
A Quick Guide To
PERL

This is a Quick reference Guide for PERL 5.8.6 programming.
Perl definition is given by its creator, Larry Wall: “Perl is a
language to get your job done” and he added “There is more
than one way to do it”!
This guide is not exhaustive, its purpose is to give a few
essential reminder to the Perl syntax, but basic knowledge of
Perl programming is required.

To find help about a Perl function or keyword use perldoc:

perldoc -f split
perldoc -q FAQkeyword

For more information about Perl in general see:
http://www.perl.org

References
For more information on Perl syntax you can refer to O’Reilly’s
book “Programming Perl, 3rd edition”.

Structure of a Perl script
#!/usr/bin/perl first line of a Perl script*

...
statement list
...
exit 0; last line (optional)

*which perl gives the path to the Perl executable
(could be /usr/local/bin/perl)

Variables Scalars ($)
In Perl the variables are not strictly typed (no integer, char,
float, reference, objects etc...) This is a strength and a weakness
of Perl.

$var = “any content”; assign a string
$value = 42; assign a number
($a,$b,$c)=(41,42,”Jo”); assign several scalars at once
($lt,$rt)=($rt,$lt); swap values
my $var; declare a variable as local

lexically
our $var; declare a variable as global

lexically
local $var; declare a variable as local

dynamically

Variables Arrays (or Lists) (@)
Array or lists is an indexed collection of values, the first index
starts at position zero.

@var=(“aa”,“bb”,“cc”); assign an array of 3 elements
print $var[0]; print scalar “aa”
print $var[1]; print scalar “bb”
push(@var, $new); add an element to @var (right)
$getr=pop(@var); remove last element of @var

(right)
unshift(@var, $new); add an element to @var (left)
$getl=shift(@var); remove first element of @var

(left)
@rvar=reverse(@var); return the reverse order of the

elements of @var
@svar=sort(@var); return the sorted elements of @var

(string sort)
split(/PATTERN/, $var); change a string to a list of elements

split by a ‘PATTERN’
join(“MOTIF”, @var); join elements of @var with a

‘MOTIF’ to form a single string
$size = @var; $size contains the number of

elements of the array @var

Variables Hashes (%)
A hash is a structure where a key is associated to a value

%var = (“red”=>x0000FF, assign values to 3 hash elements
 “blue”=>xFF0000,
 “green”=>x00FF00);
print $var{“red”}; contain value x0000FF = 255
$var{“yellow”}=xFFFF00; add a new hash element
@ex = %var; convert hash to array
%var = @ex; convert array to hash

print keys(%var); give the list of keys for the %var
print values(%var); give the list of values for the %var
print each(%var); same as values
delete $var{“yellow”} delete the hash element

Special Variables
Perl has a large collection of special variables. Here is a short
extract.
$_ default input
@_ in a subroutine contains the list of

arguments
$$ process ID
$/ record separator (default = \n)
$@ eval error or exception
@ARGV contain arguments of the

command-line

$ARGV[0] first argument
%ENV contain environment variables
@INC contain list of directories for

modules to import

Control Operators
&& || ! logical AND, OR and NOT
< > <= >= != == <=> numerical comparison
lt gt le ge ne eq cmp string comparison
Example:
if ($var == 42) { print “$var is numeric”;}
elsif ($var eq “XLII”) { print “$var is a string”;}
else {print “$var is not equal to 42”;}

Generally:
if (expr1) { if expr1 is true execute list1
 statement list1
}
elsif (expr2) { else if expr2 is true execute list2
 statement list2 (can have many elseif)
}
else { else executes list3
 statement list3
}

statement if (expr) reverse if, execute statement if
expr is true (also with unless,
while, until)

unless(expr) { execute statement unless expr is
 statement list true, handle elsif and else (like if)
}
Loops
while(expr) { repeat statement while expr is true
 statement list
}
do { repeat statement until expr is true
 statement list
} until(expr)
for(init; expr; incr){ repeat statement a certain number
 statement list of times
}
last; end loops (while, for, etc...)
next; jump to next item in the loop
redo; restart loop with current item

Example: prints 1 to 10
for($i=1;$i<=10;$i++){
 print “$i\n”;
}
Example: prints each element of array @list
foreach $index (@list){
 print $index;
}

Subroutines, example:
sub add_it { create a subroutine
 local ($a,$b)=@_; get arguments
 $var = $a+$b; sum the values
 return $var; return the result
}
$result = &add_it(3,5); call subroutine with arguments,

$result contains 8.

File Operators
open HANDLE, filename open a file Handler
close HANDLE close a file Handler
Example:
open (FH, “filename”); open file filename for reading
while (<FH>) { read each record (line) and store in $_
 $text .= $_; concatenate $_ in $text
}
close(FH); close filehandle, $text contains the

content of file filename

open(FH, “>filename”); open filename for output in write
open(FH, “>>filename”); open filename for output in

concatenate
Example:
open(FH, “ls -l |”); pipe allow to grab command-line

output
while (<FH>) { read and store the output of “ls -l”
 $filelist .= $_;
}
Special Handlers
<STDIN> read from standard input (usually

keyboard)
<STDOUT> write to standard output (usually

screen)
<STDERR> write to standard error (usually

screen)

File Tests
if (-e $filename) { open(READ, $filename); }
Some possible tests:
-r readable
-w writable
-x executable
-o belong to user
-e exist
-z zero size (file exist)
-s nonzero size
-f file
-d directory
-l symlink
-T text file
-A accessed in days
@var=stat($filename); get full info on files

String Functions
$var=”my”x4; $var contains “mymymymy”
$new=$var.$var; concatenate 2 strings
$var.=$new; assign & concatenate, same as

$var=$var.$new;
chop($var); delete last char of $var
chomp($var); delete \n if last char of $var
$c=substr($var,3,5); get 5 characters of string $var

starting from position 3.
print “Hello world\n”; print a string
printf(“%10s %4d %5.2f\n”, $s,$i,$r);
 similar as “C/C++” print

formatting

System calls
system(“ls -l”); execute a system command and

continue the current Perl script
exec(“rm tmp”); execute a system command and

quit the current Perl script

Regular Expressions
Please use the QuickGuide to Perl Regular Expressions in the
same series.

Perl modules

http://www.cpan.org CPAN repository for Perl
modules.

use Mymodule; preload a module or pragma at
compilation time

require Mymodule; preload a module at execution
time

Perl looks for the real name of the module “Mymodule.pm”

This document was written and designed by Laurent Falquet
and Vassilios Ioannidis from the Swiss EMBnet node and being
distributed by P&PR Publications Committee of EMBnet.

EMBnet - European Molecular Biology Network - is a
bioinformatics support network of bioinformatics support
centers situated primarily in Europe. Most countries have a
national node which can provide training courses and other
forms of help for users of bioinformatics software.

You can find information about your national node from the
EMBnet site:

http://www.embnet.org/

A Quick Guide To PERL
First edition © 2005

