 
local task list to execute on a remote host or override the resource 
requirements for a command.

You can explicitly specify the eligibility of a command-line for remote 
execution using the @ character. It may be anywhere in the command line 
except in the first position (@ as the first character on the line is used to set the 
value of shell variables).

You can restrict who can use @ for host redirection in lstcsh with the 
parameter LSF_SHELL_AT_USERS in lsf.conf. See the Platform LSF 
Reference for more details.

Examples
% hostname @hostD
<< remote execution on hostD >>
hostD

% hostname @/type==alpha
<< remote execution on hostB >>
hostB

@ character

For ease of use, the host names and the reserved word local following @ can 
all be abbreviated as long as they do not cause ambiguity. 

Similarly, when specifying resource requirements following the @, it is 
necessary to use / only if the first requirement characters specified are also the 
first characters of a host name. You do not have to type in resource 
requirements for each command line you type if you put these task names into 
remote task list together with their resource requirements by running 
lsrtasks.

@ @ followed by nothing means that the command line is eligible for 
remote execution.

@host_nam
e

@ followed by a host name forces the command line to be executed 
on that host. 

@local @ followed by the reserved word local forces the command line 
to be executed on the local host only.

@/res_req @ followed by / and a resource requirement string means that the 
command is eligible for remote execution and that the specified 
resource requirements must be used instead of those in the remote 
task list.
Administering Platform LSF



Chapter 43
Using lstcsh
Task Control
Task control in lstcsh is the same as in tcsh except for remote background 
tasks. lstcsh numbers shell tasks separately for each execution host.

jobs command
The output of the built-in command jobs lists background tasks together with 
their execution hosts. This break of transparency is intentional to give you 
more control over your background tasks.

% sleep 30 @hostD &
<< remote execution on hostD >>
[1] 27568
% sleep 40 @hostD &
<< remote execution on hostD >>
[2] 10280
% sleep 60 @hostB &
<< remote execution on hostB >>
[1] 3748
% jobs
<hostD>
[1] + Running sleep 30
[2] Running sleep 40
<hostB>
[1] + Running sleep 60

Bringing a remote background task to the foreground
To bring a remote background task to the foreground, the host name must be 
specified together with @, as in the following example:

% fg %2 @hostD
<< remote execution on hostD >>
sleep 40
Administering Platform LSF 557



Built-in Commands

558
Built-in Commands
lstcsh supports two built-in commands to control load sharing, lsmode and 
connect.

In this section ◆ “lsmode” on page 558

◆ “connect” on page 559

lsmode
Syntax lsmode [on|off] [local|remote] [e|-e] [v|-v] [t|-t]

Description The lsmode command reports that LSF is enabled if lstcsh was able to 
contact LIM when it started up. If LSF is disabled, no load-sharing features are 
available.

The lsmode command takes a number of arguments that control how lstcsh 
behaves. 

With no arguments, lsmode displays the current settings:

% lsmode
LSF
Copyright Platform Computing Corporation
LSF enabled, local mode, LSF on, verbose, no_eligibility_verbo
se, no timing.

Options ◆ [on | off]

Turns load sharing on or off. When turned off, you can send a command 
line to a remote host only if force eligibility is specified with @.

The default is on.

◆ [local | remote]

Sets lstcsh to use local or remote mode. 

The default is local. See “Local and Remote Modes” on page 550 for a 
description of local and remote modes.

◆ [e | -e]

Turns eligibility verbose mode on (e) or off (-e). If eligibility verbose mode 
is on, lstcsh shows whether the command is eligible for remote 
execution, and displays the resource requirement used if the command is 
eligible. 

The default is off.

◆ [v | -v]

Turns task placement verbose mode on (v) or off (-v). If verbose mode is 
on, lstcsh displays the name of the host on which the command is run, 
if the command is not run on the local host. The default is on.
Administering Platform LSF



Chapter 43
Using lstcsh
◆ [t | -t]

Turns wall-clock timing on (t) or off (-t).

If timing is on, the actual response time of the command is displayed. This 
is the total elapsed time in seconds from the time you submit the command 
to the time the prompt comes back. 

This time includes all remote execution overhead. The csh time builtin 
does not include the remote execution overhead.

This is an impartial way of comparing the response time of jobs submitted 
locally or remotely, because all the load sharing overhead is included in 
the displayed elapsed time. 

The default is off.

connect
Syntax connect [host_name]

Description lstcsh opens a connection to a remote host when the first command is 
executed remotely on that host. The same connection is used for all future 
remote executions on that host. 

The connect command with no argument displays connections that are 
currently open.

The connect host_name command creates a connection to the named host. 
By connecting to a host before any command is run, the response time is 
reduced for the first remote command sent to that host.

lstcsh has a limited number of ports available to connect to other hosts. By 
default each shell can only connect to 15 other hosts.

Examples % connect
CONNECTED WITH SERVER SHELL
hostA +

% connect hostB
Connected to hostB

% connect
CONNECTED WITH SERVER SHELL
hostA +
hostB -

In this example, the connect command created a connection to host hostB, 
but the server shell has not started.
Administering Platform LSF 559



Writing Shell Scripts in lstcsh

560
Writing Shell Scripts in lstcsh
You should write shell scripts in /bin/sh and use the lstools commands for 
load sharing. However, lstcsh can be used to write load-sharing shell scripts.

By default, an lstcsh script is executed as a normal tcsh script with load-
sharing disabled. 

Running a script with load sharing enabled
The lstcsh -L option tells lstcsh that a script should be executed with load 
sharing enabled, so individual commands in the script may be executed on 
other hosts.

There are three different ways to run an lstcsh script with load sharing 
enabled:

◆ Run lstcsh -L script_name

OR:

◆ Make the script executable and put the following as the first line of the 
script. By default, lstcsh is installed in LSF_BINDIR.

The following assumes you installed lstcsh in the /usr/share/lsf/bin 
directory):

#!/usr/share/lsf/bin/lstcsh -L

OR:

1 Start an interactive lstcsh.

2 Enable load sharing, and set to remote mode:
lsmode on remote

3 Use the source command to read the script in.
Administering Platform LSF



Index
Symbols
%I substitution string in job arrays 335
%J substitution string in job arrays 335
%USRCMD string in job starters 376
.cshrc file and lstcsh 554
.lsbatch directory 49
.rhosts file

disadvantages 500
file transfer with lsrcp 518
host authentication 500
troubleshooting 530

/etc/hosts file
example host entries 90
host naming 88
name lookup 88
troubleshooting 530

/etc/hosts.equiv file
host authentication 500
troubleshooting 530
using rcp 518

/etc/services file, adding LSF entries to 85
/etc/shells file, and lstcsh 555
/etc/syslog.conf file 522
/usr/include/sys/syslog.h file 522
@ (at sign) in lstcsh 556

A
abnormal job termination 114
ABS_RUNLIMIT parameter in lsb.params 354
absolute run time limit 354
access permissions for interactive tasks 420
account mapping

overview 503
user-level, configuring 503

accounting information for advance reservations 473
adaptive dispatch. See chunk jobs
administrator comments

logging in lsb.events
for host open and close 74
for mbatchd restart 64
for queue events 104

administrators
cluster administrator description 61
displaying queue administrators 62
primary LSF administrator 61
user account mapping 503

ADMINISTRATORS parameter in 
lsf.cluster.cluster_name 61

advance reservation
accounting information 473

adding and removing 465
changing job termination time (bmod -t) 472
commands 465
configuring user policies 463
description 462, 463
license 463
reservation ID 471
schmod_advrsv plugin 463
submitting jobs 471
user policies 463
viewing accounting information 473
weekly planner (brsvs -p) 469

advance reservations, viewing 469
advanced dependency conditions 294
AFS (Andrew File System)

overview 514
tokens for esub and eexec 380

aliases
for resource names 192
using as host names 88

allocation limits. See resource allocation limits
Andrew File System. See AFS
application-level checkpointing 309
architecture, viewing for hosts 71
arguments

passed to the LSF event program 479
passing to job arrays 336

at sign (@) in lstcsh 556
augmentstarter job starter 378
authd daemon 496
authentication

between daemons 501
DCE client using GSSAPI 494
external authentication (eauth) 494
identification daemon (identd) 496
Kerberos 494
LSF_AUTH parameter in lsf.conf 497
LSF_EAUTH_KEY parameter in lsf.sudoers 494
LSF_EAUTH_USER parameter in lsf.sudoers 495
LSF_STARTUP_PATH parameter in lsf.sudoers 498
LSF_STARTUP_USERS parameter in lsf.sudoers 498
multiple environments 502
overview 493
privileged ports (setuid) 496
RFC 1413 and RFC 931 496
security 498

authentication environments 494
automatic

checkpointing 318
duplicate event logging 525
event log archiving 525
Administering Platform LSF 561



562

Index
job migration 321
job requeue 301
job rerun 305
queue selection 45
remote execution in lstcsh 551

automount command, NFS (Network File System) 514, 
528

automount option, /net 516

B
bacct command 247
bacct -U 473
backfill scheduling

default run limit 349
description 453

background jobs, bringing to foreground 557
badmin command

hopen 74
hrestart 62
hshutdown 62
hstartup 62
logging administrator comments

for host open and close 74
for mbatchd restart 64
for queue events 104

LSF event logs 523
mbdrestart 62, 66
qact 104
qclose 104
qinact 104
qopen 104
setuid permission 497

batch jobs
accessing files 514, 516
allocating processors 432
email about jobs

disabling 506
options 506

file access 380, 516
input and output 506
killing 121
pre- and post-execution commands 366
requeue 300
rerunning and restarting 305
signalling 121

batch log files. See log files
batch queues. See queues
benchmarks for setting CPU factors 94
Berkeley Internet Name Domain (BIND), host naming 88
bgadd command 124
bgdel command 126
bhist command, LSF event logs 523
bhist -l 126
bhosts command, using 70
bhosts -x, viewing host exception status 73
BIND (Berkeley Internet Name Domain), host naming 88
bjgroup command 124
bjobs command, reservation ID for advance 

reservation 471
bjobs -g 124

bjobs -x, viewing job exception status 116
bkill -g 126
black hole hosts 96
blimits command 267
bmod -g 125
bmod -is 511
bmod -t 472
bmod -Zs 511
Boolean resources 140
bparams command, viewing configuration 

parameters 57
bqueues command, cross-queue fairshare 

information 211
bresume -g 125
brsvadd command 465
brsvdel command 468
brsvs command 469
brun command

advance reservation 472
forcing a job to run 119
job preemption 178

bsla command 246
bstop -g 125
bsub command

email job notification 506
input and output 506
remote file access 516
submitting a job

associated to a job group 124
associated to a service class 241

bsub -f 516
bsub -is 509
bsub -sla 241
bsub -Zs 510
built-in

load indices, overriding 163
resources 140

busy host status
lsload command 69
status load index 144

busy thresholds, tuning 484

C
candidate master hosts, specifying 487
ceiling resource usage limit 348
ceiling run limit 348
chargeback fairshare 236
check_license script, for counted software licenses 280
checkpoint directory 314
checkpointable jobs

chunk jobs 328
description 315

checkpoints
application-level 309
automatic 318
creating custom programs 310
fault tolerance 308
kernel-level 309
load balancing 308
Administering Platform LSF



Index
overview 308
periodic 317
restarting job 319

CHKPNT parameter in lsb.queues 315
chsh and lstcsh 555
chunk jobs

checkpointing 328
CHUNK_JOB_DURATION parameter in 

lsb.params 325
configuring queue for 325
description 324
fairshare scheduling 329
job controls 328
killing 328
limitations on queues 326
migrating 328
modifying 328
rerunnable 328
resource usage limits 347
resuming 328
submitting and controlling 327
WAIT status and pending reason 327

CHUNK_JOB_DURATION, parameter in lsb.params 325
client_addr argument to eauth 495
client_port argument to eauth 495
closed host status, bhosts command 68, 70
closed_Adm condition, output of bhosts -l 68
closed_Busy condition, output of bhosts -l 68
closed_Excl condition, output of bhosts -l 68
closed_Full condition, output of bhosts -l 68
closed_LIM condition, output of bhosts -l 68
closed_Lock condition, output of bhosts -l 68
closed_Wind condition, output of bhosts -l 68
cluster administrators

description 61
viewing 56

cluster name, viewing 56
clusters

configuration file quick reference 65
reconfiguring

commands 65
how reconfiguration affects licenses 66

viewing, information about 56
viewing information 56

command file spooling
See also job file spooling
default directory 510
description 509
JOB_SPOOL_DIR parameter in lsb.params 509

commands
built-in 558
checking configuration 172
job starters 372
post-execution. See post-execution commands
pre-execution. See pre-execution commands
running under user ID 369
using in job control actions 393

Comprehensive System Accounting (IRIX CSA), 
configuring 521

concurrent threads 354

configuration
adding and removing, queues 107
commands for checking 172
preselecting master hosts 487
removing, hosts 78
tuning

busy thresholds 484
LIM policies 483
load indices 484
load thresholds 485
mbatchd on UNIX 491
run windows 483

viewing, errors 66
configuration files

location 130
non-shared file systems 515
reconfiguration quick reference 65

configuration parameters. See individual parameter 
names

CONTROL_ACTION parameter in lsb.serviceclasses 253
core file size limit 351
CORELIMIT parameter in lsb.queues 351
counted software licenses

configuring 280
description 280

CPU
factors

static resource 148
time normalization 357
tuning in lsf.shared 94

limits
per job 351
per process 351

normalization 357
run queue length, description 406
time

cumulative and decayed 206
in dynamic user priority calculation 206

time limit, job-level resource limit 351
tuning CPU factors in lsf.shared 94
utilization, ut load index 145, 406
viewing run queue length 94

CPU factor, non-normalized run time limit 354
CPU time, idle job exceptions 109
CPU time normalization 351
cpuf static resource 148
CPULIMIT parameter in lsb.queues 351
Cray, UNICOS accounting log files 520
cross-queue fairshare 211
CSA (IRIX Comprehensive System Accounting), 

configuring 521
.cshrc file and lstcsh 554
cumulative CPU time 206
custom event handlers 478
custom file transfer, configuring 518
custom resources

adding 154
configuring 154
description 152
resource types 140
Administering Platform LSF 563



564

Index
D
daemons

authd 496
authentication 501
commands 62
debug commands 541
error logs 522
pidentd 496
restarting

mbatchd 64
sbatchd 63

shutting down
mbatchd 64
sbatchd 63

TCP service ports 85
ypbind 88

data segment size limit 352
DATALIMIT parameter in lsb.queues 352
DCE/DFS (Distributed File System)

credentials, esub and eexec 380
overview 514

deadline constraint scheduling
description 174
parallel jobs 459

deadlock, avoiding signal and job action 394
debug level

commands for daemons 541
setting temporarily 540

decayed
CPU time 206
run time 230

DEFAULT, model or type with lshosts command 532
default

input file spooling 510
job control actions 390
JOB_SPOOL_DIR 510
LSF log file location 520
LSF_LOGDIR 522
output file spooling 510
queue, viewing 45
resource usage limits 348
run limit, backfill scheduling 349
UNIX directory structure 58
Windows directory structure 60

default normalization host 351
DEFAULT_HOST_SPEC parameter

in lsb.params 351
in lsb.queues 357

delayed SLA scheduling goals, control action 253
dependency conditions. See job dependency conditions
DFS (Distributed File System). See DCE/DFS
directories

checkpoint 314
default UNIX directory structure 58
default Windows directory structure 60
log, permissions and ownership 520
.lsbatch 49
LSF_SERVERDIR

eauth executable 497
esub and eexec 381

pre-42 UNIX directory structure 59

remote access 380, 516
shared 49
user accounts 49

disks, I/O rate 146
dispatch order, fairshare 207
dispatch turn, description 46
dispatch windows

description 288
hosts 74
queues 106
tuning for LIM 483

dispatch, adaptive. See chunk jobs
DISPATCH_WINDOW, queues 106
Domain Name Service (DNS), host naming 88
done job dependency condition 292
DONE job state

description 112
post-execution commands 367

done jobs, viewing 112
duplicate event logging 525

after network partitioning 525
automatic 525
description 524

dynamic
master host 51
resources 140
user priority 205

E
eadmin script

default exception actions 96, 109
host exception handling 96, 109

EADMIN_TRIGGER_DURATION parameter in 
lsb.params 110

eauth
description 494
executable location (LSF_SERVERDIR) 497
LSF_EAUTH_KEY parameter in lsf.sudoers 494
LSF_EAUTH_USER parameter in lsf.sudoers 495
standard input and output 495

eexec (external executable) script
description 380
passing data to execution environments 388
running as non-root 388

effective run queue length
built-in resources 145
description 406
tuning LIM 486

egroup executable
external host groups 93
external user groups 133

electronic mail. See email
eligible hosts, viewing 48
ELIM (external LIM)

counted software licenses 280
custom resources 158
debugging 162

email
disabling batch job notification 506
job options 506
limiting the size of job email 507
Administering Platform LSF



Index
embedded submission options for interactive jobs 411
ended job dependency condition 292
environment of a job 49
environment variables. See individual environment 

variable names
equal share fairshare 237
erestart executable, application-level checkpointing 310
error logs

log directory, LSF_LOGDIR 522
log files 522
LSF daemons 522
LSF_LOG_MASK parameter 522
managing log files 522
on UNIX and Windows NT 522

errors, viewing in reconfiguration 66
esub (external submission) executable

description 381
environment variables 381
job submission parameters 384
mandatory method (LSB_ESUB_METHOD) 386
pass data to execution environments 388

esub method (LSB_ESUB_METHOD) 386
/etc/hosts file

example host entries 90
host naming 88
name lookup 88
troubleshooting 530

/etc/hosts.equiv file
host authentication 500
troubleshooting 530
using rcp 518

/etc/services file, adding LSF entries to 85
/etc/syslog.conf file 522
event generation 478
event log archiving, automatic 525
event log replication. See duplicate event logging
event logs

automatic archiving 525
configuring duplicate logging 525
duplicate logging 525
logging administrator comments

for host open and close 74
for mbatchd restart 64
for queue events 104

lsb.events file 51
LSF Batch log file in lsb.events file 523
update interval 525

Event Viewer, Windows NT 478
EVENT_UPDATE_INTERVAL in lsb.params 525
events

custom programs to handle 478
generated by LSF 479
logging 51

example.services file 85
examples, /etc/hosts file entries 90
exception handling

configuring host exceptions 96
configuring in queues 110
description 52

exception status

for hosts, viewing with bhosts 73
for jobs

viewing with bjobs 116
viewing with bqueues 103

exclusive jobs
description 175
requeue 303

exclusive queues 175
execution

environment 49
forcing for jobs 119
priority 148

execution host, mandatory for parallel jobs 439
exit job dependency condition 292
EXIT job state

abnormal job termination 114
pre- and post-execution commands 367

exit rate for jobs 96
EXIT_RATE, bhosts -l 73
EXIT_RATE parameter in lsb.hosts 96
expiry time for mbatchd 491
external

job dependency condition 293
job submission executable (esub) 381
LIM. See ELIM (external LIM)
load indices, using ELIM 158
user groups, configuring 133

external authentication (eauth)
description 494
standard input and output 495

F
FAIRSHARE parameter in lsb.queues 213
fairshare scheduling

across queues 211
chargeback 236
chunk jobs 329
defining policies that apply to several queues 211
description 202
equal share 237
global 236
hierarchical share tree 217
overview 201
parallel jobs 458
policies 202
priority user 237
static priority 238
viewing cross-queue fairshare information 211
viewing queue-level information 210

FAIRSHARE_QUEUES parameter
in bqueues 211
in lsb.queues 213

fault tolerance
checkpointing jobs 308
description 51
non-shared file systems 515

FCFS (first-come, first-served) scheduling 46
file access, interactive tasks 420
file preparation, job arrays 334
file sharing 49
file size usage limit 352
Administering Platform LSF 565



566

Index
file spooling. See command file spooling, job file 
spooling

file systems
AFS (Andrew File System) 514
DCE/DFS (Distributed File System) 514
NFS (Network File System) 514
supported by LSF 514

file transfer, lsrcp command 518
FILELIMIT parameter in lsb.queues 352
files

/etc/hosts
example host entries 90
host naming 88
name lookup 88

/etc/services, adding LSF entries to 85
copying across hosts 420
enabling utmp registration 413
hosts, configuring 89
lsb.params

CHUNK_JOB_DURATION parameter 325
JOB_ACCEPT_INTERVAL parameter 46
JOB_SCHEDULING_INTERVAL parameter 46

lsf.conf
configuring TCP service ports 85
daemon service ports 85

lsf.shared, adding a custom host types and 
models 84

makefile to run parallel jobs 446
redirecting 402
redirecting stdout and stderrr 421
resolv.conf 88
spooling command and job files 410
svc.conf (name services) 88

finger command in lstcsh 552
first-come, first-served (FCFS) scheduling 46
floating software licenses

configuring dedicated queue for 282
managing with LSF 281

forcing job execution 119
free memory 146

G
gethostbyname function (host naming) 88
gid argument to eauth 495
global fairshare 236
goal-oriented scheduling. See SLA scheduling
goals, SLA scheduling 241
GROUP_JLP job slot limit for preemption 182
GROUP_MAX job slot limit for preemption 182
groups

external host 93
external user groups 133
hosts 92
users 130

groups, specifying 234

H
hard resource limits, description 346
hard resource usage limits, example 348
heterogeneous environments, authentication 502
hierarchical fairshare 215

hierarchical share tree 217
historical run time 230
history, job arrays 338, 341
HJOB_LIMIT parameter in lsb.queues 262
hname static resource 148
home directories

remote file access 517
shared 49

$HOME/.lsbatch directory 49
$HOME/.rhosts file

disadvantages 500
file transfer with lsrcp command 518
host authentication 500

hopen badmin command 74
host affinity, same string 199
host authentication

LSF_USE_HOSTEQUIV parameter in lsf.conf 500
overview 493

host dispatch windows 288
host entries, examples 90
host exception handling

configuring 96
example 97
job exit rate exception 96

host failure 52
host groups

configuring external host groups 93
defining 130
external 93
overview 130

host load levels 48
host locked software licenses 279
host model

DEFAULT 532
select string 192

host model static resource 148
host models

adding custom names in lsf.shared 84
tuning CPU factors 95

host name static resource 148
host names

/etc/hosts file 88
aliases 88
matching with Internet addresses 88
resolv.conf file 88
resolver function 88
using DNS 88

host partition fairshare 208
host redirection 556
host reservation. See advance reservation
host selection 190
host status

busy 69, 144
closed 68, 70
index 144
lockU and lockW 69, 144
-ok 69, 144
ok 68, 69, 144
unavail 68, 69, 145
unlicensed 68, 69, 145
Administering Platform LSF



Index
unreach 68
viewing 70

host thresholds 48
host type

DEFAULT 532
resource requirements 186
select string 192

host type static resource 148
host types, adding custom names in lsf.shared 84
HOST_JLU job slot limit for preemption 182
host-based resources 140
host-level

fairshare scheduling 208
migration threshold, configuring 321
resource information 275

HOSTRESORDER variable 530
hosts

adding with lsfinstall 76
associating resources with 155
closing 74
connecting to remote 559
controlling 74
copying files across 420
dispatch windows 74
displaying 70
file 88
finding resource 422
for advance reservations 465
logging on the least loaded 422
master candidates 487
multiple network interfaces 89
official name 88
opening 74
preselecting masters for LIM 487
redirecting 556
removing 78
restricting use by queues 108
selecting for task 416
setting up 76, 77
spanning with parallel jobs 441
specifying master candidates 487
specifying master host 525
viewing

architecture information 71
detailed information 70
eligible 48
execeptions 73
history 72
hosts and host status 70
job exit rate and load 73
load by host 71, 143
load by resource 139
model and type information 72
partition information 208
resource allocation limits (blimits) 267
shared resources 142
status 70
status of closed servers 70
suspending conditions 363

hosts file
configuring 89
example host entries 90

host naming 88
HOSTS parameter

in lsb.hosts 92
in lsb.queues 92

hosts.equiv file
host authentication 500
using rcp 518

hostsetup script 76, 77
hrestart badmin command 62
hshutdown badmin command 62
hstartup badmin command 62

I
%I substitution string in job arrays 335
identification daemon (identd) authentication 496
idle job exceptions

configuring 110
description 109
viewing with bjobs 116
viewing with bqueues 103

idle time
built-in load index 146
description 405
suspending conditions 362

if-else constructs, creating 172
index list for job arrays 332
initializing LSLIB (Load Sharing LIBrary) for privileged 

ports authentication 496
input and output files

and interactive jobs 402
job arrays 334
splitting stdout and stderr 402
spooling directory 510

installation, on non-shared file systems 515
installation directories

default UNIX structure 58
pre-42 UNIX structure 59
Windows default structure 60

interactive jobs
competing for software licenses 283
configuring queues to accept 400
redirecting scripts to standard input 411
resource reservation 197
running X applications 409
scheduling policies 400
specifying embedded submission options 411
specifying job options in a file 410
specifying shell 412
splitting stdout and stderr 402
spooling job command files 410
submitting 401
submitting and redirecting streams to files 402
submitting with pseudo-terminals 402
viewing queues for 401
writing job file one line at a time 410
writing job scripts 410

interactive sessions, starting 422
interactive tasks

file access 420
running in LSF Base 419

interfaces, network 89
Administering Platform LSF 567



568

Index
Internet addresses, matching with host names 88
Internet Domain Name Service (DNS), host naming 88
inter-queue priority 360
io load index 146
IRIX

Comprehensive System Accounting (CSA), 
configuring 521

utmp file registration 413
it load index

automatic job suspension 361
description 146, 405
suspending conditions 362

J
%J substitution string in job arrays 335
JL/P parameter in lsb.users 262
JL/U parameter in lsb.hosts 262
job arrays

%I substitution string 335
%J substitution string 335
argument passing 336
controlling 340
creating 332
dependency conditions 337
file preparation 334
format 332
history 338, 341
index list 332
input and output files 334
maximum size 333
monitoring 338, 341
overview 331
passing arguments 336
redirection of input and output 334
requeueing 341
specifying job slot limit 342
standard input and output 335
status 338, 341
submitting 332
syntax 332

job chunking. See chunk jobs
job control actions

CHKPNT 392
configuring 392
default actions 390
LS_EXEC_T 390
on Windows 391
overriding terminate interval 391
RESUME 391
SUSPEND 390
TERMINATE 391
terminating 393
using commands in 393
with lstcsh 557

job dependency conditions
advanced 294
description 292
done 292
ended 292
examples 294
exit 292
external 293

job arrays 337
job name 293
post_done 293, 367
post_err 293, 367
post-processing 367
scheduling 290
specifying 290
specifying job ID 293
started 293

job dispatch order, fairshare 207
job email

bsub options 506
disabling batch job notification 506
limiting size with LSB_MAILSIZE_LIMIT 507

job exception handling
configuring 110
default eadmin action 109
exception types 109
viewing exception status with bjobs 116
viewing exceptions with bqueues 103

job execution environment 49
job exit rate exceptions

configuring 96
description 96
viewing with bhosts 73

job file spooling
See also command file spooling
default directory 510
description 509
JOB_SPOOL_DIR parameter in lsb.params 509

job files 45
job groups

controlling jobs 125
description 123
viewing 124

job idle factor, viewing with bjobs 116
job ladders. See batch jobs, pre-execution commands
job limit 354
job migration

automatic 321
checkpointable jobs 320
checkpointing 308
overview 320
requeuing jobs 321

job overrun exceptions
configuring 110
description 109
viewing with bjobs 116
viewing with bqueuees 103

job preemption
configuring 181
description 178
job slot limits 182
jobs with least run time 183
SLA scheduling 253

job requeue
automatic 301
exclusive 303
reverse requeue 302
user-specified 304

job scripts
Administering Platform LSF



Index
mpijob 434
writing for interactive jobs 410

job slot limits
for job arrays 342
for parallel jobs 437

job spanning 190, 198
job starters

augmentstarter 378
command-level 372
lic_starter script to manage software licenses 284
preservestarter 378
queue-level

configuring 376
description 372

specifying command or script 374, 376
user commands 376

job states
description 112
DONE

description 112
post-execution commands 367

EXIT
abnormal job termination 114
pre- and post-execution commands 367

PEND 112
POST_DONE 114, 367
POST_ERR 114, 367
post-execution 367
PSUSP 112
RUN 112
SSUSP 112
USUSP 112
WAIT for chunk jobs 327

job submission 44
JOB_ACCEPT_INTERVAL parameter in lsb.params 46
JOB_CONTROLS parameter in lsb.queues 392
JOB_EXIT_RATE_DURATION parameter in lsb.params 97
JOB_IDLE parameter in lsb.queues 110
JOB_OVERRUN parameter in lsb.queues 110
JOB_SCHEDULING_INTERVAL parameter in lsb.params 46
JOB_SPOOL_DIR parameter in lsb.params 509
JOB_STARTER parameter in lsb.queues 376
JOB_TERMINATE_INTERVAL parameter in 

lsb.params 353, 391
JOB_UNDERRUN parameter in lsb.queues 110
job-level

checkpointing 316
pre-execution commands

configuring 368
description 367

resource requirements 189
resource reservation 271
run limits 353

job-level suspending conditions, viewing 363
jobs

changing execution order 117
checkpointing

chunk jobs 328
manually 316
prerequisites 313

CHKPNT 392

dispatch order 47
email notification

disabling 506
options 506

enabling rerun 305
enforcing memory usage limits 352
exclusive 175
forcing execution 119
interactive. See interactive jobs
killing 121
limiting processors for parallel 447
making checkpointable 315
migrating automatically 321
migrating manually 320
optimum number running in SLA 241
pending 113
periodic checkpointing 317
preemption 360
preemptive and preemptable 178
PVM 433
requeueing 341
requeuing, description 304
requeuing migrating 321
rerunning 305
rerunning automatically 305
restarting

automatically 305
checkpointed jobs 319

resuming 120, 364
sending specific signals to 122
short running 324
specifying options for interactive 410
specifying shell for interactive 412
spooling command and job files 410
spooling input, output, and command files 509
submitting

to a job group 124
to a service class 241

suspended 364
suspending 120, 360
suspending at queue level 363
switching queues 118
viewing

by user 115
configuration parameters in lsb.params 57
order in queue 47

jobs command in lstcsh 557
jobs requeue, description 300

K
Kerberos authentication 494
kernel-level checkpointing 309

L
lic_starter script, to manage software licenses 284
license, advance reservation 463
licenses

cluster reconfiguration 66
software

counted 280
dedicated queue for 282
floating 281
Administering Platform LSF 569



570

Index
host locked 279
interactive jobs and 283
managing with LSF 278

LIM (Load Information Manager)
configuring number of restarts 162
configuring wait time 162
logging load information 162
preselecting master hosts 487
tuning 487

load indices 484
load thresholds 485
policies 483
run windows 483

lim.log.host_name file 522
limdebug command 541
limitations

lsrcp command 518
number of remote connections 496
on chunk job queues 326

limits, See resource allocation limits or resource usage 
limits

limtime command 543
load average 145
load balancing 308
load indices

See also resources
built-in

overriding 163
summary 144

io 146
it 146
ls 145
mem 146
pg 145
r15m 145
r15s 145
r1m 145
swp 146
tmp 146
tuning for LIM 484
types 405
ut 145
viewing 56, 147

load levels
viewing by resource 139
viewing for cluster 56
viewing for hosts 71

load sharing
displaying current setting 558
with lstcsh 560

load thresholds
configuring 362
description 187
paging rate, tuning 485
queue level 362
tuning 485
tuning for LIM 484, 485

local mode in lstcsh 550
locality, parallel jobs 198
locality of parallel jobs 441
lockU and lockW host status

lsload command 69
status load index 144

log files
default location 520
directory permissions and ownership 520
lim.log.host_name 522
logging events on Cray UNICOS 520
maintaining 522
managing 522
mbatchd.log.host_name 522
mbschd.log.host_name 522
pim.log.host_name 522
res.log.host_name 522
sbatchd.log.host_name 522

LOG_DAEMON facility, LSF error logging 522
login sessions 145
login shell, using lstcsh as 555
lost_and_found queue 107
ls load index 145
ls_connect API call 380
LS_EXEC_T environment variable 390
LS_JOBPID environment variable 388
ls_postevent() arguments 479
lsadmin command

limunlock 74
setuid permission 497

lsb.events file
event logging 51
logging administrator comments

for host open and close 74
for mbatchd restart 64
for queue events 104

managing event log 523
lsb.hosts file

host exception handling 96
user groups 131
using host groups 92
using user groups 132

lsb.modules file
advance reservation 463
schmod_advrsv plugin 463

lsb.params file
absolute run time limit 354
CHUNK_JOB_DURATION parameter 325
controlling lsb.events file rewrites 523
CPU time normalization 351
default normalization host 351
EADMIN_TRIGGER_DURATION threshold for 

exception handling 110
job termination signal interval 353
JOB_ACCEPT_INTERVAL parameter 46
JOB_EXIT_RATE_DURATION for exception 

handling 97
JOB_SCHEDULING_INTERVAL parameter 46
non-normalized run time limit 354
specifying job input files 509

lsb.queues file
adding a queue 107
job exception handling 110
normalization host 357
resource usage limits 348
Administering Platform LSF



Index
restricting host use by queues 108
user groups 131
using host groups 92
using user groups 132

lsb.resources file
advance reservation policies 463
parameters 261
viewing limit configuration (blimits) 267

lsb.serviceclasses file
configuring SLA scheduling 243
CONTROL_ACTION 253

lsb.users file
user groups 131
using user groups 132

LSB_CHUNK_RUSAGE parameter in lsf.conf 347
LSB_CONFDIR parameter in lsf.conf, default UNIX 

directory 58
LSB_DEFAULTQUEUE environment variable 45
LSB_ECHKPNT_KEEP_OUTPUT

environment variable 312
parameter in lsf.conf 312

LSB_ECHKPNT_METHOD
environment variable 312
parameter in lsf.conf 312

LSB_ECHKPNT_METHOD_DIR
environment variable 310
parameter in lsf.conf 310

LSB_ESUB_METHOD in lsf.conf 386
LSB_HOSTS environment variable 430
LSB_JOB_CPULIMIT parameter in lsf.conf 351
LSB_JOBEXIT_STAT environment variable 368
LSB_JOBINDEX environment variable 336
LSB_JOBPEND environment variable 368
LSB_JOBPGIDS environment variable 393
LSB_JOBPIDS environment variable 393
LSB_LOCALDIR parameter in lsf.conf file 525
LSB_MAILSIZE environment variable 507
LSB_MAILSIZE_LIMIT parameter in lsf.conf 507
LSB_MAILTO parameter in lsf.conf 506
LSB_MBD_PORT parameter in lsf.conf 85
LSB_MOD_ALL_JOBS parameter in lsf.conf 472
LSB_REQUEUE_TO_BOTTOM parameter in lsf.conf 301, 

302
LSB_SBD_PORT parameter in lsf.conf 85
LSB_SHAREDIR parameter in lsf.conf

default UNIX directory 58
duplicate event logging 524

LSB_SHAREDIR/cluster_name/logdir, LSF log files 520
LSB_SIGSTOP parameter in lsf.conf 394
LSB_SUB_ABORT_VALUE environment variable 383
LSB_SUB_PARM_FILE environment variable 381
LSB_SUSP_REASON environment variable 393
LSB_UTMP parameter in lsf.conf 413
.lsbatch directory 49
LSF Daemon Error Log 522
LSF events

generated by LSF 479
generation of 478
program arguments 479

LSF parameters. See individual parameter names
LSF version, viewing 56
lsf.cluster.cluster_name file, configuring cluster 

administrators 61
lsf.conf file

comprehensive system account 521
configuring daemon authentication 501
configuring duplicate logging 525
configuring TCP service ports 85
custom file transfer 518
daemon service ports 85
default UNIX directory 58
duplicate event logging 524
host authentication 500
limiting the size of job email 507
LSB_JOB_MEMLIMIT 352
LSB_MEMLIMIT_ENFORCE 352
lsrcp command executable 518
managing error logs 522
per-job CPU limit 351
resource usage limits for chunk jobs 347
sending email to job submitter 506
setting message log to debug level 540
user authentication 497

lsf.shared file
adding a custom host type and model 84
tuning CPU factors 94

lsf.sudoers file, external authentication (eauth) 494, 495, 
498

LSF_AUTH parameter in lsf.conf 497
LSF_AUTH_DAEMONS parameter in lsf.conf 501
LSF_BINDIR parameter in lsf.conf 58, 518
LSF_CONFDIR parameter in lsf.conf 58
LSF_EAUTH_AUX_DATA environment variable 494
LSF_EAUTH_CLIENT environment variable 501
LSF_EAUTH_KEY parameter in lsf.sudoers 494
LSF_EAUTH_SERVER environment variable 501
LSF_EAUTH_USER parameter in lsf.sudoers 495
LSF_ENABLE_CSA parameter in lsf.conf 521
LSF_INCLUDEDIR parameter in lsf.conf, default UNIX 

directory 58
LSF_JOB_STARTER environment variable 374
LSF_LIM_PORT parameter in lsf.conf 85
LSF_LOG_MASK parameter in lsf.conf 522, 540
LSF_LOGDIR parameter in lsf.conf 522
LSF_MANDIR parameter lsf.conf 58
LSF_MASTER_LIST parameter in lsf.conf 487
LSF_MISC parameter in lsf.conf 58
LSF_NT2UNIX_CLTRB environment variable 395
LSF_NT2UNIX_CLTRC environment variable 395
LSF_RES_PORT parameter in lsf.conf 85
LSF_RSH parameter in lsf.conf, controlling daemons 62
LSF_Sched_Advance_Reservation license 463
LSF_SERVERDIR directory, eauth executable 497
LSF_SERVERDIR parameter in lsf.conf 58
LSF_STARTUP_PATH parameter in lsf.sudoers 498
LSF_STARTUP_USERS parameter in lsf.sudoers 498
LSF_TOP directory

default UNIX directory structure 58
Administering Platform LSF 571



572

Index
pre-42 UNIX directory structure 59
LSF_USE_HOSTEQUIV parameter in lsf.conf 500
.lsfhosts file 503
lsfinstall, adding a host 76
lsfshutdown command, shutting down daemons on all 

hosts 62
lsfstartup command, starting daemons on all hosts 62
lshosts command, DEFAULT host model or type 532
LSLIB (Load Sharing LIBrary), initializing for privileged 

ports authentication 496
lspasswd command 499
lsrcp command

description 516
executable file location 518
file transfer 518
restrictions 518

lstcsh
about 548
difference from other shells 552
exiting 554
limitations 553
local mode 550
remote mode 550
resource requirements 549
starting 554
task lists 549
using as login shell 555
writing shell scripts in 560

M
mail

disabling batch job notification 506
job options 506
limiting the size of job email 507

mandatory esub method (LSB_ESUB_METHOD) 386
mandatory first execution host, parallel jobs 439
mapping user accounts 503
master esub (mesub)

configuring 387
description 386

master host
candidates with SF_MASTER_LIST 487
in non-shared file systems 515
preselecting 487
specifying 525
viewing current 56

MAX_JOB_NUM parameter in lsb.params 523
MAX_JOBS parameter in lsb.users 262
maximum

number of processors for parallel jobs 438
resource usage limit 348
run limit 348

maxmem static resource 148
maxswp static resource 148
maxtmp static resource 148
mbatchd (master batch daemon)

expiry time 491
refresh time 491
restarting 64
shutting down 64

specifying query-dedicated port 491
specifying time interval for forking child 491
tuning on UNIX 491

mbatchd.log.host_name file 522
MBD. See mbatchd
mbddebug command 541
mbdrestart badmin command 62
mbdtime command 543
mbschd.log.host_name file 522
mem load index 146
MEMLIMIT parameter in lsb.queues 352
memory

available 146
usage limit 352

mesub (master esub)
configuring 387
description 386

migration. See job migration
minimum processors for parallel jobs 438
missed SLA scheduling goals, control action 253
model static resource 148
MPI (Message Passing Interface) 431, 434
MPICH support 434
mpijob parallel job script 434
MPL (Message Passing Library) 434
multi-homed hosts 89
multiple, esub 386
multiple authentication environments 502
multiprocessor hosts

configuring queue-level load thresholds 363
tuning LIM 486

multithreading, configuring mbatchd for 491
MXJ parameter in lsb.hosts 262

N
name lookup using /etc/hosts file 88
name spaces, non-uniform 503
native language system, and lstcsh 553
ncpus static resource

dynamically changing processors 149
reported by LIM 148

ndisks static resource 148
network

failure 51
interfaces 89
partitioning, and duplicate event logging 525
port numbers, configuring for NIS or NIS+ 

databases 86
Network File System. See NFS
Network Information Service. See NIS
NFS (Network File System)

automount command 514, 528
nosuid option 499
overview 514

NIS (Network Information Service)
configuring port numbers 86
host name lookup in LSF 88
ypcat hosts.byname 88

NO_PREEMPT_FINISH_TIME parameter in lsb.params 183
Administering Platform LSF



Index
NO_PREEMPT_RUN_TIME parameter in lsb.params 183
non-normalized run time limit 354
non-shared file systems, installing LSF 515
non-uniform name spaces 503
normalization

CPU time limit 357
host 357
run time limit 357

normalization host 351
normalized run queue length

description 145
tuning LIM 486

nosuid option, NFS mounting 499
NQS (Network Queueing System), logging events on Cray 

UNICOS 520
nqsacct file 520
number of processors for parallel jobs 438
numdone dependency condition 337
numended dependency condition 337
numerical resources 140
numexit dependency condition 337
numhold dependency condition 337
numpend dependency condition 337
numrun dependency condition 337
numstart dependency condition 337

O
obsolete parameters, USER_ADVANCE_RESERVATION in 

lsb.params 464
official host name 88
-ok host status

lsload command 69
status load index 144

ok host status
bhosts command 68
lsload command 69
status load index 144

one-time advance reservation 466
order of job execution,changing 117
order string 194
OS memory limit 353
output and input files, for job arrays 335
output file spooling, default directory 510
overrun job exceptions

configuring 110
description 109
viewing with bjobs 116
viewing with bqueuees 103

ownership of log directory 520

P
P4 jobs 431, 433
p4job parallel job script 433
paging rate

automatic job suspension 361
checking 362
description 145, 405
load index 145
suspending conditions 362

parallel fairshare 458
parallel jobs

allocating processors 432
backfill scheduling 453
deadline constraint scheduling 459
fairshare 458
job slot limits 437
limiting processors 447
locality 198, 441
mandatory first execution host 439
mpijob script 434
number of processors 438
overview 429
processor reservation 450
selecting hosts with same string 199
spanning hosts 441
submitting 432
using makefile 446

parallel programming
Argonne National Laboratory 434
Mississippi State University 434
Oak Ridge National Laboratory 433
P4 433
packages 431
PVM 433

parallel tasks
running with lsgrun 417
starting 436

Parallel Virtual Machine (PVM)
job scripts 431
submitting jobs to LSF 433

parameters. See individual parameter names 57
partitioned networks 52
PATH environment variable

and lstcsh 554
shared user directories 50

paths
/etc/hosts file

example host entries 90
host naming 88
name lookup 88

/etc/hosts.equiv file 500
host authentication 500
using rcp 518

/etc/lsf.sudoers file 495
/etc/services file, adding LSF entries to 85
/net 516
/usr/bin/ 50

PEND, job state 112
pending reasons, queue-level resource reservation 271
pending reasons, viewing 113
performance tuning

busy thresholds 484
LIM policies 483
load indices 484
load thresholds 485
mbatchd on UNIX 491
preselecting master hosts 487
run windows for LIM 483

periodic checkpointing
description 317
Administering Platform LSF 573



574

Index
disabling 317
job-level 317
queue-level 318

periodic tasks 522
per-job CPU limit 351
permissions

log directory 520
remote execution 500
setuid

badmin command 497
lsadmin command 497

per-process limits
CPU limit 351
data segment size 352
file size 352
memory limit 352
stack segment size 355

pg load index, suspending conditions 362
pidentd daemon 496
PIM (Process Information Manager), resource use 143
pim.log.host_name file 522
PJOB_LIMIT parameter in lsb.queues 262
PluginModule section in lsb.modules, advance 

reservation 463
policies

fairshare 202
tuning for LIM 483

port numbers, configuring for NIS or NIS+ databases 86
ports

privileged, setuid authentication 496
registering daemon services 85
specifying dedicated 491

post_done job dependency condition 293, 367
POST_DONE post-execution job state 114, 367
post_err job dependency condition 293, 367
POST_ERR post-execution job state 114, 367
post-execution

job dependency conditions 367
job states 367

post-execution commands
configuring 368
overview 366
queue-level 367
running under user ID 369

pre-4.2 UNIX directory structure 59
PREEMPT_FOR parameter in lsb.params 182, 183, 460
preemptable

jobs 178
queues 178

preemption, SLA scheduling 253
preemption and fairshare, advance reservation 472
PREEMPTION parameter in lsb.queues 181
preemptive

jobs 178
queues 178
scheduling

configuring 181
description 178

pre-execution commands
configuring 368

job-level 367
overview 366
queue-level 367
running under user ID 369

preservestarter job starter 378
PRIORITY parameter in lsb.queues 213, 220
priority user fairshare 237
priority. See dynamic user priority
privileged ports authentication (setuid)

description 496
limitations 496

process allocation for parallel jobs 190, 199
PROCESSLIMIT parameter in lsb.queues 353
processor

number for parallel jobs 438
reservation 450

processor reservation, configuring 450
processors, limiting for parallel jobs 447
programs, handling LSF events 478
project names, viewing resource allocation limits 

(blimits) 267
pseudo-terminal

submitting interactive jobs with 402
using to run a task 417

PSUSP job state
description 120
overview 112

pub/ident/server 496
PVM (Parallel Virtual Machine)

job scripts 431
submitting jobs to LSF 433

PVM jobs, submitting 433
pvmjob parallel job script 433

Q
qact badmin command 104
qclose badmin command 104
qinact badmin command 104
QJOB_LIMIT parameter in lsb.queues 262
qopen badmin command 104
queue administrators, displaying 62
queue dispatch windows 288
queue priority 45
queue thresholds, viewing 48
QUEUE_NAME parameter in lsb.queues 107
queue-level

fairshare across queues 211
fairshare scheduling 210
job starter 376
making jobs checkpointable 315
migration threshold, configuring 321
periodic checkpointing 318
pre- and post-execution commands

configuring 368
description 367

resource limits 348
resource requirements 187
resource reservation 271
run limits 349

queue-level resource information, viewing 275
Administering Platform LSF



Index
queue-level resource limits, defaults 348
queues

adding and removing 107
automatic selection 45
backfill queue 454
changing job order within 117
chunk job limitations 326
configuring

for chunk jobs 325
job control actions 392
suspending conditions 363

default 45
dispatch windows 106
displaying queue administrators 62
exclusive 175
fairshare across queues 211
interactive 400
lost_and_found 107
overview 44
preemptive and preemptable 178
REQUEUE_EXIT_VALUES parameter 368
restricting host use 108
run windows 106
setting rerun level 305
specifying suspending conditions 363
viewing

available 101
default 45
detailed queue information 101
for interactive jobs 401
history 102
job exception status 103
resource allocation limits (blimits) 267
status 101

viewing administrator of 56

R
-R res_req command argument 190
r15m load index

built-in resources 145
description 406
suspending conditions 362

r15s load index
built-in resources 145
description 406
suspending conditions 362

r1m load index
built-in resources 145
description 406
suspending conditions 362

rcp command 516
recurring advance reservation 466
remote connections, limitation to privileged ports 

authentication 496
remote execution

authentication 493
permission 500
with lstcsh 551

remote jobs
bringing background jobs to foreground 557
execution priority 148

remote mode in lstcsh 550

REQUEUE_EXIT_VALUES parameter in lsb.queues 301, 
302

requeued jobs
automatic 301
description 300
exclusive 303
reverse 302
user-specified 304

rerunnable jobs 305
rerunnable jobs, chunk jobs 328
RERUNNABLE parameter in lsb.queues 305
res.log.host_name file 522
resdebug command 541
reservation, advance 462, 463
reservation ID, advance reservation 471
resolv.conf file 88
resolver function 88
resource allocation limits

configuring 261
viewing (blimits) 267

resource names
aliases 192
description 154

resource requirements
and task lists in lstcsh 549
description 186
for advance reservations 465
host type 186
ordering hosts 190, 194
parallel job locality 190, 198
parallel job processes 190, 199
parallel jobs, selecting hosts 199
resource reservation 195
resource usage 190, 195
select string 192
selecting hosts 190, 192, 199

resource reservation
description 270
static shared resources 157

resource usage
resource requirements 190, 195
viewing 143

resource usage limits
ceiling 348
chunk job enforcement 347
configuring 348
conflicting 347
default 348
for deadline constraints 174
hard 348
maximum 348
priority 347
soft 348
specifying 348

ResourceMap section in lsf.cluster.cluster_name 155
ResourceReservation section in lsb.resources 463
resources

See also load indices
adding 153
adding custom 154
advance reservations 462
Administering Platform LSF 575



576

Index
associating with hosts 155
Boolean 140
built-in 144
configuring custom 154
configuring limits 261
custom 152
host-level 275
queue-level 275
shared 141, 142
types 140
viewing

available 56, 138
host load 139
shared 56

restime command 543
restrictions

chunk job queues 326
lsrcp command 518
lstcsh 553
number of remote connections 496

RESUME job control action 391
resume thresholds, viewing 364
RESUME_COND parameter in lsb.queues 391
reverse requeue 302
rexpri static resource 148
RFC 1413 and RFC 931 protocols, identification daemon 

authentication 496
.rhosts file

troubleshooting 530
disadvantages 500
file transfer with lsrcp 518
host authentication 500

rlogin command
interactive terminals 405
privileged ports authentication 496

rsh command
lsfrestart 62
privileged ports authentication 496

RUN job state, overview 112
run limits

ceiling 348
configuring 346, 353
default 349
maximum 348
specifying 356

run queue
effective 145
normalized 145
suspending conditions 362

run time
decayed 230
historical 230
normalization 357

run time limit, non-normalized (absolute) 354
run windows

description 287
queues 106
tuning for LIM 483

RUN_WINDOW, queues 106
RUNLIMIT parameter in lsb.queues 353
running jobs, viewing 112

rusage
resource requirements section 190
resource reservation 270
usage string syntax 195

ruserok function, authentication using 
/etc/hosts.equiv 500

S
same string 199
sample /etc/hosts file entries 90
sbatchd (slave batch daemon)

remote file access 516
restarting 63
shutting down 63

sbatchd.log.host_name file 522
sbddebug command 541
sbdtime command 543
schddebug command 541
schddtime command 543
scheduling

exclusive 175
fairshare 202
hierarchical fairshare 215
preemptive

configuring 181
description 178

service level agreement (SLA) 240
threshold

host selection 48
queue-level resource requirements 187

schmod_advrsv plugin for advance reservation 463
scripts

check_license for counted software licenses 280
lic_starter to manage software licenses 284
mpijob 434
p4job 433
pvmjob 433
redirecting to standard input for interactive 

jobs 411
writing for interactive jobs 410
writing in lstcsh 560

security
LSF authentication 498
user authentication 497

selection string 192
server hosts, viewing detailed information 70
server static resource 148
server status closed 70
service class

configuring 243
examples 244
goal-oriented scheduling 241

service classes
bacct command 246, 247
description 240
submitting jobs 241

service database examples 85
service level agreement. See SLA scheduling
service level goals

job preemption 253
optimum number of running jobs 241
Administering Platform LSF



Index
service classes 241
service ports (TCP and UDP), registering 85
setuid

authentication 496
permission

badmin command 497
lsadmin 497
privileged ports authentication 496

setuid permissions 530
SGI IRIX. See IRIX
share assignments 203
share tree 217
shared file systems, using LSF without 515
shared files 528
shared resources

description 141
static

reserving 157
update interval 158

viewing 142
shared user directories 49
shares

fairshare assignment 203
viewing user share information 129

shell mode, enabling 420
shell scripts. See scripts
shell variables and lstcsh 553
shells

default shell for interactive jobs 412
lstcsh 552
specifying for interactive jobs 412

short-running jobs, as chunk jobs 324
SIGCONT signal

default RESUME action 391
job control actions 122

SIGINT signal
conversion to Windows NT 395
default TERMINATE action 391
job control actions 122

SIGKILL signal
default TERMINATE action 391
job control actions 122
sending a signal to a job 122

signals
avoiding job action deadlock 394
configuring SIGSTOP 120, 390, 394
converting 395
customizing conversion 395
sending to a job 122
SIGINT 122
SIGTERM 122

SIGQUIT signal, conversion to Windows NT 395
SIGSTOP signal

bstop 120
configuring 120, 390, 394
default SUSPEND action 390
job control actions 122

SIGTERM signal
default TERMINATE action 391
job control actions 122

SIGTSTP signal
bstop 120
default SUSPEND action 390

SLA scheduling
bacct command 247
bsla command 246
configuring 243
deadline goals 240
delayed goals 253
description 240
job preemption 253
missed goals 253
optimum number of running jobs 241
service classes

description 240
examples 244

service level goals 241
submitting jobs 241
velocity goals 240
violation period 253

SLOT_POOL parameter, in lsb.queues 220
SLOT_SHARE parameter in lsb.queues 220
soft resource limits

data segment size 352
description 346
example 348
file size 352
memory usage 352
stack segment size 355

software licenses
counted 280
floating

dedicated queue for 282
description 281

host locked 279
interactive jobs competing with batch jobs 283
managing 284
managing with LSF 278

span string 198
spooling. See command file spooling, job file spooling
SSUSP job state

description 120
overview 112

stack segment size limit 355
STACKLIMIT parameter in lsb.queues 355
standard input and error, splitting for interactive 

jobs 402
standard input and output

for eauth 495
job arrays 335
passing data between esub and eexec 388

standard output and error, redirecting to a file 421
started job dependency condition 293
static priority fairshare 238
static resources

See also individual resource names
description 148
shared

reserving 157
update interval 158

STATUS, bhosts 68
Administering Platform LSF 577



578

Index
status
closed in bhosts 70
job arrays 338, 341
load index 144
viewing

hosts 70
queues 101

WAIT for chunk jobs 327
stderr and stdout

redirecting to a file 421
splitting for interactive jobs 402

stdin and stdout, passing data between esub and 
eexec 388

STOP_COND parameter in lsb.queues 390
string resources 140
submission executable (esub) 381
submission options, embedding for interactive jobs 411
Sun Network Information Service/Yellow Pages. See NIS
supported file systems 514
SUSPEND job control action, default 390
suspended jobs

resuming 364
states 113

suspending conditions
configuring 363
viewing 363

suspending reason, viewing 113, 364
suspending thresholds 364
svc.conf file (name services) 88
swap space

load index 146
suspending conditions 362

SWAPLIMIT parameter in lsb.queues 355
swp load index

description 146
suspending conditions 362

syslog.h file 522

T
task control, with lstcsh 557
task lists

and lstcsh 549
changing memberships 549

tasks
file access 420
running in LSF Base 419
running on hosts listed in a file 418
running same on many hosts in sequence 417
selecting host to run on 416
starting parallel 436

TCP service port numbers
configuring for NIS or NIS+ databases 86
registering for LSF 85

tcsh, version and lstcsh 553
temp space, suspending conditions 362
TERMINATE job control action 391
TERMINATE_WHEN parameter in lsb.queues

changing default SUSPEND action 393
TERMINATE job control action 391

TerminateProcess() system call (Windows NT), job control 

actions 391
THREADLIMIT parameter in lsb.queues 354
threads, job limit 354
thresholds

exited job exceptions 96
host and queue 48
idle job exceptions 110
job exit rate for hosts 96
job overrun exceptions 110
job underrun exceptions 110
scheduling and suspending 364
tuning for LIM 485

time expressions, creating for automatic 
configuration 170

time normalization, CPU factors 357
time values, specifying 168
time windows, syntax 169
time-based resource limits 174
timing level, commands for daemons 543
/tmp directory, default LSF_LOGDIR 522
tmp load index

description 146
suspending conditions 362

/tmp_mnt directory 528
type static resource 72, 148

U
UDP service port numbers, registering for LSF 85
uid argument to eauth 495
UJOB_LIMIT parameter in lsb.queues 262
unavail host status

bhosts command 68
lsload command 69
status load index, status load index 145

underrun job exceptions
configuring 110
description 109
viewing with bjobs 116
viewing with bqueues 103

UNICOS accounting 520
UNIX directory structure

example 58
pre-42 59

unlicensed host status
bhosts command 68
lsload command 69
status load index 145

unreach host status, bhosts command 68
update interval 525

duplicate event logging 525
static shared resources 158

usage limits. See resource usage limits
usage string 195
user account mapping 503
user authentication

environments 494
external (eauth) 494
identification daemon (identd) 496
LSF_AUTH parameter in lsf.conf 497
LSF_EAUTH_KEY parameter in lsf.sudoers 494
Administering Platform LSF



Index
LSF_EAUTH_USER parameter in lsf.sudoers 495
LSF_STARTUP_PATH parameter in lsf.sudoers 498
LSF_STARTUP_USERS parameter in lsf.sudoers 498
overview 493
privileged ports (setuid) 496
RFC 1413 and RFC 931 496
security 498

user groups
defining external user groups 133
overview 130
specifying 234
viewing information about 128

user home directories, shared 49
user priority 205
user share assignments 203
USER_ADVANCE_RESERVATION parameter in lsb.params, 

obsolete parameter 464
user_auth_data argument to eauth 495
user_auth_data_len argument to eauth 495
USER_JLP job slot limit for preemption 182
USER_NAME parameter in lsb.users 132
USER_SHARES parameter in lsb.hosts 132
user-level

account mapping, configuring 503
checkpointing, overview 309

username argument to eauth 495
users

viewing information about 128
viewing jobs submitted by 115
viewing resource allocation limits (blimits) 267
viewing shares 129

USERS parameter in lsb.queues 132
user-specified job requeue 304
/usr/include/sys/syslog.h file 522
%USRCMD string in job starters 376
USUSP job state

description 120
overview 112
suspending and resuming jobs 120

ut load index
built-in resource 145
description 406

utmp file registration on IRIX, enabling 413

V
variables. See individual environment variable names
viewing

configuration errors 66
host status 70

violation period, SLA scheduling 253
virtual memory

load index 146
suspending conditions 362

virtual memory limit 355
vmstat 146

W
WAIT status of chunk jobs

description 327
viewing 114

wall-clock run time limit 354
weekly planner for advance reservation (brsvs -p) 469
Windows, job control actions 391
windows

dispatch 288
run 287
time 169

Windows NT
authentication in LSF Service 498
default directory structure 60
TerminateProcess() system call, job control 

actions 391
Windows NT Event Viewer 478
workarounds to lsrcp limitations 518

X
X applications, running with bsub 409
xterm, starting in LSF Base 423

Y
ypbind daemon 88
ypcat hosts.byname 88
ypmake command 86
Administering Platform LSF 579



580

Index
Administering Platform LSF


	Administering Platform�LSF®
	Welcome
	About This Guide
	Purpose of this guide
	Who should use this guide
	What you should already know
	Typographical conventions
	Command notation

	What’s New in the Platform LSF Version 6.0
	Policy management
	Job group support
	High Performance Computing
	Administration and diagnosis
	Run-time enhancements

	Upgrade and Compatibility Notes
	UPGRADE document
	API Compatibility between LSF 5.x and Version 6.0
	Server host compatibility Platform LSF
	New configuration parameters and environment variables
	New command options and output
	New files added to installation
	New accounting and job event fields

	Learning About Platform Products
	World Wide Web and FTP
	Platform training
	README files and release notes and UPGRADE
	Platform documentation

	Technical Support
	We’d like to hear from you

	About Platform LSF
	Cluster Concepts
	Clusters, jobs, and queues
	Hosts
	LSF daemons
	Batch jobs and tasks
	Host types and host models
	Users and administrators
	Resources

	Job Life Cycle
	1 Submit a job
	2 Schedule job
	3 Dispatch job
	4 Run job
	5 Return output
	6 Send email to client


	How the System Works
	Job Submission
	Queues
	Automatic queue selection
	Job files

	Job Scheduling and Dispatch
	Scheduling policies
	Scheduling and dispatch
	Dispatch order

	Host Selection
	Host load levels
	Eligible hosts
	Resource requirements

	Job Execution Environment
	Shared user directories
	Executables and the PATH environment variable

	Fault Tolerance
	Dynamic master host
	Network failure
	Event log file (lsb.events)
	Partitioned network
	Host failure
	Job exception handling



	Managing Your Cluster
	Working with Your Cluster
	Viewing Cluster Information
	Viewing LSF version, cluster name, and current master host
	Viewing cluster administrators
	Viewing configuration parameters

	Default Directory Structures
	UNIX
	Windows

	Cluster Administrators
	Adding cluster administrators

	Controlling Daemons
	Prerequisites
	Daemon commands
	sbatchd
	LIM and RES

	Controlling mbatchd
	Restarting mbatchd
	Logging a comment when restarting mbatchd
	Shutting down mbatchd

	Reconfiguring Your Cluster
	Reconfiguring the cluster with lsadmin and badmin
	Reconfiguring the cluster by restarting mbatchd
	Viewing configuration errors
	How reconfiguring the cluster affects licenses


	Working with Hosts
	Host States
	bhosts
	lsload

	Viewing Host Information
	Viewing all hosts in the cluster and their status
	Viewing detailed server host information
	Viewing host load by host
	Viewing host architecture information
	Viewing host history
	Viewing host model and type information
	Viewing job exit rate and load for hosts

	Controlling Hosts
	Closing a host
	Opening a host
	Dispatch Windows
	Logging a comment when closing or opening a host
	How events are displayed and recorded in MultiCluster lease model

	Adding a Host
	Adding a host of an existing type using lsfinstall
	Adding a host of a new type using lsfinstall

	Removing a Host
	Adding and Removing Hosts Dynamically
	How dynamic host configuration works
	Adding dynamic hosts in a shared file system
	Adding dynamic hosts in a non-shared file system (slave hosts)
	Allowing only certain hosts to join the cluster
	Automatic removal of dynamically added hosts

	Adding Host Types and Host Models to lsf.shared
	Adding a custom host type or model

	Registering Service Ports
	lsf.conf
	/etc/services
	NIS or NIS+ database

	Host Naming
	Network addresses
	Host name services
	For more information

	Hosts with Multiple Addresses
	Multiple network interfaces
	Configuring the LSF hosts file
	Example /etc/hosts entries
	DNS configuration

	Host Groups
	Where to use host groups
	Configuring host groups
	External host group requirements (egroup)

	Tuning CPU Factors
	How CPU factors affect performance
	Guidelines for setting CPU factors
	Viewing normalized ratings
	Tuning CPU factors

	Handling Host-level Job Exceptions
	eadmin script
	Host exceptions LSF can detect
	Default eadmin actions
	Configuring host exception handling lsb.hosts)
	Configuring thresholds for exception handling


	Working with Queues
	Queue States
	Viewing Queue Information
	Viewing available queues and queue status
	Viewing detailed queue information
	Viewing the state change history of a queue
	Viewing queue administrators
	Viewing exception status for queues (bqueues)

	Controlling Queues
	Closing a queue
	Opening a queue
	Inactivating a queue
	Activating a queue
	Logging a comment when controlling a queue
	Dispatch Windows
	Run Windows

	Adding and Removing Queues
	Adding a queue
	Removing a queue

	Managing Queues
	Restricting host use by queues
	Adding queue administrators

	Handling Job Exceptions
	eadmin script
	Job exceptions LSF can detect
	Default eadmin actions
	Configuring job exception handling (lsb.queues)
	Configuring thresholds for job exception handling


	Managing Jobs
	Job States
	Pending jobs
	Suspended jobs
	WAIT state (chunk jobs)
	Exited jobs
	Post-execution states

	Viewing Job Information
	Viewing all jobs for all users
	Viewing jobs for specific users
	Viewing exception status for jobs (bjobs)

	Changing Job Order Within Queues
	bbot
	btop
	Moving a job to the top of the queue

	Switching Jobs from One Queue to Another
	Switching a single job
	Switching all jobs

	Forcing Job Execution
	Forcing a pending job to run

	Suspending and Resuming Jobs
	Suspending a job
	Resuming a job

	Killing Jobs
	Killing a job
	Forcing removal of a job from LSF

	Sending a Signal to a Job
	Signals on different platforms
	Sending a signal to a job

	Using Job Groups
	Creating a job group
	Submitting jobs under a job group
	Viewing jobs in job groups
	Controlling jobs in job groups


	Managing Users and User Groups
	Viewing User and User Group Information
	Viewing user information
	Viewing user group information
	Viewing user share information

	About User Groups
	Existing User Groups as LSF User Groups
	How LSF recognizes UNIX user groups
	How LSF resolves users and user groups with the same name
	Where to use existing user groups

	LSF User Groups
	Where to use LSF user groups
	Configuring user groups
	External user group requirements (egroup)



	Working with Resources
	Understanding Resources
	About LSF Resources
	Viewing available resources
	Viewing host load by resource

	How Resources are Classified
	Boolean resources
	Shared resources
	Viewing shared resources for hosts

	How LSF Uses Resources
	Viewing job resource usage
	Viewing load on a host

	Load Indices
	Load indices collected by LIM
	Status
	CPU run queue lengths (r15s, r1m, r15m)
	CPU utilization (ut)
	Paging rate (pg)
	Login sessions (ls)
	Interactive idle time (it)
	Temporary directories (tmp)
	Swap space (swp)
	Memory (mem)
	I/O rate (io)
	Viewing information about load indices

	Static Resources
	Static resources reported by LIM
	CPU factor (cpuf)
	Server

	Automatic Detection of Hardware Reconfiguration
	Supported platforms
	Dynamic changes in ncpus
	Dynamic changes in maxmem, maxswp, maxtmp
	Viewing dynamic hardware changes
	How dynamic hardware changes affect LSF


	Adding Resources
	About Configured Resources
	Adding New Resources to Your Cluster
	Configuring lsf.shared Resource Section
	Configuring lsf.cluster.cluster_name ResourceMap Section
	RESOURCENAME
	LOCATION
	Non-batch configuration

	Static Shared Resource Reservation
	Reserving a static shared resource

	External Load Indices and ELIM
	How LSF supports multiple ELIMs
	Configuring your application-specific SELIM
	How LSF uses ELIM for external resource collection
	Writing an ELIM
	Debugging an ELIM

	Modifying a Built-In Load Index
	Considerations
	Steps



	Scheduling Policies
	Time Syntax and Configuration
	Specifying Time Values
	Time value syntax

	Specifying Time Windows
	Examples of time windows

	Specifying Time Expressions
	Time expression syntax

	Automatic Time-based Configuration
	Creating if-else constructs
	Verifying configuration


	Deadline Constraint and Exclusive Scheduling
	Deadline Constraint Scheduling
	Deadline constraints
	Time-based resource usage limits
	How deadline constraint scheduling works
	Disabling deadline constraint scheduling

	Exclusive Scheduling
	About exclusive scheduling
	How exclusive scheduling works
	Configuring an exclusive queue
	Configuring a host to run one job at a time
	Submitting an exclusive job


	Preemptive Scheduling
	About Preemptive Scheduling
	Preemptive and preemptable queues
	Preemptive and preemptable jobs

	How Preemptive Scheduling Works
	Job slot limits affected by preemptive scheduling
	Preemption of multiple job slots
	Preemption of parallel jobs

	Configuring Preemptive Scheduling
	Configuring additional job slot limits for preemptive scheduling
	Configuring preemptable queue preference
	Preempting jobs with the least run time
	Preventing preemption by run time


	Specifying Resource Requirements
	About Resource Requirements
	Queue-Level Resource Requirements
	Load thresholds
	Viewing queue-level resource requirements

	Job-Level Resource Requirements
	Viewing job-level resource requirements

	About Resource Requirement Strings
	Resource requirement string sections
	How queue-level and job-level requirements are resolved

	Selection String
	Specifying shared resources with the keyword “defined”

	Order String
	Usage String
	Batch jobs
	Specifying multiple usage strings
	Non-batch environments

	Span String
	Same String

	Fairshare Scheduling
	About Fairshare Scheduling
	Queue-level vs. host partition fairshare
	Fairshare policies
	How fairshare scheduling works

	User Share Assignments
	Dynamic User Priority
	About dynamic user priority
	How LSF calculates dynamic priority
	How LSF measures fairshare resource usage
	Default dynamic priority formula
	Configuring the default dynamic priority

	How Fairshare Affects Job Dispatch Order
	Job dispatch order among queues of equivalent priority

	Host Partition Fairshare
	About host partition fairshare
	Viewing host partition information
	Configuring host partition fairshare scheduling

	Queue-Level User-based Fairshare
	About queue-level fairshare
	Viewing queue-level fairshare information
	Configuring queue-level fairshare

	Cross-queue Fairshare
	Applying the same fairshare policy to several queues
	User and queue priority
	Viewing cross-queue fairshare information
	Configuring cross-queue fairshare
	Controlling job dispatch order in cross-queue fairshare

	Hierarchical Fairshare
	About hierarchical fairshare
	How hierarchical fairshare affects dynamic share priority
	How hierarchical fairshare affects job dispatch order
	Viewing hierarchical share information for a group
	Viewing hierarchical share information for a host partition
	Configuring hierarchical fairshare
	Configuring a share tree

	Queue-based Fairshare
	Managing pools of queues
	How LSF allocates slots for a pool of queues
	Interaction with other scheduling policies
	Examples

	Configuring Slot Allocation per Queue
	SLOT_SHARE parameter
	SLOT_POOL parameter
	Host job slot limit
	Steps
	Examples

	Viewing Queue-based Fairshare Allocations
	Viewing configured job slot share
	Viewing slot allocation of running jobs

	Typical Slot Allocation Scenarios
	3 queues with SLOT_SHARE 50%, 30%, 20%, with 15 job slots
	2 pools, 30 job slots, and 2 queues out of any pool
	Round-robin slot distribution�—�13 queues and 2 pools
	How LSF rebalances slot usage

	Using Historical and Committed Run Time
	Historical run time decay
	Committed run time weighting factor

	Users Affected by Multiple Fairshare Policies
	Submitting a job and specifying a user group

	Ways to Configure Fairshare
	Global fairshare
	Chargeback fairshare
	Equal Share
	Priority user and static priority fairshare
	Priority user fairshare
	Static priority fairshare


	Goal-Oriented SLA-Driven Scheduling
	Using Goal-Oriented SLA Scheduling
	Service-level agreements in LSF
	Service classes
	Service-level goals
	How service classes perform goal-oriented scheduling
	Submitting jobs to a service class
	Modifying SLA jobs (bmod)

	Configuring Service Classes for SLA Scheduling
	User groups for service classes
	Service class priority
	Service class configuration examples

	Viewing Information about SLAs and Service Classes
	Monitoring the progress of an SLA (bsla)
	Tracking historical behavior of an SLA (bacct)

	Understanding Service Class Behavior
	A simple deadline goal
	An overnight run with two service classes
	When an SLA is missing its goal
	Preemption and SLA policies
	Chunk jobs and SLA policies
	SLA statistics files



	Job Scheduling and Dispatch
	Resource Allocation Limits
	About Resource Allocation Limits
	What resource allocation limits do
	How LSF enforces limits
	How LSF counts resources
	Limits for resource consumers

	Configuring Resource Allocation Limits
	lsb.resources file
	Enabling resource allocation limits
	Configuring cluster-wide limits
	Compatibility with pre-version 6.0 job slot limits
	How resource allocation limits map to pre-version 6.0 job slot limits
	How conflicting limits are resolved
	Example limit configurations

	Viewing Information about Resource Allocation Limits
	blimits command
	Examples


	Reserving Resources
	About Resource Reservation
	How resource reservation works
	Queue-level and job-level resource reservation

	Using Resource Reservation
	Queue-level resource reservation
	Queue-level resource reservation and pending reasons
	Configuring resource reservation at the queue level
	Job-level resource reservation

	Memory Reservation for Pending Jobs
	About memory reservation for pending jobs
	Configuring memory reservation for pending jobs
	Using memory reservation for pending jobs
	How memory reservation for pending jobs works
	Examples

	Viewing Resource Reservation Information
	Viewing host-level resource information
	Viewing queue-level resource information
	Viewing reserved memory for pending jobs


	Managing Software Licenses with LSF
	Using Licensed Software with LSF
	Host Locked Licenses
	Configuring host locked licenses

	Counted Host Locked Licenses
	Configuring counted host locked licenses

	Network Floating Licenses
	All licenses used through LSF
	Example
	Licenses used outside of LSF control
	Example
	Configuring a dedicated queue for floating licenses
	Preventing underutilization of licenses
	When interactive jobs compete for licenses
	For more information


	Dispatch and Run Windows
	Dispatch and Run Windows
	Run Windows
	Configuring run windows
	Viewing information about run windows

	Dispatch Windows
	Configuring dispatch windows
	Displaying dispatch windows


	Job Dependencies
	Job Dependency Scheduling
	About job dependency scheduling
	Specifying a job dependency
	Multiple jobs with the same name

	Dependency Conditions
	done
	ended
	exit
	external
	Job ID or job name
	post_done
	post_err
	started
	Advanced dependency conditions
	Job dependency examples


	Job Priorities
	User-Assigned Job Priority
	Configuring job priority
	Specifying job priority
	Viewing job priority information

	Automatic Job Priority Escalation
	Configuring job priority escalation


	Job Requeue and Job Rerun
	About Job Requeue
	Automatic Job Requeue
	About automatic job requeue
	Configuring automatic job requeue

	Reverse Requeue
	About reverse requeue
	Configuring reverse requeue

	Exclusive Job Requeue
	About exclusive job requeue
	Configuring exclusive job requeue

	User-Specified Job Requeue
	About user-specified job requeue
	Requeuing a job

	Automatic Job Rerun
	Job requeue vs. job rerun
	About job rerun
	Configuring queue-level job rerun
	Submitting a rerunnable job


	Job Checkpoint, Restart, and Migration
	Checkpointing Jobs
	Fault tolerance
	Migration
	Load balancing

	Approaches to Checkpointing
	Kernel-level checkpointing
	User-level checkpointing
	Application-level checkpointing

	Creating Custom echkpnt and erestart for Application-level Checkpointing
	Writing custom echkpnt and erestart programs
	Configuring LSF to recognize the custom echkpnt and erestart

	Checkpointing a Job
	The Checkpoint Directory
	Making Jobs Checkpointable
	Manually
	Automatically

	Manually Checkpointing Jobs
	Checkpointing and killing a job

	Enabling Periodic Checkpointing
	Disabling periodic checkpointing

	Automatically Checkpointing Jobs
	Restarting Checkpointed Jobs
	Requirements
	Manually restarting jobs

	Migrating Jobs
	Requirements
	Manually migrating jobs
	Automatically Migrating Jobs
	Requeuing migrating jobs


	Chunk Job Dispatch
	About Job Chunking
	Chunk job candidates

	Configuring a Chunk Job Dispatch
	CHUNK_JOB_SIZE (lsb.queues)
	CHUNK_JOB_DURATION (lsb.params)
	Restrictions on chunk job queues

	Submitting and Controlling Chunk Jobs
	WAIT status
	Controlling chunk jobs
	Rerunnable chunk jobs
	Checkpointing chunk jobs
	Fairshare policies and chunk jobs
	TERMINATE_WHEN job control action
	Enforcing resource usage limits on chunk jobs


	Job Arrays
	Creating a Job Array
	Syntax
	Maximum size of a job array

	Handling Input and Output Files
	Preparing input files

	Redirecting Standard Input and Output
	Standard input
	Standard output and error

	Passing Arguments on the Command Line
	Job Array Dependencies
	Whole array dependency
	Partial array dependency

	Monitoring Job Arrays
	Job array status
	Individual job status
	Specific job status

	Controlling Job Arrays
	Whole array
	Individual jobs
	Groups of jobs

	Requeuing a Job Array
	Requeuing jobs in DONE state
	Requeuing Jobs in EXIT state
	Requeuing all jobs in an array regardless of job state
	Requeuing RUN jobs to PSUSP state
	Requeuing jobs in RUN state

	Job Array Job Slot Limit
	Setting a job array job slot limit
	Changing a job array job slot limit
	Viewing a job array job slot limit



	Controlling Job Execution
	Runtime Resource Usage Limits
	About Resource Usage Limits
	Resource usage limits and resource allocation limits
	Summary of resource usage limits
	Priority of resource usage limits
	Incorrect resource usage limits
	Enforcing limits on chunk jobs

	Specifying Resource Usage Limits
	Specifying queue-level resource usage limits
	Default run limits for backfill scheduling
	Specifying job-level resource usage limits

	Supported Resource Usage Limits and Syntax
	Core file size limit
	CPU time limit
	Data segment size limit
	File size limit
	Memory limit
	Process limit
	Run time limit
	Thread limit
	Stack segment size limit
	Virtual memory (swap) limit
	Examples

	CPU Time and Run Time Normalization
	Normalization host
	Normalization hosts for default CPU and run time limits
	CPU time display (bacct, bhist, bqueues)


	Load Thresholds
	Automatic Job Suspension
	Suspending Conditions
	Configuring load thresholds at queue level
	Configuring load thresholds at host level
	Configuring suspending conditions at queue level
	Viewing host-level and queue-level suspending conditions
	Viewing job-level suspending conditions
	Viewing suspend reason
	Resuming suspended jobs
	Specifying resume condition
	Viewing resume thresholds


	Pre-Execution and Post-Execution Commands
	About Pre-Execution and Post-Execution Commands
	Pre-execution commands
	Post-execution commands
	Job-level commands
	Queue-level commands
	Post-execution job states

	Configuring Pre- and Post-Execution Commands
	Job-level commands
	Queue-level commands
	LSB_PRE_POST_EXEC_USER parameter (lsf.sudoers)


	Job Starters
	About Job Starters
	Two ways to run job starters
	Pre-execution commands are not job starters
	Examples

	Command-Level Job Starters
	LSF_JOB_STARTER environment variable
	Using command-level job starters
	Examples

	Queue-Level Job Starters
	Configuring a queue-level job starter
	JOB_STARTER parameter (lsb.queues)

	Controlling Execution Environment Using Job Starters
	Where the job starter executables are located
	Adding to the initial login environment


	External Job Submission and Execution Controls
	Understanding External Executables
	About esub and eexec
	Interactive remote execution
	DCE credentials and AFS tokens

	Using esub
	About esub
	Environment variables to bridge esub and LSF
	General esub logic
	Rejecting jobs
	Validating job submission parameters
	Modifying job submission parameters
	The bmod and brestart commands and esub
	How LSF supports multiple esub
	How master esub invokes application-specific esubs
	Configuring master esub and your application-specific esub

	Working with eexec
	About eexec
	Using esub and eexec to pass data to execution environments


	Configuring Job Controls
	Default Job Control Actions
	SUSPEND action
	RESUME action
	TERMINATE action
	Windows job control actions

	Configuring Job Control Actions
	JOB_CONTROLS parameter (lsb.queues)
	Using a command as a job control action
	TERMINATE job actions
	TERMINATE_WHEN parameter (lsb.queues)
	LSB_SIGSTOP parameter (lsf.conf)
	Avoiding signal and action deadlock

	Customizing Cross-Platform Signal Conversion
	Default signal conversion
	Custom signal conversion



	Interactive Jobs
	Interactive Jobs with bsub
	About Interactive Jobs
	Scheduling policies
	Interactive queues
	Interactive jobs with non-batch utilities

	Submitting Interactive Jobs
	Finding out which queues accept interactive jobs
	Submitting an interactive job
	Submitting an interactive job by using a pseudo-terminal
	Submitting an interactive job and redirect streams to files

	Performance Tuning for Interactive Batch Jobs
	Types of load conditions
	Types of load indices
	Scheduling conditions and resource thresholds

	Interactive Batch Job Messaging
	Limitations
	Configuring interactive batch job messaging
	Example messages

	Running X Applications with bsub
	Writing Job Scripts
	Writing a job file one line at a time
	Specifying job options in a file
	Spooling a job command file
	Redirecting a script to bsub standard input
	Specifying embedded submission options
	Running a job under a particular shell

	Registering utmp File Entries for Interactive Batch Jobs
	Configuration and operation
	Limitations


	Running Interactive and Remote Tasks
	Running Remote Tasks
	Running a task on the best available host
	Running a task on a host with specific resources
	Running a task on a specific host
	Running a task by using a pseudo-terminal
	Running the same task on many hosts in sequence
	Running parallel tasks
	Running tasks on hosts specified by a file

	Interactive Tasks
	Interactive tasks on remote hosts
	Interactive processing and scheduling policies
	Shared files and user IDs
	Shell mode for remote execution
	Run windows
	Redirecting streams to files

	Load Sharing Interactive Sessions
	Logging on to the least loaded host
	Logging on to a host with specific resources

	Load Sharing X Applications
	Starting an xterm
	xterm on a PC
	Setting up an X terminal to start an X session on the least loaded host
	Starting an xterm in Exceed
	Examples



	Running Parallel Jobs
	Running Parallel Jobs
	How LSF Runs Parallel Jobs
	Preparing Your Environment to Submit Parallel Jobs to LSF
	Getting the host list
	Parallel job scripts
	Using a job starter

	Submitting Parallel Jobs
	Specifying the number of processors

	Submitting PVM Jobs to LSF
	pvmjob script
	Example

	Submitting MPI Jobs
	mpijob script
	mpijob syntax
	Submitting jobs to a pool of IBM SP-2 nodes
	Submitting jobs using the IBM SP-2 High Performance switch

	Starting Parallel Tasks with LSF Utilities
	Job Slot Limits For Parallel Jobs
	Specifying a Minimum and Maximum Number of Processors
	Syntax
	Example

	Specifying a Mandatory First Execution Host
	Specify a mandatory first execution host

	Controlling Processor Allocation Across Hosts
	Specifying parallel job locality at the job level
	Specifying multiple ptile values
	Examples
	Specifying parallel job locality at the queue level

	Running Parallel Processes on Homogeneous Hosts
	Examples

	Using LSF Make to Run Parallel Jobs
	Example

	Limiting the Number of Processors Allocated
	Syntax
	How PROCLIMIT affects submission of parallel jobs
	Changing PROCLIMIT
	MultiCluster
	Automatic queue selection
	Examples

	Reserving Processors
	About processor reservation
	How processor reservation works
	Configuring processor reservation
	Viewing information about reserved job slots

	Reserving Memory for Pending Parallel Jobs
	Configuring memory reservation for pending parallel jobs
	Enabling per-slot memory reservation

	Allowing Jobs to Use Reserved Job Slots
	About backfill scheduling
	How backfilling works
	Configuring backfill scheduling
	Enforcing run limits
	Viewing information about job start time
	Using backfill on memory
	Examples of memory reservation and backfill on memory

	Parallel Fairshare
	Configuring parallel fairshare

	How Deadline Constraint Scheduling Works For Parallel Jobs
	Optimized Preemption of Parallel Jobs
	How optimized preemption works
	Configuring optimized preemption


	Advance Reservation
	About Advance Reservation
	Configuring Advance Reservation
	Advance reservation plugin
	Advance reservation license
	Allowing users to create advance reservations
	USER_ADVANCE_RESERVATION is obsolete (lsb.params)

	Using Advance Reservation
	Advance reservation commands
	Adding and removing reservations
	Viewing reservations
	Submitting and modifying jobs using advance reservations
	Forcing a job to run before a reservation is active
	Advance reservations across clusters
	Viewing historical accounting information for advance reservations



	Monitoring Your Cluster
	Event Generation
	Event Generation
	Enabling event generation
	Events list
	Arguments passed to the LSF event program


	Tuning the Cluster
	Tuning LIM
	Adjusting LIM Parameters
	RUNWINDOW parameter

	Load Thresholds
	Load indices that affect LIM performance
	Comparing LIM load thresholds
	If LIM often reports a host as busy
	If interactive jobs slow down response
	Multiprocessor systems

	Changing Default LIM Behavior to Improve Performance
	Default LIM behavior
	Change default LIM behavior
	Reconfiguration and LSF_MASTER_LIST
	How LSF works with LSF_MASTER_LIST
	Considerations

	Tuning mbatchd on UNIX
	How mbatchd works without multithreading
	How mbatchd works with multithreading
	Setting a query-dedicated port for mbatchd
	Specifying an expiry time for child mbatchds


	Authentication
	About User Authentication
	User authentication options
	External authentication (eauth)
	Privileged ports authentication (setuid)
	Identification daemon (identd)
	How LSF determines the user authentication method
	setuid permission on LSF administration commands
	Security of LSF authentication
	Correcting user authentication errors
	Password problem notification on Windows

	About Host Authentication
	Trust LSF host
	/etc/hosts.equiv (UNIX)
	For more information

	About Daemon Authentication
	Daemon authentication
	Configuring daemon authentication

	LSF in Multiple Authentication Environments
	User Account Mapping
	Configuring user-level account mapping (.lsfhosts)


	Job Email, and Job File Spooling
	Mail Notification When a Job Starts
	bsub mail options
	Size of job email
	Directory for job output
	Specifying a directory for job output
	For more information

	File Spooling for Job Input, Output, and Command Files
	About job file spooling
	Specifying job input files
	Specifying a job command file (bsub -Zs)
	About the job spooling directory (JOB_SPOOL_DIR)
	Modifying the job input file
	Modifying the job command file
	For more information


	Non-Shared File Systems
	About Directories and Files
	Supported file systems
	Non-shared directories and files

	Using LSF with Non-Shared File Systems
	LSF installation
	Configuration files
	Master host
	Fault tolerance

	Remote File Access
	Using LSF with non-shared file space
	bsub -f
	bsub -i
	bsub -o and bsub -e
	Example

	File Transfer Mechanism (lsrcp)
	Limitations to lsrcp
	Workarounds


	Error and Event Logging
	System Directories and Log Files
	lsb.events
	lsb.events.n
	Job script files in the info directory
	Log directory permissions and ownership
	Support for UNICOS accounting
	Support for IRIX Comprehensive System Accounting (CSA)

	Managing Error Logs
	Daemon error log
	Error logging

	System Event Log
	Duplicate Logging of Event Logs
	How duplicate logging works
	Automatic archiving and duplicate logging
	Configuring duplicate logging


	Troubleshooting and Error Messages
	Shared File Access
	Shared files on UNIX
	Shared files on Windows
	Shared files across UNIX and Windows

	Common LSF Problems
	LIM dies quietly
	LIM unavailable
	RES does not start
	User permission denied
	Non-uniform file name space
	Batch daemons die quietly
	sbatchd starts but mbatchd does not
	Host not used by LSF
	UNKNOWN host type or model
	DEFAULT host type or model

	Error Messages
	General errors
	Configuration errors
	LIM messages
	RES messages
	mbatchd and sbatchd messages

	Setting Daemon Message Log to Debug Level
	Limitations
	Debug commands for daemons
	Examples

	Setting Daemon Timing Levels
	Limitations
	Timing level commands for daemons



	LSF Utilities
	Using lstcsh
	About lstcsh
	Task Lists
	Changing task list membership
	Task lists and resource requirements

	Local and Remote Modes
	Local mode
	Remote mode

	Automatic Remote Execution
	Differences from Other Shells
	@ character

	Limitations
	Native language system
	Shell variables
	fg command
	tcsh version

	Starting lstcsh
	Starting lstcsh
	Exiting lstcsh

	Using lstcsh as Your Login Shell
	Setting your login shell

	Host Redirection
	Examples
	@ character

	Task Control
	jobs command
	Bringing a remote background task to the foreground

	Built-in Commands
	lsmode
	connect

	Writing Shell Scripts in lstcsh
	Running a script with load sharing enabled



	Index


