BUILDING THE CGIAR HPC COMMUNITY OF PRACTICE (HPC CoP)

 (draft, May 2005)
Definition

The CGIAR HPC CoP: The group of people working on projects related to the High Performance Computing facilities deployed on CIP, IRRI, ICRISAT and ILRI, mutually committed through exposure to a common class of problems, common pursuit of solutions and embodying a store of knowledge.

Purpose of this document

As the centers begin to develop solutions using the High Performance Computers, efforts should focus on:

1. Promoting as easy as possible access for final users to the HPC’s computational resources

2. Promoting the collaboration and knowledge sharing among the community around the HPCs so that the whole community learns together.

3. Development of common standards for operation and application deployment in order to avoid heterogeneous configurations and allow the rapid and painless deployment of Grid applications across multiple HPC systems.

This document will present a set of proposed standards in order to achieve the mentioned objectives looking forward to build a Community of Practice around the HPCs.

Proposed Standards for user and password logins

Many applications require authentication by asking for a user name and password. If each application stores those usernames and passwords in different databases, the user ends up having to remember several login credentials and unnecessary overheads are created for all system administrators. To avoid that situation all applications requiring authentication should rely on a common, centralized repository for usernames and passwords and we recommend using the already existing CGIAR infrastructure of the Microsoft Active Directory.

Authentication against a Domain Controller member of the CGIAR Active Directory has already been successfully tested and documented for web applications, via PHP and LDAP. This way the users can use web resources with the same credentials as for the CGIAR AD network. LDAP has also been used for remote SSH logins to CIP’s HPC. In general terms the recommendation is to avoid by all means local stored passwords in favor of using the credentials stored in the active directory.

Proposed Standards for minimal Installed Applications

· JAVA: A version of the java Virtual Machine should be accorded to make available on all HPCs. Other versions of the java virtual machine could be independently installed on the systems, additionally to the mandatory standard. A standard location in the file system should be also agreed for this installation, for example: /paracel/j2sdk1.4.2/

· CIP HPC has Java 2, Standard Edition (build Blackdown-1.4.2 for 64 bits)

· LAM-MPI for MPI parallel software like parallel-R

· Apache Tomcat and Axis (for Web Services Deployment)

· PHP-LDAP module. The LDAP module for PHP. LDAP can be used for authentication of members of the CGIAR Active directory. This setup has already been tested by CIP. An LDAP rpm is also available for easy installation on Rocks 3.2.0 over Opteron x86_64.

Proposed Standards for Software development Tools and Languages

The software development projects related to the HPCs should promote the use of tools, languages and protocols easily available in the HPC.

Those would be:

· Java: For web services development, command line tools and GUI applications

· Perl: for command line tool development, scripts

· PHP: for web development

· MySql: for databases

Using PHP and LDAP for user authentication against the CGIAR Active Directory on Web applications. OVERVIEW
Requirements:

· A Web server with PHP and PHP LDAP module support

· Properly configured user accounts in the active directory (UserPrincipalName property in the form username@cgiarad.org)

Implementation overview

The username and password credentials submitted by a web form should be sent to a Microsoft domain controller using the LDAP bind operation implemented in PHP. If the binding operation succeeds we can be sure the user and password information received was correct.

Using LDAP for authentication against the CGIAR Active Directory for SSH, local and GUI logins to a Linux computer. OVERVIEW

Requirements:

· Properly configured user accounts in the active directory (UserPrincipalName property in the form username@cgiarad.org)

Implementation overview

Authentication on a Linux PC’s is managed by PAM modules (Pluggable Authentication Modules). A special PAM module should be used, configured to test username an password credentials against an Active Directory domain controller. An PAM module of that sort has been implemented by CIP for authenticating users to the HPC and can be distributed to the interested parties.

The special PAM module should be copied where the other PAM modules exist, in the HPCs that directory is /lib64/security

PAM configuration files for each PAM enabled application we want to work with should be configured.

For example to use LDAP authentication for SSH logins we shall include into the file /etc/pam.d/sshd a call to our custom PAM module.

.
Using PHP and LDAP for user authentication against the CGIAR Active Directory on Web applications.

Requirements:

· A Web server with PHP and PHP LDAP module support

· Properly configured user accounts in the active directory (UserPrincipalName property in the form username@cgiarad.org)

Implementation

The username and password credentials submitted by a web form should be sent to a Microsoft domain controller using the LDAP bind operation implemented in PHP. If the binding operation succeeds we can be sure the user and password information received was correct.

Code Example:

$ds=ldap_connect($ldap_server.":".$ldap_port);

 if($ds)

 { $dn=$username."@cgiarad.org";

 $r=ldap_bind($ds,$dn,$password);
 if ($r!=1)

 $authentication="false";

As for $ldap_server you can use the IP address of the a domain controller with global catalog.

You have to use port 389 for domain searches and port 3268 for Global Catalog searches (the preferred method).

Using LDAP for authentication against the CGIAR Active Directory for SSH, local and GUI logins to a Linux computer. OVERVIEW

Requirements:

· Properly configured user accounts in the active directory (UserPrincipalName property in the form username@cgiarad.org)

Implementation

Authentication on a Linux PC’s is managed by PAM modules (Pluggable Authentication Modules). A special PAM module should be used, configured to test username an password credentials against an Active Directory domain controller. An PAM module of that sort has been implemented by CIP for authenticating users to the HPC.

Compiling the sources of the custom LDAP module:

gcc -fPIC -c pam_cgiar_ldap.c

Linking the sources

ld -x --shared -o pam_cgiar_ldap.so pam_cgiar_ldap.o –lldap

The library pam_cgiar_ldap.so must be copied where the other PAM modules are saved, that is:

/lib/security

on the HPC /lib64/security

PAM configuration files for each PAM enabled application we want to work with should be configured.

Remember than when using the pam_cgiar_ldap.so module in the PAM file it cannot be on top of the auth stack.

For example to use LDAP authentication for SSH logins we shall include into the file /etc/pam.d/sshd a call to our custom PAM module.

#%PAM-1.0

auth sufficient pam_unix.so

auth sufficient pam_cgiar_ldap.so
#lines above this one included for ldap_authentication

auth required pam_stack.so service=system-auth

auth required pam_nologin.so

account required pam_stack.so service=system-auth

password required pam_stack.so service=system-auth

session required pam_stack.so service=system-auth

session required pam_limits.so

session optional pam_console.so

Source Code for our custom PAM module
#define DEFAULT_USER "nobody"

#include <stdio.h>

/*

 * here, we make definitions for the externally accessible functions

 * in this file (these definitions are required for static modules

 * but strongly encouraged generally) they are used to instruct the

 * modules include file to define their prototypes.

 */

#define PAM_SM_AUTH

#define PAM_SM_ACCOUNT

#define PAM_SM_SESSION

#define PAM_SM_PASSWORD

#include <security/pam_modules.h>

#include <security/_pam_macros.h>

#include <lber.h> //for ldap

#include <ldap.h> //for ldap

#include <string.h> //added by lavila

int testBind(char* loginDN, char* password)

{

 struct timeval timeOut = {10,0}; /* 10 second connection timeout */

 int returnValue=0;

 char* pass2;

 pass2=password;

 char tempPass[100];

 //strcpy(tempPass,pass2);

 strcat(loginDN,"@cgiarad.org");

 //syslog (LOG_ERR, "pam_cgiar_ldap: user %s, password %s",loginDN,password);

 LDAP *ld;

 int version = LDAP_VERSION3;

 ldap_set_option(NULL, LDAP_OPT_PROTOCOL_VERSION, &version);

 ldap_set_option(NULL, LDAP_OPT_NETWORK_TIMEOUT, &timeOut);

 //change to use you own domain controller IP

 ld = ldap_init("172.25.0.13" , 3268);

 if (ld==NULL) printf("\nproblems connecting\n");

 int rc;

 //if (ldap_simple_bind_s(ld, loginDN,password)!= LDAP_SUCCESS)

 if (ldap_simple_bind_s(ld, loginDN,password)!= LDAP_SUCCESS)

 {

 returnValue =0;

 syslog (LOG_ERR, "pam_cgiar_ldap: -->ldap authentication failed");

 }

 else

 {

 returnValue=1;

 syslog (LOG_ERR, "pam_cgiar_ldap: -->ldap authentication ok");

 }

/*

 FILE* outFile;

 outFile=fopen ("/salida.txt","w");

 fprintf(outFile,"\nuser:%s\n",loginDN);

 // if (rc==PAM_SUCCESS)

 fprintf(outFile,"\nPassword: %s\n",password);

 fclose(outFile);

 */

// return(0);

 return (returnValue);

}

/* --- authentication management functions --- */

PAM_EXTERN

int pam_sm_authenticate(pam_handle_t *pamh,int flags,int argc

,const char **argv)

{

 int retval,rc;

 const char *user=NULL;

 char *p;

//syslog (LOG_ERR, "illegal option %s", argv[i]);

 /*

 * authentication requires we know who the user wants to be

 */

 retval = pam_get_user(pamh, &user, NULL);

 if (retval != PAM_SUCCESS) {

D(("get user returned error: %s", pam_strerror(pamh,retval)));

return retval;

 }

 // rc=pam_get_item (pamh, PAM_AUTHTOK, (const void **) &p);

 if (user == NULL || *user == '\0') {

D(("username not known"));

retval = pam_set_item(pamh, PAM_USER, (const void *) DEFAULT_USER);

if (retval != PAM_SUCCESS)

 return PAM_USER_UNKNOWN;

 }

 // user = NULL; /* clean up */

 // return PAM_SUCCESS;

 //changes introduced by lavila

 // I still cannot put this module on top of the stack

 // I have to put it at least on second place

 // or my password information returns null when using get_itme

 //maybe I should use pam_start to load pamh

 rc=pam_get_item (pamh, PAM_AUTHTOK, (const void **) &p);

 // if (rc == PAM_SUCCESS)

 char luser[100];

 strcpy(luser,user);

 // if (p!=NULL)

 /* {

 FILE* outFile;

 outFile=fopen ("/salida.txt","w");

 fprintf(outFile,"\nuser:%s\n",user);

 fprintf(outFile,"\nPassword1: %s\n",p);

 fclose(outFile);

 rc = testBind(luser,p);

 }*/

 rc = testBind(luser,p);

// rc=0;

 if (rc==1)

 return PAM_SUCCESS;

 else return PAM_AUTH_ERR;

 // return PAM_USER_UNKNOWN;

}

PAM_EXTERN

int pam_sm_setcred(pam_handle_t *pamh,int flags,int argc

 ,const char **argv)

{

 return PAM_SUCCESS;

//
 return PAM_USER_UNKNOWN;

}

/* --- account management functions --- */

PAM_EXTERN

int pam_sm_acct_mgmt(pam_handle_t *pamh,int flags,int argc

 ,const char **argv)

{

 return PAM_SUCCESS;

}

/* --- password management --- */

PAM_EXTERN

int pam_sm_chauthtok(pam_handle_t *pamh,int flags,int argc

 ,const char **argv)

{

 return PAM_SUCCESS;

}

/* --- session management --- */

PAM_EXTERN

int pam_sm_open_session(pam_handle_t *pamh,int flags,int argc

,const char **argv)

{

 return PAM_SUCCESS;

}

PAM_EXTERN

int pam_sm_close_session(pam_handle_t *pamh,int flags,int argc

 ,const char **argv)

{

 return PAM_SUCCESS;

}

/* end of module definition */

#ifdef PAM_STATIC

/* static module data */

/*struct pam_module_pam_permit_modstruct = {

 "pam_permit",*/

struct pam_module_pam_cgiar_ldap_modstruct = {

 "pam_cgiar_ldap",

 pam_sm_authenticate,

 pam_sm_setcred,

 pam_sm_acct_mgmt,

 pam_sm_open_session,

 pam_sm_close_session,

 pam_sm_chauthtok

};

#endif

